
CONCUR 2000, 11th International Conferen
e on Con
urren
y Theory

Pro
eedings: Catus
ia Palamidessi (ed.)

Springer Le
ture Notes in Computer S
ien
e 1877 (2000), 521{535.

Synthesizing distributed �nite-state systems

from MSCs

?

Madhavan Mukund

1

,

K. Narayan Kumar

1

, and Milind Sohoni

2

1

Chennai Mathemati
al Institute, Chennai, India.

E-mail: fmadhavan,kumarg�smi.ernet.in

2

Indian Institute of Te
hnology Bombay, Mumbai, India

E-mail: sohoni�
se.iitb.ernet.in

Abstra
t. Message sequen
e
harts (MSCs) are an appealing visual for-

malism often used to
apture system requirements in the early stages of

design. An important question
on
erning MSCs is the following: how

does one
onvert requirements represented by MSCs into state-based

spe
i�
ations? A �rst step in this dire
tion was the de�nition in [9℄

of regular
olle
tions of MSCs, together with a
hara
terization of this

lass in terms of �nite-state distributed devi
es
alled message-passing

automata. These automata are, in general, nondeterministi
. In this pa-

per, we strengthen this
onne
tion and des
ribe how to dire
tly asso-

iate a deterministi
 message-passing automaton with ea
h regular
ol-

le
tion of MSCs. Sin
e real life distributed proto
ols are deterministi
,

our result is a more
omprehensive solution to the synthesis problem

for MSCs. Our result
an be viewed as an extension of Zielonka's theo-

rem for Mazurkiewi
z tra
e languages [6, 19℄ to the setting of �nite-state

message-passing systems.

1 Introdu
tion

Message sequen
e
harts (MSCs) are an appealing visual formalism often used to

apture system requirements in the early stages of design. They are parti
ularly

suited for des
ribing s
enarios for distributed tele
ommuni
ation software [16℄.

They have also been
alled timing sequen
e diagrams, message
ow diagrams

and obje
t intera
tion diagrams and are used in a number of software engineer-

ing methodologies [4, 7, 16℄. In its basi
 form, an MSC depi
ts the ex
hange of

messages between the pro
esses of a distributed system along a single partially-

ordered exe
ution. A
olle
tion of MSCs is used to
apture the s
enarios that a

designer might want the system to exhibit (or avoid).

Given the requirements in the form of a
olle
tion of MSCs, one
an hope

to do formal analysis and dis
over errors at an early stage. A standard way to

?

This work has been supported in part by Proje
t DRD/CSE/98-99/MS-4 between

the Indian Institute of Te
hnology Bombay and Eri
sson (India), Proje
t 2102-1

of the Indo-Fren
h Centre for Promotion of Advan
ed Resear
h and NSF grant

CDA9805735.

522

generate a
olle
tion of MSCs is to use a High Level Message Sequen
e Chart

(HMSC) [12℄. An HMSC is a �nite dire
ted graph in whi
h ea
h node is labelled,

in turn, by an HMSC. The HMSCs labelling the verti
es may not refer to ea
h

other. The
olle
tion of MSCs represented by an HMSC
onsists of all MSCs

obtained by tra
ing a path in the HMSC from an initial vertex to a terminal

vertex and
on
atenating the MSCs that are en
ountered along the path.

In order to analyze the
olle
tion of MSCs represented by an HMSC, one de-

sirable property is that these MSCs
orrespond to the behaviour of a �nite-state

system. This property would be violated if the spe
i�
ation were to permit an

unbounded number of messages to a

umulate in a
hannel. A suÆ
ient
ondi-

tion to rule out su
h divergen
e in an HMSC is des
ribed in [3℄. Subsequently, it

has been observed that HMSCs
an also violate the �nite-state property by ex-

hibiting nonregular behaviour over
ausally independent bounded
hannels [2℄.

To remedy this, a stronger
riterion is established in [2℄ whi
h suÆ
es to ensure

that the behaviour des
ribed by an HMSC
an be implemented by a (global)

�nite-state system. This leads to a more general question of when a
olle
tion of

MSCs should be
alled regular. A robust notion of regularity has been proposed

in [9℄. As shown in [8℄, this notion stri
tly subsumes the �nite-state
olle
tions

generated by HMSCs. It turns out that the
olle
tions de�ned by HMSCs
or-

respond to the
lass of �nitely-generated regular
olle
tions of MSCs.

One of the main
ontributions of [9℄ is a
hara
terization of regular
olle
tions

of MSCs in terms of (distributed) �nite-state devi
es
alled message-passing au-

tomata. This addresses the important synthesis problem for MSCs, �rst raised

in [5℄; namely, how to
onvert requirements as spe
i�ed by MSCs into distributed,

state-based spe
i�
ations. The message-passing automata asso
iated with regu-

lar
olle
tions of MSCs in [9℄ are, in general, nondeterministi
. In this respe
t

the solution to the synthesis problem in [9℄ is not
ompletely satisfa
tory, sin
e

real life distributed proto
ols are normally deterministi
.

In this paper, we strengthen the result of [9℄ by providing a te
hnique for

de
omposing a sequential automaton a

epting a regular
olle
tion of MSCs

into a deterministi
 message-passing automaton. Our result
an be viewed as the

message-passing analogue of the
elebrated theorem of Zielonka from Mazurkie-

wi
z tra
e theory establishing that regular tra
e languages pre
isely
orrespond

to the tra
e languages a

epted by deterministi
 asyn
hronous automata [19℄.

In related work, a number of studies are available whi
h are
on
erned with

individual MSCs in terms of their semanti
s and properties [1, 10℄. A variety

of algorithms have been developed for HMSCs in the literature|for instan
e,

pattern mat
hing [11, 14, 15℄ and dete
tion of pro
ess divergen
e and non-lo
al

hoi
e [3℄. A systemati
 a

ount of the various model-
he
king problems asso
i-

ated with HMSCs and their
omplexities is given in [2℄.

The paper is organized as follows. In the next se
tion we introdu
e MSCs and

regular MSC languages. In Se
tion 3 we de�ne message-passing automata and

state the problem. Se
tion 4 des
ribes a time-stamping result for message-passing

systems from [13℄ whi
h is
ru
ial for proving our main result. In Se
tion 5 we

then introdu
e the notion of residues and show how the ability to lo
ally
ompute

523

residues would solve the de
omposition problem. The next se
tion des
ribes

a pro
edure for lo
ally updating residues. This pro
edure is formalized as a

message-passing automaton in Se
tion 7.

