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Abstract. We define a new notation called netcharts for describing sets
of message sequence chart scenarios (MSCs). Netcharts correspond to a
distributed version of High-level Message Sequence Charts (HMSCs).
Netcharts improve on HMSCs in two respects.

(i) Netcharts admit a natural and direct translation into communicat-
ing finite-state machines, unlike HMSCs, for which the realization
problem is nontrivial.

(ii) Netcharts can describe all regular MSC languages (sets of MSCs in
which channel capacities have a finite upper bound), unlike HMSCs,
which can only describe finitely-generated regular MSC languages.

1 Introduction

Message sequence charts (MSCs) are an appealing visual formalism used to cap-
ture system requirements in the early stages of design. They are particularly
suited for describing scenarios for distributed telecommunication software [10,
15]. They also appear in the literature as sequence diagrams, message flow di-
agrams and object interaction diagrams and are used in a number of software
engineering methodologies including UML [3, 7, 15]. In its basic form, an MSC
depicts the exchange of messages between the processes of a distributed system
along a single partially-ordered execution. A collection of MSCs is used to cap-
ture the scenarios that a designer might want the system to exhibit (or avoid).

Given the requirements in the form of MSCs, one can hope to discover errors
at the early stages of design. One question that naturally arises in this context is:
What constitutes a reasonable collection of MSCs on which one can hope to do
formal analysis? In [9], the notion of a regular collection of MSCs is introduced
and shown to be robust in terms of logical and automata-theoretic characteri-
zations. In particular, regular collections of MSCs can be implemented using a
natural model of message-passing automata with bounded queues [12].

A standard way to specify a set of MSCs is to use a High-level Message
Sequence Chart (HMSC) [10, 11]. An HMSC is a finite directed graph in which
each node is itself labelled by an HMSC, with a finite level of nesting.

HMSCs are an attractive visual formalism for describing collections of MSCs.
An HMSC is not, however, an executable model. To obtain one, one must extract
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from the inter-object specification provided by an HMSC, an intra-object spec-
ification (say in the form of a finite state automaton) for each process together
with a communication mechanism. This is non-trivial because the structure of
an HMSC provides implicit global control over the behaviour of the processes
in the system. This allows for specifications that are not realizable in prac-
tice because of un-implementable global choices. Even for the class of so-called
bounded HMSCs [2], the problem of realizing them as, say, a network of finite
state automata communicating via bounded queues is non-trivial. Admittedly,
the sub-class of bounded HMSCs that are weakly realizable can implemented
easily, but this is an undecidable property of bounded HMSCs! [1]. A detailed
study of the realization problems associated with HMSCs can be found in [4].

HMSCs also have a limitation with respect to expressiveness—they can only
describe finitely generated MSC languages. But there are natural regular MSC
languages, such as the set of scenarios corresponding to the alternating bit pro-
tocol, that are not finitely generated [6].

In this paper, we introduce a new visual formalism for specifying collections
of MSCs, called netcharts. Netcharts are distributed versions of HMSCs in much
the same way that Petri nets are distributed versions of finite-state automata.
Netcharts improve on HMSCs in two respects. First, due to their natural —
control flow — semantics, netcharts can be directly translated into communicat-
ing finite-state machines. In this sense the “realization” problem for netcharts is
easy. Second, netcharts can describe all regular MSC languages, including those
that are not finitely-generated.

An important aspect of the netchart model is that the compound MSCs that
are defined by a netchart are built up from “complete” MSCs. As a result, this
formalism can be used to capture system requirements in an intuitive fashion.
The distributed structure allows these scenarios to be intertwined together to
form complicated new scenarios.

The netchart model is related to Communication Transaction Processes (CTP)
[14]. The main difference is that in a CTP, each transition in the high-level con-
trol flow model is labelled as a guarded choice of MSCs, where the guards are
formed using atomic propositions associated with the processes. The focus in
the study of the CTP model is the modelling of complex non-atomic interac-
tions between communicating processes and not on the collections of MSCs that
are definable. A second piece of related work is [16] in which it is suggested that
the transitions of a 1-safe Petri net be labelled by arbitrary MSCs. The realiza-
tion problem for this model is also difficult and the authors propose a number
of restrictions for their model and study the realization problem in terms of
composing a fixed set of basic Petri net templates to obtain a Petri net model.