2 Regular MSC Languages

Let P = fp; q; r; : : :g be a �nite set of pro
esses whi
h
ommuni
ate with ea
h

other through messages. We assume that messages are never inserted, lost or

modi�ed|that is, the
ommuni
ation medium is reliable. However, there may

be an arbitrary delay between the sending of a message and its re
eipt. We

assume that messages are delivered in the order in whi
h they are sent|in other

words, the bu�ers between pro
esses behave in a FIFO manner.

For ea
h pro
ess p 2 P , we �x �

p

= fp!q j p 6= qg[fp?q j p 6= qg to be the set

of
ommuni
ation a
tions in whi
h p parti
ipates. The a
tion p!q is to be read

as p sends to q and the a
tion p?q is to be read as p re
eives from q. We shall

not be
on
erned with the a
tual messages that are sent and re
eived|we are

primarily interested in the pattern of
ommuni
ation between agents. We will

also not deal with the internal a
tions of the agents. We set � =

S

p2P

�

p

and

let a; b range over �.

For a 2 � and u 2 �

�

, #

a

(u) denotes the number of o

urren
es of a in

u. A word u 2 �

�

is a proper
ommuni
ation sequen
e of the pro
esses if for

ea
h pre�x v of u and ea
h pair of pro
esses p; q 2 P , #

p!q

(v) � #

q?p

(v)|

that is, at any point in the
omputation, at most as many messages have been

re
eived at q from p as have been sent from p to q. We say that u is a
omplete

ommuni
ation sequen
e if u is a proper
ommuni
ation sequen
e and for ea
h

pair of pro
esses p; q 2 P , #

p!q

(u) = #

q?p

(u)|in other words, at the end of u,

all messages that have been sent have also been re
eived. We shall often say that

u is proper (respe
tively,
omplete) to mean that u is a proper (respe
tively,

omplete)
ommuni
ation sequen
e over �.

Let u = a

0

a

1

: : : a

n

2 �

�

be proper. We
an asso
iate a natural �-labelled

partial order M

u

= (E

u

;�; �) with u where:

{ E = f(i; a

i

) j i 2 f1; 2; : : : ; ng.

{ �((i; a

i

)) = a

i

. (If �(e) 2 �

p

, we say that e is a p-event.)

{ For p; q 2 P , we de�ne relations <

pq

� E �E as follows:

� For p 2 P , (i; a

i

) <

pp

(j; a

j

) if a

i

; a

j

2 �

p

, i < j and there is no i < k < j

su
h that a

k

2 �

p

.

� For p; q 2 P , p 6= q, (i; a

i

) <

pq

(j; a

j

) if a

i

= p!q, a

j

= q?p and the

sets f(k; a

k

) j k < i; a

k

= p!qg and f(k; a

k

) j k < j; a

k

= q?pg are of

the same
ardinality. Sin
e messages are assumed to be read in FIFO

fashion, (i; a

i

) <

pq

(j; a

j

) implies that the message read at the re
eive

event (j; a

j

) is the one sent at the send event (i; a

i

).

{ The partial order� is the re
exive, transitive
losure of the relations

S

p;q2P

<

pq

.

524

We shall
all the stru
ture M

u

generated from a
omplete
ommuni
ation

sequen
e u a Message Sequen
e Chart (MSC).

1

The partial order between events

in M

u

is a more faithful representation of the
ausality between events in u than

the sequential order indu
ed by writing u as a string.

Hen
eforth, we shall impli
itly asso
iate with ea
h proper word u the
or-

responding stru
ture M

u

= (E

u

;�; �). In parti
ular, E

u

always refers to the

set of events asso
iated with the stru
ture M

u

generated from a proper word u.

Abusing terminology, we refer to M

u

as an MSC even if u is not
omplete.

Let M

u

= (E

u

;�; �) be an MSC. For e 2 E

u

, e# denotes, as usual, the set

ff 2 E

u

j f � eg. For X � E

u

, X# is de�ned to be

S

e2X

e#.

We de�ne a
ontext-sensitive independen
e relation I � �

�

� (� � �) as

follows: (u; a; b) 2 I provided that u is proper, a 2 �

p

and b 2 �

q

for distin
t

pro
esses p and q, and, further, if a = p!q and b = q?p then #

a

(u) > #

b

(u).

Observe that if (u; a; b) 2 I then (u; b; a) 2 I .

Let �

Æ

= fu 2 �

�

j u is
ompleteg. We de�ne � � �

Æ

��

Æ

to be the least

equivalen
e relation su
h that if u = u

1

abu

2

and u

0

= u

1

bau

2

and (u

1

; a; b) 2 I

then u � u

0

. It is important to note that � is de�ned over �

Æ

(and not �

�

).

The following simple observation shows that ea
h MSC
orresponds to a

�-equivalen
e
lasses of
omplete
ommuni
ation sequen
es over �.

Proposition 2.1. Let u; v 2 �

Æ

. Then, v is a linearization of M

u

i� u � v.

We de�ne L � �

�

to be a MSC language if every member of L is
omplete

and L is �-
losed (that is, for ea
h u 2 L, if u 2 L and u � v then v 2 L.) We

say that an MSC language L is a regular if L is a regular subset of �

�

.

Given a regular subset L � �

�

, we
an de
ide whether L is a regular MSC

language. We say that a state s in a �nite-state automaton is live if there is a

path from s to a �nal state. We then have the following result from [9℄.

Lemma 2.2. Let A = (S;�; s

in

; Æ; F) be the minimal DFA representing L. Let

Chan = f(p; q) j p; q 2 P ; p 6= qg denote the set of
hannels. L is a regular

MSC language i� we
an asso
iate with ea
h live state s 2 S, a
hannel-
apa
ity

fun
tion K

s

: Chan ! N whi
h satis�es the following
onditions.

(i) If s 2 fs

in

g [F then K

s

(
) = 0 for every
 2 Ch.

(ii) If s; s

0

are live states and Æ(s; p!q) = s

0

then K

s

0

((p; q)) = K

s

((p; q))+1 and

K

s

0

(
) = K

s

(
) for every
 6= (p; q).

(iii) If s; s

0

are live states Æ(s; q?p) = s

0

then K

s

((p; q)) > 0, K

s

0

((p; q)) =

K

s

((p; q))�1 and K

s

0

(
) = K

s

(
) for every
 6= (p; q).