The paper is organized as follows. After some background on MSCs and
HMSCs, we introduce the netchart model in Section 3. In Section 4, we show
how to transform netcharts into message-passing automata. Next, we discuss
when a netchart definable MSC language is regular. Section 6 compares the
expressive power of HMSCs and netcharts. In Section 7, we show that netcharts
can describe all regular MSC languages.
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2 Background

2.1 Message sequence charts

Throughout this paper, we let P denote a finite set of processes. A message
sequence chart (MSC) over P is a graphical representation of a pattern of inter-
actions (often called a scenario) consisting of an exchange of messages between
the processes in P . In an MSC, each process is represented by a vertical line with
time flowing from top to bottom. Messages are drawn as directed edges from the
source process to the target process, with an annotation denoting the message
type, if any. In addition, internal events are marked along the process lines.

Figure 1 is an MSC involving processes {p1, p2, p3}. In this scenario, clients p1

and p3 both request a resource from the server, p2. The server p2 first responds
to p3. After p3 notifies p2 that it has returned the resource, p3 hands over the
resource to p1, but this message crosses a “reminder” from p1 to p3.

p1 p2 p3

r1

r3

g3

x3

r1 g1

Fig. 1. An MSC

The semantics of an MSC is given in terms of labelled partial orders. Formally,
an MSC over P is a structure M = (E,≤, τ, ϕ, π), where:

– E is a finite set of events.
– π : E → P associates a unique process with each event.
– τ : E → {send, receive, internal} specifies the nature of each event.
– ϕ is a bijection from the set of send events {e | τ(e) = send} to the set of

receive events {e | τ(e) = receive}. Each pair in the set {(e, ϕ(e)) | τ(e) =
send}, constitutes a message. Messages are often labelled using finite set ∆
of message types, with typical elements m, m′ etc.

– E is partially ordered by ≤, such that for each p ∈ P , the set Ep = {e | π(e) =
p} is linearly ordered by ≤. Let us denote this linear order ≤p. Further, ≤
is the reflexive, transitive closure of

⋃
p∈P ≤p ∪{(e, ϕ(e)) | τ(e) = send}.

– Messages between each pair of processes are delivered in a FIFO fashion.3

More formally, let e, e′ be a pair of events such that π(e) = π(e′), τ(e) =
τ(e′) = send and π(ϕ(e)) = π(ϕ(e′)). Then, e ≤ e′ iff ϕ(e) ≤ ϕ(e′).

Let M be a message sequence chart. The type of M is the set π(M) = {p ∈
P | ∃e ∈ M. π(e) = p} of processes that are active in M .

3 We will see how to relax this restriction later.
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For X ⊆ P , MX denotes the set of MSCs of type X . The set of all possible
MSCs over the set of processes P is given by M =

⋃
∅6=X⊆P MX .

2.2 Regular MSC languages

A communicating system is normally specified using a set of scenarios or, equiv-
alently, a set of MSCs. An MSC language is a (finite or infinite) collection of
MSCs. We can also represent MSC languages in terms of word languages.

Each send or receive event e in an MSC is characterized by the values π(e),
τ(e) and the message type, if any. Let p!q(m) denote the action associated with
sending message m from p to q and let q?p(m) denote the corresponding receive
action. We then have an alphabet of communication actions Γ = {p!q(m) | p, q ∈
P , m ∈ ∆} ∪ {p?q(m) | p, q ∈ P , m ∈ ∆}. For an MSC M , viewed as Γ - labelled
poset, the set lin(M) of valid linearizations of M describes a word language over
Γ . An MSC language L ⊆ M can thus be represented by the word language⋃
{lin(M) | M ∈ L}. Notice that internal events do not play any role in defining

MSC languages.
We say that an MSC language L is regular if the corresponding word language

over Γ is regular.
Let M = (E,≤, τ, ϕ, π) be an MSC. A configuration is a set of events

c ⊆ E such that c is closed with respect to ≤. The channel capacity of c,
χ(c), specifies the number of unmatched send events in c—that is, χ(c) =
|{e ∈ c | π(e) = send, ϕ(e) /∈ c}|. We define the channel capacity of the MSC M
to be maximum value of χ(c) over all configurations c of M . The following is
easy to show.