(iv) Suppose Æ(s; a) = s

1

and Æ(s

1

; b) = s

2

with a 2 �

p

and b 2 �

q

, p 6= q. If it

is not the
ase that a = p!q and b = q?p, or it is the
ase that K

s

((p; q)) > 0,

there exists s

0

1

su
h that Æ(s; b) = s

0

1

and Æ(s

0

1

; a) = s

2

.

1

Our de�nition
aptures the standard partial-order semanti
s asso
iated with MSCs

[1, 16℄. See [9℄ for an equivalent de�nition of MSCs in terms of labelled partial orders.

525

Observe that the
onditions des
ribed in the lemma
an be
he
ked in time

linear in the size of Æ.

Item (iv) of the lemma has useful
onsequen
es. As usual, we extend Æ to

words and let Æ(s

in

; u) denote the (unique) state rea
hed by A on reading an

input u. Let u be a proper word and let a; b be
ommuni
ation a
tions su
h that

(u; a; b) belongs to the
ontext-sensitive independen
e relation de�ned earlier.

Item (iv) guarantees that Æ(s

in

; uab) = Æ(s

in

; uba). From this, we
an
on
lude

that if v; w are
omplete words su
h that v � w, then Æ(s

in

; v) = Æ(s

in

; w).

3 Message-passing automata

We now de�ne distributed automata whi
h a

ept MSC languages.

Message-passing automaton Amessage-passing automaton over� is a stru
-

ture A = (fA

p

g

p2P

;M; s

in

;F) where

{ M is a �nite alphabet of messages.

{ Ea
h
omponent A

p

is of the form (S

p

;!

p

) where

� S

p

is a �nite set of p-lo
al states.

� !

p

� (S

p

��

p

�M� S

p

) is the p-lo
al transition relation.

{ s

in

2

Q

p2P

S

p

is the global initial state.

{ F �

Q

p2P

S

p

is the set of global �nal states.

The lo
al transition relation!

p

spe
i�es how the pro
ess p sends and re
eives

messages. The transition (s; p!q;m; s

0

) spe
i�es that when p is in the state s, it

an send the messagem to q (by exe
uting the
ommuni
ation a
tion p!q) and go

to the state s

0

. The messagem is, as a result, appended to the queue of messages

in the
hannel (p; q). Similarly, the transition (s; p?q;m; s

0

) signi�es that at the

state s, the pro
ess p
an re
eive the message m from q by exe
uting the a
tion

p?q and go to the state s

0

. The messagem is removed from the head of the queue

of messages in the
hannel (q; p).

We say that A is deterministi
 if the lo
al transition relation !

p

for ea
h

omponent A

p

satis�es the following
onditions:

{ (s; p!q;m

1

; s

0

1

) 2 !

p

and (s; p!q;m

2

; s

0

2

) 2 !

p

imply m

1

= m

2

and s

0

1

= s

0

2

.

{ (s; p?q;m; s

0

1

) 2 !

p

and (s; p?q;m; s

0

2

) 2 !

p

imply s

0

1

= s

0

2

.

In other words, when a
omponent A

p

of a deterministi
 automaton A ex-

e
utes a send a
tion, the
urrent state of A

p

uniquely determines the message

sent as well as the new state of A

p

, and when A

p

exe
utes a re
eive a
tion,

the
urrent state of A

p

and the nature of the message at the head of the queue

uniquely determine the new state of A

p

.

The set of global states of A is given by

Q

p2P

S

p

. For a global state s, we let

s

p

denote the pth
omponent of s. A
on�guration is a pair (s; �) where s is a

global state and � : Chan !M

�

is the
hannel state whi
h spe
i�es the queue

of messages
urrently residing in ea
h
hannel
. The initial
on�guration of A

526

is (s

in

; �

"

) where �

"

(
) is the empty string " for every
hannel
. The set of �nal

on�gurations of A is F � f�

"

g.

We now de�ne the set of rea
hable
on�gurations Conf

A

and the global

transition relation) � Conf

A

�� � Conf

A

indu
tively as follows:

{ (s

in

; �

"

) 2 Conf

A

.

{ Suppose (s; �) 2 Conf

A

, (s

0

; �

0

) is a
on�guration and (s

p

; p!q;m; s

0

p

) 2 !

p

su
h that the following
onditions are satis�ed:

� r 6= p implies s

r

= s

0

r

for ea
h r 2 P .

� �

0

((p; q)) = �((p; q)) �m and for
 6= (p; q), �

0

(
) = �(
).

Then (s; �)

p!q

=) (s

0

; �

0

) and (s

0

; �

0

) 2 Conf

A

.

{ Suppose (s; �) 2 Conf

A

, (s

0

; �

0

) is a
on�guration and (s

p

; p?q;m; s

0

p

) 2 !

p

su
h that the following
onditions are satis�ed:

� r 6= p implies s

r

= s

0

r

for ea
h r 2 P .

� �((q; p)) = m � �

0

((q; p)) and for every
hannel
 6= (q; p), �

0

(
) = �(
).

Then (s; �)

p?q

=) (s

0

; �

0

) and (s

0

; �

0

) 2 Conf

A

.

Let u 2 �

�

. A run of A on u is a map � : Pre(u) ! Conf

A

(where Pre(u)

is the set of pre�xes of u) su
h that �(") = (s

in

; �

"

) and for ea
h �a 2 Pre(u),

�(�)

a

=) �(�a). The run � is a

epting if �(u) is a �nal
on�guration. Let L(A) =

fu j A has an a

epting run on ug. It is easy to see that every member of L(A) is

omplete and L(A) is �-
losed|that is, u 2 L(A) and u � u

0

implies u

0

2 L(A).

Unfortunately, L(A) need not be regular. Consider, for instan
e, a message-

passing automaton for the
anoni
al produ
er-
onsumer system in whi
h the

produ
er p sends an arbitrary number of messages to the
onsumer q. Sin
e we

an reorder all the p!q a
tions to be performed before all the q?p a
tions, the

queue in
hannel (p; q) is unbounded. Hen
e, the rea
hable
on�gurations of this

system are not bounded and the
orresponding language is not regular.

For B 2 N, we say that a
on�guration (s; �) of the message-passing au-

tomaton A is B-bounded if for every
hannel
 2 Chan , it is the
ase that

j�(
)j � B. We say that A is a B-bounded automaton if every rea
hable
on�g-

uration (s; �) 2 Conf

A

is B-bounded.