Proposition 1. Let L be a regular MSC language. Then, there is a uniform
upper bound B ∈ N0 such that for every MSC M ∈ L, χ(M) ≤ B.

The converse statement is not true, in general. We shall see a counterexample.

2.3 High-level message sequence charts

The standard mechanism to generate an MSC language is a High-level Message
Sequence Chart (HMSC). A simple type of HMSC is a Message Sequence Graph
(MSG). An MSG is a finite, directed graph with designated initial and terminal
vertices. Each vertex in an MSG is labelled by an MSC. The collection of MSCs
represented by an MSG consists of all those MSCs obtained by tracing a path
in the MSG from an initial vertex to a terminal vertex and concatenating the
MSCs that are encountered along the path.

An HMSC is just an MSG in which a vertex can, in turn, be labelled by
another HMSC, with the restriction that the overall nesting depth be finite.
Thus, an HMSC can always be “flattened out” into an MSG. Henceforth, when
we use the term HMSC we always assume the flat structure of an MSG.

The edges in an HMSC represent the natural operation of MSC concatenation
which can be defined as follows. Let Mi = (Ei,≤i, τi, ϕi, πi), i ∈ {1, 2}, be a pair
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for MSCs such that E1 ∩ E2 = ∅. The (asynchronous) concatenation of M1 and
M2 is the MSC M1 ◦ M2 = (E,≤, τ, ϕ, π) where E = E1 ∪ E2, π(e) = πi(e) and
τ(e) = τi(e) for e ∈ Ei, i ∈ {1, 2}, ϕ = ϕ1 ∪ ϕ2 and ≤ is the reflexive, transitive
closure of ≤1 ∪ ≤2 ∪{(e, e′) | e ∈ E1, e

′ ∈ E2, π1(e) = π2(e
′)}.

Formally, an HMSC is a structure H = (S,−→, Sin , F, Φ), where:

– S is a finite and nonempty set of states.
– −→ ⊆ S × S.
– Sin ⊆ S is a set of initial states.
– F ⊆ S is a set of final states.
– Φ : S → M is a (state-)labelling function.

A path σ = s0−→s1−→· · ·−→sn through an HMSC H generates the MSC
M(σ) = Φ(s0) ◦ Φ(s1) ◦ · · · ◦ Φ(sn). A path σ = s0−→s1−→· · ·−→sn is a run if
s0 ∈ Sin and sn ∈ F . The language of MSCs accepted by H is L(H) = {M(σ) ∈
M | σ is a run through H}.

Fig. 2. An HMSC

Figure 2 is an example of an HMSC. The initial state is marked with an
incoming arrow and the final state is marked with a double outline. It is easy
to see that the language L defined by this HMSC is not regular. Though all the
channels are uniformly bounded, there is a “context-free” correlation between
the number of iterations of two disjoint sets of communications.

A sufficient criterion for an HMSC to generate a regular MSC language is for
it to be locally synchronized [13].4

For an MSC M = (E,≤, τ, ϕ, π), the communication graph of M is the di-
rected graph CGM = (P , 7→) where P is the set of processes of the system and
(p, q) ∈ 7→ if p sends a message to q in M . More formally, (p, q) ∈ 7→ if there
exists an e ∈ E with π(e) = p, τ(e) = send and π(ϕ(e)) = q.

The MSC M is said to be connected if CGM consists of one nontrivial strongly
connected component and isolated vertices. An MSC language L ⊆ M is con-
nected in case each MSC M ∈ L is connected.