Proposition 3.1. Let A be a B-bounded automaton over �. Then L(A) is a

regular MSC language.

This result follows easily from the de�nitions. Our goal is to prove the
on-

verse, whi
h may be stated as follows.

Theorem 3.2. Let L be a regular MSC language over �. Then, there is a deter-

ministi
 B-bounded message-passing automaton A over � su
h that L(A) = L.

Our strategy to prove this result is as follows. For a regular MSC language

L, we
onsider the minimal DFA A

L

for L. We
onstru
t a message-passing

automaton A whi
h simulates the behaviour of A

L

on ea
h
omplete word u 2

�

�

. The
at
h is that no single
omponent of A is guaranteed to see all of u.

527

Thus, from the partial information available in ea
h
omponent about u, we

have to re
onstru
t the behaviour of A

L

on all of u. To a
hieve this, we need to

time-stamp events so that
omponents
an keep tra
k of ea
h others' information

about the
omputation.

4 Bounded time-stamps

Partial
omputations Let u 2 �

�

be proper. A set of events I � E

u

is
alled

an (order) ideal if I is
losed with respe
t to �|that is, e 2 I and f � e implies

f 2 I as well.

Ideals denote
onsistent partial
omputations of u|noti
e that any lineariza-

tion of an ideal forms a proper
ommuni
ation sequen
e.

p-views For an ideal I , the �-maximum p-event in I is denoted max

p

(I),

provided #

�

p

(I) > 0. The p-view of I , �

p

(I), is the ideal max

p

(I)#. Thus,

�

p

(I)
onsists of all events in I whi
h p
an \see". (By
onvention, if max

p

(I) is

unde�ned|that is, if there is no p-event in I|the p-view �

p

(I) is empty.) For

P � P , we use �

P

(I) to denote

S

p2P

�

p

(I).

Latest information Let I � E

u

be an ideal and p; q 2 P . Then latest(I)

denotes the set of events fmax

p

(I) j p 2 Pg. For p 2 P , we let latest

p

(I) denote

the set latest(�

p

(I)). A typi
al event in latest

p

(I) is of the form max

q

(�

p

(I)) and

denotes the �-maximum q-event in �

p

(I). This is the latest q-event in I that p

knows about. For
onvenien
e, we denote this event latest

p q

(I). (As usual, if

there is no q-event in �

p

(I), the quantity latest

p q

(I) is unde�ned.)

It is
lear that for q 6= p, latest

p q

(I) will always
orrespond to a send

a
tion from �

q

. However latest

p q

(I) need not be of the form q!p; the latest

information that p has about q in I may have been obtained indire
tly.

Message a
knowledgments Let I � E

u

be an ideal and e 2 I an event of

the form p!q. Then, e is said to have been a
knowledged in I if the
orrespond-

ing re
eive event f su
h that e <

pq

f exists and, moreover, belongs to �

p

(I).

Otherwise, e is said to be una
knowledged in I .

Noti
e that it is not enough for a message to have been re
eived in I to deem

it to be a
knowledged. We demand that the event
orresponding to the re
eipt

of the message be \visible" to the sending pro
ess.

For an ideal I and a pair of pro
esses p; q, let una
k

p!q

(I) be the set of

una
knowledged p!q events in I .

B-bounded
omputations Let u 2 �

�

be proper and let M

u

= (E

u

;�; �).

We say that u is B-bounded, for B 2 N, if for every pair of pro
esses p; q and

for every ideal I � E, una
k

p!q

(I)
ontains at most B events.

The following result is immediate.

Proposition 4.1. Let u 2 �

�

be proper. The word u is B-bounded i� for every

linearization v of M

u

, for every pre�x w of v and for every pair of pro
esses p; q,

#

p!q

(w) �#

q?p

(w) � B.

528

It is easy to see that during the
ourse of a B-bounded
omputation, none of

the message bu�ers ever
ontains more than B undelivered messages, regardless

of how the events are sequentialized. Thus, if ea
h
omponent A

p

of a message-

passing automaton is able to keep tra
k of the sets funa
k

p!q

(E

u

)g

q2P

for

ea
h word u, this information
an be used to inhibit sending messages along

hannels whi
h are potentially saturated. This would provide a me
hanism for

onstraining an arbitrary message-passing automaton to be B-bounded.

Primary information Let I � E be an ideal. The primary information of I ,

primary(I),
onsists of the following events in I :

{ The set latest(I) = fmax

p

(I) j p 2 Pg.

{ The
olle
tion of sets una
k(I) = funa
k

p!q

(I) j p; q 2 Pg.

For p 2 P , we denote primary(�

p

(I)) by primary

p

(I). Thus, primary

p

(I)

re
e
ts the primary information of p in I . Observe that for B-bounded
ompu-

tations, the number of events in primary(I) is bounded.

In [13℄, a proto
ol is presented for pro
esses to keep tra
k of their primary in-

formation during the
ourse of an arbitrary
omputation.

2

This proto
ol involves

appending a bounded amount of information to ea
h message in the underly-

ing
omputation, provided the
omputation is B-bounded. To ensure that the

message overhead is bounded, the pro
esses use a distributed time-stamping

me
hanism whi
h
onsistently assigns \names" to events using a bounded set of

labels.

Consistent time-stamping Let L be a �nite set of labels. For a proper
om-

muni
ation sequen
e u, we say that � : E

u

! L is a
onsistent time-stamping

of E

u

by L if for ea
h pair of (not ne
essarily distin
t) pro
esses p; q and for

ea
h ideal I the following holds: if e

p

2 primary

p

(I), e

q

2 primary

q

(I) and

�(e

p

) = �(e

q

) then e

p

= e

q

.

In the proto
ol of [13℄, whenever a pro
ess p sends a message to q, it �rst

assigns a time-stamp to the new message from a �nite set of labels. Pro
ess p

then appends its primary information to the message being sent. Noti
e that the

urrent send event will form part of the primary information sin
e it is the latest

p-event in �

p

(E

u

). When q re
eives the message, it
an
onsistently update its

primary information to re
e
t the new information re
eived from p.

The two tri
ky points in the proto
ol are for p to de
ide when it is safe to

reuse a time-stamp, and for q to de
ide whether the information re
eived from

p is really new. In order to solve these problems, the proto
ol of [13℄ requires

pro
esses to also maintain additional time-stamps,
orresponding to se
ondary

information. Though we do not need the details of how the proto
ol works, we

will need to refer to se
ondary information in the proof of our main theorem.

Se
ondary information Let I be an ideal. The se
ondary information of I is

the
olle
tion of sets primary(e#) for ea
h event e in primary(I). This
olle
tion

2

In [13℄, the primary information of an ideal I is de�ned to in
lude more events than

just latest (I) [una
k (I). However, for our purposes, it suÆ
es to treat events in

latest (I) [una
k(I) as primary.

529

of sets is denoted se
ondary(I). As usual, for p 2 P , se
ondary

p

(I) denotes the

set se
ondary(�

p

(I)).

In our framework, the proto
ol of [13℄
an now be des
ribed as follows.

Theorem 4.2. For any B 2 N, we
an
onstru
t a deterministi
 B-bounded

message-passing automaton A

B

= (fA

B

p

g

p2P

;M

B

; s

B

in

;F

B

) su
h that for every

B-bounded proper
ommuni
ation sequen
e u, A

B

indu
tively generates a
on-

sistent time-stamping � of E

u

. Moreover, for ea
h
omponent A

B

p

of A

B

, the

lo
al state of A

B

p

at the end of u re
ords the information primary

p

(E

u

) and

se
ondary

p

(E

u

) in terms of the time-stamps assigned by � .

5 Residues and de
omposition

As we mentioned earlier, our strategy to prove our main theorem is to
onstru
t

a message-passing automaton A whi
h simulates the behaviour of the minimal

DFA for L, A

L

= (S;�; s

in

; Æ; F), on ea
h
omplete
ommuni
ation sequen
e u.

In other words, after reading u, the
omponents in A must be able to de
ide

whether Æ(s

in

; u) 2 F . Unfortunately, after reading u ea
h
omponent in A

only has partial information about Æ(s

in

; u)|the
omponent A

p

only \knows

about" those events from E

u

whi
h lie in the p-view �

p

(E

u

). We have to devise

a s
heme to re
over the state Æ(s

in

; u) from the partial information available

with ea
h pro
ess after reading u.

Another
ompli
ation is that pro
esses
an only maintain a �nite amount of

information. We need a way of representing arbitrary words in a bounded, �nite

way. This
an be done by re
ording for ea
h word w, its \e�e
t" as di
tated by the

minimal automaton A

L

. We asso
iate with ea
h word u a fun
tion f

u

: S ! S,

where S is the set of states of A

L

, su
h that f

u

(s) = Æ(s; u). The following

observations follow from the fa
t that A

L

is the minimal DFA re
ognizing L.

Proposition 5.1. Let u;w 2 �

�

. Then:

(i) Æ(s

in

; u) = f

u

(s

in

).

(ii) f

uw

= f

w

Æ f

u

, where Æ denotes fun
tion
omposition.

Clearly the fun
tion f

w

: S ! S
orresponding to a word w has a bounded

representation. For an input u, if the
omponents in A
ould
ompute the fun
-

tion f

u

they would be able to determine whether Æ(s

in

; u) 2 F|by part (i) of

the pre
eding proposition, Æ(s

in

; u) = f

u

(s

in

). As the following result demon-

strates, for any input u, it suÆ
es to
ompute f

v

for some linearization v of the

MSC M

u

.

Proposition 5.2. Let

^

L be a regular MSC language. For
omplete sequen
es

u; v 2 �

�

, if u � v then f

u

= f

v

.

Proof: Follows from the stru
tural properties of A

L

des
ribed in Lemma 2.2.

2

530

Before pro
eeding, we need a
onvention for representing the subsequen
e of

ommuni
ation a
tions generated by a subset of the events in an MSC.

Partial words Let u = a

1

a

2

: : : a

n

be proper and let X � E

u

be given by

f(i

1

; a

i

1

); (i

2

; a

i

2

); : : : ; (i

k

; a

i

k

)g, where i

1

< i

2

< � � � < i

k

. Then, u[X ℄ denotes

the subsequen
e a

i

1

a

i

2

: : : a

i

k

(whi
h need not be proper).

The following fa
t, analogous to standard results in Mazurkiewi
z tra
e the-

ory, will be used several times in our
onstru
tion. We omit the proof.

Lemma 5.3. Let u be proper and let I; J � E

u

be ideals su
h that I � J . Then

u[J ℄ � u[I ℄u[J n I ℄.

Corollary 5.4. Let u be a word and I

1

� I

2

� � � � � I

k

� E

u

be a sequen
e of

nested ideals. Then u[I

k

℄ � u[I

1

℄u[I

2

n I

1

℄ � � �u[I

k

n I

k�1

℄.

Returning to our problem, suppose that P
onsists ofm pro
esses fp

1

; p

2

; : : : ; p

m

g.

Consider a
omplete word u. We wish to
ompute f

v

for some v � u. Suppose

we
onstru
t a
hain of subsets of pro
esses ; = Q

0

� Q

1

� Q

2

� � � � � Q

m

= P

su
h that for j 2 f1; 2; : : : ;mg, Q

j

= Q

j�1

[fp

j

g. From Corollary 5.4, we then

have

u = u[�

Q

m

(E

u

)℄ � u[�

Q

0

(E

u

)℄u[�

Q

1

(E

u

) n �

Q

0

(E

u

)℄ � � �u[�

Q

m

(E

u

) n �

Q

m�1

(E

u

)℄

Observe that �

Q

j

(E

u

)n�

Q

j�1

(E

u

) is the same as �

p

j

(E

u

)n�

Q

j�1

(E

u

). Thus,

we
an rewrite the expression above as

u = u[�

Q

m

(E

u

)℄ � u[;℄u[�

p

1

(E

u

) n �

Q

0

(E

u

)℄ � � �u[�

p

m

(E

u

) n �

Q

m�1

(E

u

)℄ (})

The word u[�

p

j

(E

u

) n �

Q

j�1

(E

u

)℄ is the portion of u whi
h p

j

has seen but

whi
h the pro
esses in Q

j�1

have not seen. This is a spe
ial
ase of what we
all

a residue.

Residues Let u be proper, I � E

u

an ideal and p 2 P a pro
ess. R(u; p; I)

denotes the word u[�

p

(E

u

) n I ℄ and is
alled the residue of u at p with respe
t

to I . Observe that any residue of the form R(u; p; I)
an equivalently be written

R(u; p; �

p

(E

u

) \ I).