The HMSC H is locally synchronized if for every loop σ = q → q1 → · · · →
qn → q, the MSC M(σ) is connected. Every locally synchronized HMSC defines
a regular MSC language [2] (though the converse does not hold). The HMSC in
Figure 2 is not locally synchronized.

4 This notion is called “bounded” in [2].
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2.4 Finitely generated MSC languages

Every MSC generated by an HMSC is, by definition, a concatenation of the
MSCs that label the vertices of the HMSC. We say an MSC M is atomic if
M cannot be written as the concatenation M1 ◦ M2 of two nonempty MSCs.
An MSC language L is said to be finitely generated if there is a finite set of
atomic MSCs Atoms = {M1, M2, . . . , Mk} such that every MSC M ∈ L can be
decomposed as Mi1 ◦ Mi2 ◦ · · · ◦ Mi`

, where each Mij
∈ Atoms.

Clearly, every HMSC language is finitely generated. However, there exist reg-
ular MSC languages that are not finitely generated [6, 9]. Every finitely generated
regular MSC language can be represented as a locally synchronized HMSC [8].

3 Netcharts

Netcharts are distributed versions of HMSCs in much the same way that Petri
nets are distributed versions of finite-state automata. (We refer the reader to [5]
for basic concepts and results on Petri nets.)

3.1 Nets

– A net is a triple (S, T, F ) where S is a set of places (or local states), T is a set
of transitions and F ⊆ (S×T )∪ (T ×S) is the flow relation. For an element
x ∈ S ∪T , we use •x and x•, as usual, to denote the immediate predecessors
and successors, respectively, of x with respect to the flow relation F .

– An S-net is a net (S, T, F ) in which |•t| = 1 = |t•| for every t ∈ T .

At the top level, a netchart has the structure of a safe Petri net that can be de-
composed in a natural way into sequential components. Transitions synchronize
distinct components and are annotated by MSCs involving those components.

3.2 The Netchart Model

A netchart is a structure ((S, T, F ), Min , loc, λ) where:

(i) (S, T, F ) is a net.
(ii) Min ⊆ S is the initial marking.
(iii) The function loc maps each state s ∈ S to a process in P . For s ∈ S, we

refer to loc(s) as the location of s. For p ∈ P , let Sp = {s | loc(s) = p}
(iv) For t ∈ T , let loc(t) = {loc(s) | s ∈ •t ∪ t•}. The labelling function λ

associates an MSC M with each transition t such that loc(t) = π(M).
(v) We impose the following restriction on the structure of a netchart:

– For each t ∈ T , for each p ∈ loc(t), |•t ∩ Sp| = |t• ∩ Sp| = 1. In other
words, each transition t has exactly one input place and one output place
for each process that participates in t.

– For each p ∈ P , |Min ∩ Sp| = 1. In other words, Min places exactly one
token in each component Sp.
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– For p ∈ P , let Tp = {t | p ∈ loc(t)} denote the set of transitions that
p participates in. For each p ∈ P , the net (Sp, Tp, Fp), where Fp =
F ∩ ((Sp × Tp) ∪ (Tp × Sp)) is an S-net.

Figure 3 shows an example of a netchart. A more elaborate example modelling
the alternating bit protocol is shown in Figure 6.

p1 p2 p1 p2

m m′

• •

Fig. 3. A netchart

3.3 Semantics

The operational semantics of a netchart is obtained by converting each MSC
that labels a transition into a Petri net and “plugging in” these nets into the
top-level safe net of the netchart.

The crucial feature of our semantics is that each MSC that is used to label
a high-level transition has a private set of channels. Thus, if a message m is
sent from p to q in the MSC labelling transition t, it can only be read when q
participates in the same high level transition t.

We convert an MSC M into a net (SM , TM , FM ) in an obvious way. The set
of transitions TM corresponds to the events of the MSC. Since each process is
sequential, we insert a place between every adjacent pair of events along each
process line. In addition, for each pair of processes (p, q), we introduce a buffer
place b(p,q). For each send event of a message from p to q, the corresponding
transition in TM feeds into the place b(p,q). For each receive event of a message
from p to q, the corresponding transition in TM has b(p,q) as an input place.

In the netchart, for a high-level transition t labelled by the MSC M , for each
process p ∈ loc(t), we connect the transition corresponding to the ≤p-minimum
p-event in the MSC M to the (unique) place in Sp that feeds into t. Similarly, we
connect the transition corresponding to the ≤p-maximum p-event in the MSC
M to the (unique) output place in Sp of t. Observe that we do not need to model
the channels between processes as queues. It suffices to maintain a count of the
messages in transit between each pair of processes. The structure of the MSC
and the labelling of the events ensures that messages are consumed in the order
in which they are generated.
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The behaviour of the netchart is now given by the normal token game on the
“low level” net that we have generated by plugging in a net for each MSC in
the netchart. In the low level net, the control places that are inherited from the
original high level net are safe. However, the buffer places can have an arbitrary
number of tokens. Thus, the low level net is not, in general, safe.

All processes need not traverse the high level transitions in the same order.
Each process proceeds asynchronously and only gets blocked if, within an MSC,
it requires a token from a buffer place and the buffer place is empty.

As we fire the “low level” transitions corresponding to the events of the MSCs
labelling the high level transitions, we build up in the obvious way a partial order
that can be regarded as an MSC. A complete MSC is generated when all send
events have been matched up with corresponding receive events. This is captured
by declaring a marking to be an accepting one if all the buffer places are empty
at the marking. Thus, the language of the netchart is defined to be the set of
MSCs generated by all firing sequences leading to accepting markings. (Note
that there are only a finite number of such markings.) We can further control
the language of a netchart by defining a set F of final control markings and insist
that a marking is accepting only if all buffer places are empty and the control
marking belongs to F . Figure 4 describes the low-level net associated with the
netchart in Figure 3 and also exhibits a typical MSC in the language defined by
this netchart.

p1 p2 p1 p2

b b′

(m, s)

(m, r)

(m′, r)

(m′, s)

• •

m m′

m m′

...
m m′

Fig. 4. The low level net for Figure 3 and a typical MSC that it generates

4 From netcharts to message-passing automata

The low level net associated with a netchart makes it an executable specification.
We now show that a netchart can also easily be transformed into the executable
model often used in connection with HMSCs [1, 12].

4.1 Message passing automata

A natural implementation model for MSC languages is a message-passing au-
tomaton. Recall that the set of processes P determines the communication al-
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phabet Γ . For p ∈ P , let Γp = {p!q(m), p?q′(m′) | q, q′ ∈ P , m, m′ ∈ ∆} denote
the actions that process p participates in.

A message-passing automaton over Γ is a structureA = ({Ap}p∈P ,Aux , sin,F)
where:

– Aux is a finite alphabet of (auxiliary) messages.
– Each component Ap is of the form (Sp,−→p) where

• Sp is a finite set of p-local states.
• −→p ⊆ Sp × Γp × Aux × Sp is the p-local transition relation.

– sin ∈
∏

p∈P Sp is the global initial state.
– F ⊆

∏
p∈P Sp is the set of global final states.

The local transition relation −→p specifies how the process p sends and re-
ceives messages. The transition (s, p!q(m), µ, s′) specifies that in state s, p can
send the message m augmented with auxiliary information µ to q by executing
the communication action p!q(m) and go to the state s′. Similarly, the transition
(s, p?q(m), µ, s′) signifies that at the state s, p can receive the message (m, µ)
from q by executing the action p?q(m) and go to the state s′.