Using the notation of residues, we
an write the word u[�

p

j

(E

u

)n�

Q

j�1

(E

u

)℄

asR(u; p

j

; �

Q

j�1

(E

u

)). A residue of this form is
alled a pro
ess residue:R(u; p; I)

is a pro
ess residue if R(u; p; I) = R(u; p; �

P

(E

u

)) for some P � P . We say that

R(u; p; �

P

(E

u

)) is the P -residue of u at p.

Unfortunately, a pro
ess residue at p may
hange due to an a
tion of another

pro
ess. For instan
e, if we extend a word u by an a
tion a = q?p, it is
lear

that R(u; p; �

q

(E

u

)) will not be the same as R(ua; p; �

q

(E

ua

)) sin
e q will get to

know about more events from �

p

(u) after re
eiving the message via the a
tion

a. On the other hand, sin
e p does not move on an a
tion of the form q?p, p has

no
han
e to update its q-residue when the a
tion q?p o

urs.

However, it turns out that ea
h pro
ess
an maintain a set of residues based

on its primary information su
h that these primary residues subsume the pro
ess

residues. The key te
hni
al fa
t whi
h makes this possible is the following.

531

Lemma 5.5. For any non-empty ideal I, and p; q 2 P, the maximal events in

�

p

(I) \ �

q

(I) lie in primary

p

(I) \ primary

q

(I).

Proof: We show that for ea
h maximal event e in �

p

(I) \ �

q

(I), either e 2

latest(�

p

(I)) \ una
k(�

q

(I)) or e 2 una
k(�

p

(I)) \ latest(�

q

(I)).

First suppose that �

p

(I) n �

q

(I) and �

q

(I) n �

p

(I) are both nonempty. Let e

be a maximal event in �

p

(I) \ �

q

(I). Suppose e is an r-event, for some r 2 P .

Sin
e �

p

(I)n�

q

(I) and �

q

(I)n�

p

(I) are both nonempty, it follows that r =2 fp; qg.

The event e must have �-su

essors in both �

p

(I) and �

q

(I). However, observe

that any event f
an have at most two immediate �-su

essors|one \internal"

su

essor within the pro
ess and, if f is a send event, one \external" su

essor

orresponding to the mat
hing re
eive event.

Thus, the maximal event e must be a send event, with a <

rr

su

essor

e

r

and a <

rs

su

essor e

s

,
orresponding to some s 2 P . Assume that e

r

2

�

q

(I) n �

p

(I) and e

s

2 �

p

(I) n �

q

(I). Sin
e the r-su

essor of e is outside �

p

(I),

e = max

r

(�

p

(I)). So e belongs to latest(�

p

(I)). On the other hand, e is an un-

a
knowledged r!s event in �

q

(I). Thus, e 2 una
k

r!s

(�

q

(I)), whi
h is part of

una
k(�

q

(I)).

Symmetri
ally, if e

r

2 �

p

(I) n �

q

(I) and e

s

2 �

q

(I) n �

p

(I), we �nd that e

belongs to una
k(�

p

(I)) \ latest(�

q

(I)).

We still have to
onsider the
ase when �

p

(I) � �

q

(I) or �

q

(I) � �

p

(I).

Suppose that �

p

(I) � �

q

(I), so that �

p

(I)\�

q

(I) = �

p

(I). Let e = max

p

(�

q

(I)).

Clearly, �

p

(I) = e#. Consider any r-event f in �

p

(I), where r =2 fp; qg. Sin
e

f < e, f
annot be maximal in �

p

(I). Thus, the only maximal event in �

p

(I) is

the p-event e. Sin
e e has a su

essor in �

q

(I), e must be a send event and is

hen
e in una
k(�

p

(I)). Thus, e 2 una
k(�

p

(I)) \ latest(�

q

(I)). Symmetri
ally,

if �

q

(I) � �

p

(I), the unique maximal event e in �

q

(I) belongs to latest(�

p

(I)) \

una
k(�

q

(I)). 2

Let us
all R(u; p; I) a primary residue if I is of the form X# for some subset

X � primary

p

(E

u

). Clearly, for p; q 2 P , R(u; p; �

q

(E

u

)),
an be rewritten as

R(u; p; �

p

(E

u

)\�

q

(E

u

)). So, by the previous result the q-residue R(u; p; �

q

(E

u

))

is a primary residue R(u; p;X#) for some X � primary(�

p

(E

u

)). Further, the

set X
an be e�e
tively
omputed from the primary information of p and q. In

fa
t, it turns out that all pro
ess residues
an be e�e
tively des
ribed in terms

of primary residues.

We begin with a simple observation, whose proof we omit.

Proposition 5.6. Let u 2 �

�

be proper and p 2 P. For ideals I; J � E

u

, let

R(u; p; I) and R(u; p; J) be primary residues su
h that R(u; p; I) = R(u; p;X

I

#)

and R(u; p; J) = R(u; p;X

J

#) for X

I

; X

J

� primary

p

(E

u

). Then R(u; p; I [J)

is also a primary residue and R(u; p; I [J) = R(u; p; (X

I

[X

J

)#).

Our
laim that all pro
ess residues
an be e�e
tively des
ribed in terms of

primary residues
an then be formulated as follows.

532

Lemma 5.7. Let u 2 �

�

be proper, p 2 P and Q � P. Then R(u; p; �

Q

(E

u

))

is a primary residue R(u; p;X#) for p. Further, the set X � primary

p

(E

u

)
an

be e�e
tively
omputed from the information in

S

q2fpg[Q

primary

q

(E

u

).

Proof: Let Q = fq

1

; q

2

; : : : ; q

k

g. We
an rewrite R(u; p; �

Q

(E

u

)) as

R(u; p;

S

i2[1::k℄

�

q

i

(E

u

)). From Lemma 5.5 it follows that for ea
h i 2 f1; 2; : : : ; kg,

p
an
ompute a set X

i

� primary

p

(E

u

) from the information in primary

p

(E

u

)[

primary

q

i

(E

u

) su
h that R(u; p; �

q

i

(E

u

)) = R(u; p;X

i

#). From Proposition 5.6,

it then follows thatR(u; p; �

Q

(E

u

)) = R(u; p;

S

i2f1;2;:::;kg

�

q

i

(E

u

)) = R(u; p;X#)

where X =

S

i2f1;2;:::;kg

X

i

. 2

6 Updating residues

We now des
ribe how, while reading a word u, ea
h pro
ess p maintains the

fun
tions f

w

for ea
h primary residue w of u at p.