The behaviour of a message-passing automaton is described in terms of con-
figurations. Channels are modelled as queues. A configuration specifies the local
state of each process together with the contents of each queue. A transition of
the form (s, p!q(m), µ, s′) appends the message (m, µ) to the queue (p, q). Simi-
larly, a transition of the form (s, p?q(m), µ, s′) removes the message (m, µ) from
the head of the queue (q, p)—this transition is blocked if such a message is not
available. A final configuration is one in which the local states of the processes
constitute a final state of the message-passing automaton and all queues are
empty. We can define a run of such an automaton, as usual. Runs that lead to fi-
nal configurations are called accepting. The language accepted by the automaton
is the set of words that admit accepting runs. The structure of the automaton
ensures that this word language corresponds to the set of linearizations of an
MSC language, so we can associate an MSC language in a natural way with a
message-passing automaton. For more details, the reader is referred to [9, 12].

4.2 From netcharts to automata

Each non-buffer place in the low-level net corresponding to a netchart can be
uniquely assigned a location in P . The places that belong to process p define, in
a natural way, a local sequential component of a message-passing automaton.

The resulting message-passing automaton differs in one important aspect
from the original netchart—each MSC that labels a transition in a netchart
writes into a private set of channels, while there is only one common set of
channels in a message-passing automaton. So long as the MSCs generated by the
netchart obey the FIFO restriction on each channel, this collapsing of channels
does not affect the MSC language and the language accepted by the message-
passing automaton is the same as the one defined by the netchart.
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However, netcharts can define MSCs that violate the FIFO restriction on
channels, as seen in Figure 5. We cannot directly translate such a netchart into a
message-passing automaton. The solution is to weaken the definition of an MSC
to permit multiple channels between processes. Different channels may carry
messages of the same type. Each channel is FIFO, but messages on different
channels can overtake each other (even between the same pair of processes).

p1 p2 p1 p2

m m′

• •
m

m′

Fig. 5. A netchart that generates a non FIFO MSC

We can then augment message-passing automata so that each send and re-
ceive specifies the channel name in addition to the message type. With this
extension, netcharts can always be converted into message-passing automata.
However, for simplicity, we shall assume that we only deal with netcharts that
generate MSCs that respect the FIFO restriction and work with the simpler
definition of message-passing automata that we presented initially.

5 Regular netchart languages

We begin with a simple observation about Petri nets. Let N = ((S, T, F ), Min)
be a Petri net and L(N) denote the set of firing sequences of N . Recall that a
Petri net is bounded if there exists a uniform upper bound B such that at any
reachable marking, every place contains at most B tokens.

Proposition 2. If N is a bounded Petri net then, L(N) is regular.

This easily yields a sufficient criterion for a netchart language to be regular.

Lemma 3. If the low level net associated with a netchart is bounded, the MSC
language of the netchart is regular.

Since boundedness is a decidable property for nets, this condition can be
effectively checked. Since the converse of the preceding lemma does not hold,
deciding the regularity of a netchart language is not straightforward. For the
netchart language to be non-regular, we have to find an unbounded family of
markings, each of which can be reduced to a legal final marking where all buffer
places are empty.

However, for the special case where each component of a netchart is a cyclic
process, regularity is decidable.
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Theorem 4. Consider a netchart in which each component is a cyclic process.
It is decidable if the language of such a netchart is regular.

Proof. We construct the communication graph for the entire netchart. This graph
has the set of processes as vertices and an edge from p to q if there is a transition
in the netchart labelled by an MSC with a message from p to q.

Let C, C′ be maximal strongly connected components (scc’s) of this commu-
nication graph. We draw an edge from C to C′ if there exists p ∈ C and q ∈ C′

such that there is an edge in the communication graph from p to q. This induced
graph of scc’s is a dag. This dag may itself break up into a number of connected
components. We can analyze each of these components separately, so, without
loss of generality, assume that the entire dag is connected.

The buffer places that connect processes within each scc are automatically
bounded (for the same reason that a locally synchronized HMSC generates a
regular MSC language). Thus, the only buffer places that can be unbounded are
those that connect processes in different scc’s.

Suppose p ∈ C, q ∈ C′ and there is an edge from p to q in the communication
graph. Then, by the structure of a netchart, each time p enters a high-level
transition where it sends a message to q, there must be a matching instance where
q enters so that the buffer places are cleared out. This has two implications.

(i) If p is not live—that is, it can execute only a finite number of actions—then
q is not live. Indeed, all of C and C′ are not live.

(ii) If q is not live, then any messages generated by p after q quits will never
be consumed, so the resulting behaviour will not lead to an MSC in the
language. Thus, effectively the buffer place between p and q is bounded.

Thus, if a process p is not live, all processes in the scc C containing p as well
as all scc’s that are descendants of C in the dag are not live. Moreover, after a
bounded initial period, any message produced by an ancestor scc will never be
consumed. So, as far as the MSC language is concerned, the ancestors of C also
have only a bounded life. In other words, if even a single process is not live, the
entire dag has a bounded behaviour and the resulting MSC language is bounded.
Conversely, the language is unbounded iff all the scc’s in the dag are live.

Thus the problem reduces to checking whether all the scc’s in the dag are
live. Observe that the minimal scc’s in the dag have no input buffer places, so
their liveness can be analyzed in isolation. This is not difficult to check given
the simple cyclic structure of the components. If all the immediate predecessors
of an scc are live, then the liveness of the scc again depends only on its internal
structure, so we perform the same check as for the minimal scc’s. Thus, we
can systematically check the liveness of all the scc’s in the dag by sorting them
topologically and analyzing them in this sorted sequence. ut

6 HMSCs vs netcharts

Every HMSC language is finitely generated (and all finitely generated regular
MSC languages are HMSC representable). It turns out that netcharts can also
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generate regular MSC languages that are not finitely generated. An example of
this is the alternating bit protocol in which two processes communicate over a
lossy channel. The sender alternately tags the data it sends with bits 0 and 1.
The receiver acknowledges the bit corresponding to each data item it receives.
The sender flips its bit each time it gets the acknowledgement it is waiting for
(and ignores any incorrect acknowledgement that it may receive).

Figure 6 shows a netchart corresponding to the alternating bit protocol. In
the figures, messages d0 and d1 represent data sent with bit 0 and 1, respectively,
and messages a0 and a1 represent the corresponding acknowledgements.

d0 a0 d1 a1

•

•

XXX
d0

XXXz
�

�
�

a0XXX
d0

XXX
d0

XXXz

�
�

�+
�

�
�

a0XXXz

�
�

�

a0

XXX
d1 �
�

�+
�

�
�+

XXXz

XXXXXXz

d1

�
�

�
�

��+

a1

Fig. 6. A netchart for the alternating bit protocol, with a typical MSC

The first HMSC we encountered, Figure 2, generates a non-regular language
in which all channels are bounded. It is not difficult to show that any netchart
implementation of this HMSC (i.e., its associated low level Petri net) would
have bounded buffers. For netcharts, bounded buffers imply regularity. Hence,
this HMSC is not representable via netcharts. However, from the result we will
prove in the next section it follows that every HMSC that defines a regular MSC
language has an equivalent netchart.

7 From regular MSC languages to netcharts

We now show that every regular MSC language can be represented as a netchart.
We begin by recalling the characterization of regular MSC languages in terms of
message-passing automata. A B-bounded message-passing automaton is one in
which in every reachable configuration, there are at most B messages in transit
in any queue. We then have the following result from [12].

Theorem 5. An MSC language L is regular iff there is a B-bounded message-
passing automaton that accepts L, for some bound B ∈ N0.



308

We now show that netcharts with final control markings can generate all
regular MSC languages.

Theorem 6. Every regular MSC language can be represented as a netchart.

Proof Sketch: We can simulate a B-bounded message-passing automaton using
a netchart.

In a B-bounded message-passing automaton, each queue is uniformly bounded
by B. We can näıvely regard each channel as a cyclic buffer of size B with slots
labelled 0 to B−1. Each process begins by reading from or writing into slot 0
along each channel that it is connected to. After a process reads from (or writes
to) slot i of a channel c, when it next access the same channel it will read from
(or write to) slot i + 1 mod B, which we denote i ⊕ 1.