Initially, at the empty word u = ", every primary residue from

fR(u; p;X#)g

p2P;X�primary(�

p

(E

u

))

is just the empty word ". So, all primary

residues are represented by the identity fun
tion Id : fs 7! sg.

Let u 2 �

�

and a 2 �. Assume indu
tively that every p 2 P has
omputed

at the end of u the fun
tion f

w

for ea
h primary residue w = R(u; p;X#),

where X � primary(�

p

(E

u

)). We want to
ompute for ea
h p the
orresponding

fun
tions after the word ua.

Suppose a is of the form p!q and X � primary

p

(E

ua

). Let e

a

denote the

event
orresponding to the new a
tion a. If e

a

2 X , then R(ua; p;X#) = ", so

we represent the residue by the identity fun
tion Id . On the other hand, if a =2 X ,

then X � primary

p

(E

u

), so we already have a residue of the form R(u; p;X).

We then set R(ua; p;X#) to be f

a

ÆR(u; p;X#). For r 6= p, the primary residues

are un
hanged when going from u to ua.

The
ase where a is of the form p?q is more interesting. As before, the primary

residues are un
hanged for r 6= p. We show how to
al
ulate all the new primary

residues for p using the information obtained from q. This will use the following

result.

Lemma 6.1. Let u 2 �

�

be proper. Let p; q 2 P and e 2 E

u

su
h that e 2

primary

q

(E

u

) but e =2 �

p

(E

u

). Then R(u; p; e#) is a primary residue R(u; p;X#)

for p. Further, the set X � primary(�

p

(E

u

))
an be e�e
tively
omputed from

the information in primary

p

(E

u

) and se
ondary

q

(E

u

).

Proof: Let e be an r-event, r 2 P and let J = �

p

(E

u

) [e#. By
onstru
tion,

max

p

(J) = max

p

(E

u

). On the other hand, max

r

(J) = e, sin
e e is an r-event

and we assumed that e =2 �

p

(E

u

).

By Lemma 5.5, the maximal events in �

p

(J) \ �

r

(J) lie in primary

p

(J) \

primary

r

(J). Sin
e max

p

(J) = max

p

(E

u

), primary

p

(J) = primary

p

(E

u

). On the

other hand, primary

r

(J) = primary(e#), whi
h is a subset of se
ondary

q

(E

u

),

sin
e e 2 primary

q

(E

u

).

533

Thus, the set of maximal events in �

p

(J)\�

r

(J), whi
h is the same as �

p

(E

u

)\

e#, is
ontained in primary

p

(E

u

) \ primary(e#). These events are available in

primary

p

(E

u

) [se
ondary

q

(E

u

). 2

Suppose that X � primary

p

(E

ua

). Suppose that X = fx

1

; x

2

; : : : ; x

k

g.

We �rst argue that for ea
h x

i

2 X ,R(u; p; x

i

#) is a primary residueR(u; p; Y

i

#),

where Y

i

� primary

p

(E

u

). If x

i

2 primary

p

(E

u

), then R(u; p; x

i

#) is already a

primary residue, so we
an set Y

i

= fx

i

g. If, however, x

i

=2 primary

p

(E

u

), then

x

i

must have been
ontributed from primary

q

(u) through the message re
eived

at the a
tion a. We have x

i

2 primary

q

(E

u

) but x

i

=2 �

p

(E

u

). Thus, appealing

to Lemma 6.1, we
an identify Y

i

� primary

p

(E

u

) su
h that R(u; p; fx

i

g#) =

R(u; p; Y

i

#).

Sin
e X =

S

i2f1;2;:::;kg

x

i

, we
an appeal to Proposition 5.6 to argue that

R(u; p;X#) is the primary residue R(u; p; Y #) where Y =

S

i2f1;2;:::;kg

Y

i

. We

an then set R(ua; p;X#) = f

a

Æ R(u; p; Y #).

Thus, after ea
h a
tion that is performed, the pro
ess performing the a
tion

an e�e
tively update its primary residues using the primary and se
ondary

information available to it.

7 A deterministi
 message-passing automaton for L

We
an now
onstru
t a deterministi
 B-bounded message-passing automaton

orresponding to a given regular MSC language L. We �rst observe that there

is a bound B 2 N su
h that every word in L is B-bounded.

Proposition 7.1. Let L � �

�

be a regular MSC language. There is an e�e
-

tively
omputable bound B 2 N su
h that every word in L is B-bounded.

Proof: Let A

L

= (S;�; s

in

; Æ; F) be the minimal DFA for L. Re
all that we

an asso
iate with ea
h live state in S and ea
h
hannel (p; q) 2 Chan a
hannel-

apa
ity fun
tion K

s

: Chan ! N. Let B be the maximum value of K

s

((p; q))

over all live states s and all
hannels (p; q).

We know that for any word u in L, the run of A

L

on u visits only live

states. Thus, while pro
essing u, no
hannel's
apa
ity ever ex
eeds the bound B.

Moreover, sin
e L is�-
losed, every interleaving v ofM

u

belongs to L and the run

of A

L

on ea
h su
h interleaving also respe
ts this bound. From Proposition 4.1,

we
an
on
lude that in every ideal I � E

u

, for any pair p; q of pro
esses, the

set una
k

p!q

(I)
ontains at most B-events. Thus, u is B-bounded. 2

We now
onstru
t a B-bounded message-passing automaton A =

(fA

p

g

p2P

;M; s

in

;F) for L, where B is the bound derived from the minimal

DFA A

L

for L as des
ribed in the pre
eding proposition.

Re
all that A

B

= (fA

B

p

g

p2P

;M

B

; s

B

in

;F

B

) is the time-stamping automaton

for B-bounded
omputations, where the state of ea
h
omponent re
ords the

primary and se
ondary information of the
omponent in terms of a
onsistent

set of time-stamps.

534

{ The message alphabet of A is the alphabet M

B

used by the time-stamping

automaton A

B

.

{ In A, a typi
al state of a
omponent A

p

is a pair (s

B

; s

R

) where s

B

is a

state drawn from A

B

p

and s

R

is the
olle
tion ff

X

: S ! Sg

X�primary

p

(E

u

)

of primary residues of A

p

at the end of a word u.

{ The lo
al transition relation !

p

of ea
h
omponent A

p

is as follows:

� For a of the form p!q, the tuple ((s

B

; s

R

); a;m; (s

0

B

; s

0

R

)) 2 !

p

provided

(s

B

; a;m; s

0

B

) 2 !