In this framework, the complete configuration of a process is given by its local
state s and the slot ki that it will next read from or write to for each channel ci

that it is connected to. Initially, a process is in the configuration (sp
in, 0, . . . , 0).

Each local transition s
ci!(m,µ)
−→ s′ (or s

ci?(m,µ)
−→ s′) generates a family of moves

of the form (s, k1, k2, . . . , ki, . . . , kn)
ci!(m,µ)
−→ (s, k1, k2, . . . , ki⊕1, . . . , kn) (or

(s, k1, k2, . . . , ki, . . . , kn)
ci?(m,µ)
−→ (s, k1, k2, . . . , ki⊕1, . . . , kn), for each choice of

k1, k2, . . . , kn, corresponding to the n channels that the process reads or writes.
We construct a netchart in which, for each process p, there is separate

place corresponding to each configuration (s, k1, k2, . . . , ki, . . . , kn) of p in the B-
bounded message-passing automaton. Consider a message (m, µ) that is trans-
mitted on channel ci during a run of the message-passing automaton. When
this message is sent, the sending process is some configuration of the form
(s, k1, k2, . . . , ki, . . . , kn) and when this message is received, the receiving pro-
cess is in some configuration of the form (t, `1, `2, . . . , ki, . . . , `n) (notice that
the value of ki in the two configurations is necessarily the same). For each such
pair of sending and receiving configurations, we create a separate transition in
the netchart representing ci, labelled with an MSC consisting of a single mes-
sage (m, µ) (see Figure 7). We use internal transitions to let the sending process
guess the context in which the message will be received and fire the correspond-
ing transition in the netchart. Symmetrically, the receiving process guesses the
context in which the transition was sent and enters the corresponding transition
in the netchart.

We can then associate a set of global final control states with this netchart
corresponding to the accepting states of the original message-passing automaton.
It is not difficult to see that this netchart accepts the same MSC language as
the original message-passing automaton.

The crucial observation is that any inconsistent choice among nondeterminis-
tic transitions in the netchart must lead to deadlock. Suppose that for channel ci,
the sending and receiving processes make incorrect guesses about each other’s
contexts for message (m, µ) sent in slot ki along ci. This would result in the
receiving process getting stuck in the wrong netchart transition. The only way
for it to make progress is for the sending process to eventually cycle through
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all the other slots along channel ci, return to slot ki and send a fresh copy of
the message (m, µ) within the netchart transition where the receiving process is
stuck. This can be mapped back into a run of the message-passing automaton
in which the channel ci is not B-bounded, which is a contradiction. ut

· · ·

· · ·

· · ·

· · ·

(s, k1, . . . , ki, . . . , kn)

(s′, k1, . . . , ki⊕1, . . . , kn)

m,µ m,µ m,µ

(t, `1, . . . , ki, . . . , `n)

(t′, `1, . . . , ki⊕1, . . . , `n)

Fig. 7. The translation from B-bounded message-passing automata to netcharts

8 Discussion

We have shown that by distributing the control in an HMSC in appropriate way,
we can derive a model that is much more easily implementable than HMSCs
while retaining the appeal of a visual formalism. In terms of the regular MSC
languages they can represent, netcharts are more expressive than HMSCs. In
general, the expressive power of the two formalisms is incomparable.

As mentioned in the introduction, an important aspect of the netchart model
is that the compound MSCs that are defined by a netchart are built up from
“complete” MSCs. This is important from the point of view of using such a
formalism to capture system requirements at a reasonably intuitive level. An
alternative approach, suggested in [6], is to label HMSC nodes with compositional
MSCs that may have unmatched sends and receives. A single send or receive
action is a trivial example of a compositional MSC. Thus, a specification in
terms of compositional MSCs very quickly becomes indistinguishable from a
concrete implementation in terms of distributed automata.

One natural direction in which to extend this work is to use netcharts for
capturing requirements in realistic settings.

At a technical level, the following interesting questions remain open:

– What is the exact relationship between the class of Netchart languages and
the class of HMSC representable languages?

– Is the problem of checking whether the language of a netchart is regular
decidable?
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