B

p

and the residues in s

0

R

are derived from the residues

in s

R

using the time-stamping information in s

B

, as des
ribed in Se
-

tion 6.

Moreover, a

ording to the primary information in s

B

, it should be the

ase that juna
k

p!q

(E

u

)j < B for the word u read so far. Otherwise,

this send a
tion is disabled.

� For a of the form p?q, the tuple ((s

B

; s

R

); a;m; (s

0

B

; s

0

R

)) 2 !

p

provided

(s

B

; a;m; s

0

B

) 2 !

B

p

and the residues in s

0

R

are derived from the residues

in s

R

using the time-stamping information in s

B

and the message m, as

des
ribed in Se
tion 6.

{ In the initial state of A, the lo
al state of ea
h
omponent A

p

is of the form

(s

p

B;in

; s

p

R;in

) where s

p

B;in

is the initial state of A

B

p

and s

p

R;in

re
ords ea
h

residue to be the identity fun
tion Id .

{ The global state f(s

p

B

; s

p

R

)g

p2P

belongs to the set F of �nal states if the

primary residues stored in the global state re
ord that Æ(s

in

; u) 2 F for the

word u read so far. (This is a
hieved by evaluating the expression (}) in

Se
tion 5.)

From the analysis of the previous se
tion, it is
lear that A a

epts pre
isely

the language L. The last
lause in the transition relation !

p

for send a
tions

ensures that A will not admit a run in whi
h una
k

p!q

(E

u

) grows beyond B

events for any input u and any pair of pro
esses p; q. This ensures that every

rea
hable
on�guration of A is B-bounded. Finally, we observe that A is de-

terministi
 be
ause the time-stamping automaton A

B

is deterministi
 and the

update pro
edure for residues des
ribed in Se
tion 6 is also deterministi
.

We have thus su

eeded in proving the main result we were after (The-

orem 3.2)|namely, that for every regular MSC language L over �, there is

a deterministi
 B-bounded message-passing automaton A over � su
h that

L(A) = L.

We
on
lude by providing an upper bound for the size of A, whi
h
an be

omputed by estimating the number of bits required to re
ord the time-stamps

and residues whi
h form the lo
al state of a pro
ess.

Proposition 7.2. Let n be the number of pro
esses in the system, m be the

number of states of the minimal DFA A

L

for L and B the bound
omputed from

the
hannel-
apa
ity fun
tions of A

L

. Then, the number of lo
al states of ea
h

omponent A

p

is at most 2

(2

O(Bn

2

)

m logm)

.

535

Referen
es

1. Alur, R., Holzmann, G.J., and Peled, D.: An analyzer for message sequen
e
harts.

Software Con
epts and Tools, 17(2) (1996) 70{77.

2. Alur, R., and Yannakakis, M.: Model
he
king of message sequen
e
harts. Pro
.

CONCUR'99, LNCS 1664, Springer Verlag (1999) 114{129.

3. Ben-Abdallah, H., and Leue, S.: Synta
ti
 dete
tion of pro
ess divergen
e and non-

lo
al
hoi
e in message sequen
e
harts. Pro
. TACAS'97, LNCS 1217, Springer-

Verlag (1997) 259{274.

4. Boo
h, G., Ja
obson, I., and Rumbaugh, J.: Uni�ed Modeling Language User

Guide. Addison Wesley (1997).

5. Damm, W., and Harel, D.: LCS's: Breathing life into message sequen
e
harts.

Pro
. FMOODS'99, Kluwer A
ademi
 Publishers (1999) 293{312.

6. Diekert, V., and Rozenberg, G. (Eds.): The book of tra
es. World S
ienti�
 (1995).

7. Harel, D., and Gery, E.: Exe
utable obje
t modeling with state
harts. IEEE Com-

puter, July 1997 (1997) 31{42.

8. Henriksen, J.G., Mukund, M., Narayan Kumar K., and Thiagarajan, P.S.: On

message sequen
e graphs and �nitely generated regular MSC languages, to appear

in Pro
. ICALP 2000, LNCS, Springer-Verlag (2000).

9. Henriksen, J.G., Mukund, M., Narayan Kumar K., and Thiagarajan, P.S.: Regular

olle
tions of message sequen
e
harts, to appear in Pro
. MFCS 2000, LNCS,

Springer-Verlag (2000).

10. Ladkin, P.B., and Leue, S.: Interpreting message
ow graphs. Formal Aspe
ts of

Computing 7(5) (1975) 473{509.

11. Levin, V., and Peled, D.: Veri�
ation of message sequen
e
harts via template

mat
hing. Pro
. TAPSOFT'97, LNCS 1214, Springer-Verlag (1997) 652{666.

12. Mauw, S., and Reniers, M.A.: High-level message sequen
e
harts, Pro
. SDL '97,

Elsevier (1997) 291{306.

13. Mukund, M., Narayan Kumar, K., and Sohoni, M.: Keeping tra
k of the lat-

est gossip in message-passing systems. Pro
. Stru
tures in Con
urren
y Theory

(STRICT), Workshops in Computing Series, Springer-Verlag (1995) 249{263.

14. Mus
holl, A.: Mat
hing Spe
i�
ations for Message Sequen
e Charts. Pro
. FOS-

SACS'99, LNCS 1578, Springer-Verlag (1999) 273{287.

15. Mus
holl, A., Peled, D., and Su, Z.: De
iding properties for message sequen
e

harts. Pro
. FOSSACS'98, LNCS 1378, Springer-Verlag (1998) 226{242.

16. Rudolph, E., Graubmann, P., and Grabowski, J.: Tutorial on message sequen
e

harts. In Computer Networks and ISDN Systems|SDL and MSC, Volume 28

(1996).

17. Thomas, W.: Automata on in�nite obje
ts. In van Leeuwen, J. (Ed.), Handbook

of Theoreti
al Computer S
ien
e, Volume B, North-Holland, Amsterdam (1990)

133{191.

18. Thomas, W.: Languages, Automata, and Logi
. In Rozenberg, G., and Salomaa,

A. (Eds.), Handbook of Formal Language Theory, Vol. III, Springer-Verlag, New

York (1997) 389{455.

19. Zielonka, W.: Notes on �nite asyn
hronous automata. R.A.I.R.O.|Inf. Th�eor. et

Appl., 21 (1987) 99{135.

