CONCUR 2000, 11th International Conference on Concurrency Theory
Proceedings: Catuscia Palamidessi (ed.)
Springer Lecture Notes in Computer Science 1877 (2000), 521-535.

Synthesizing distributed finite-state systems
from MSCs*

Madhavan Mukund?,
K. Narayan Kumar®, and Milind Sohoni?

! Chennai Mathematical Institute, Chennai, India.
E-mail: {madhavan,kumar}@smi.ernet.in
% Indian Institute of Technology Bombay, Mumbai, India
E-mail: sohoni@cse.iitb.ernet.in

Abstract. Message sequence charts (MSCs) are an appealing visual for-
malism often used to capture system requirements in the early stages of
design. An important question concerning MSCs is the following: how
does one convert requirements represented by MSCs into state-based
specifications? A first step in this direction was the definition in [9]
of regular collections of MSCs, together with a characterization of this
class in terms of finite-state distributed devices called message-passing
automata. These automata are, in general, nondeterministic. In this pa-
per, we strengthen this connection and describe how to directly asso-
ciate a deterministic message-passing automaton with each regular col-
lection of MSCs. Since real life distributed protocols are deterministic,
our result is a more comprehensive solution to the synthesis problem
for MSCs. Our result can be viewed as an extension of Zielonka’s theo-
rem for Mazurkiewicz trace languages [6, 19] to the setting of finite-state
message-passing systems.

1 Introduction

Message sequence charts (MSCs) are an appealing visual formalism often used to
capture system requirements in the early stages of design. They are particularly
suited for describing scenarios for distributed telecommunication software [16].
They have also been called timing sequence diagrams, message flow diagrams
and object interaction diagrams and are used in a number of software engineer-
ing methodologies [4,7,16]. In its basic form, an MSC depicts the exchange of
messages between the processes of a distributed system along a single partially-
ordered execution. A collection of MSCs is used to capture the scenarios that a
designer might want the system to exhibit (or avoid).

Given the requirements in the form of a collection of MSCs, one can hope
to do formal analysis and discover errors at an early stage. A standard way to

* This work has been supported in part by Project DRD/CSE/98-99/MS-4 between
the Indian Institute of Technology Bombay and Ericsson (India), Project 2102-1
of the Indo-French Centre for Promotion of Advanced Research and NSF grant
CDA9805735.

5922

generate a collection of MSCs is to use a High Level Message Sequence Chart
(HMSC) [12]. An HMSC is a finite directed graph in which each node is labelled,
in turn, by an HMSC. The HMSCs labelling the vertices may not refer to each
other. The collection of MSCs represented by an HMSC consists of all MSCs
obtained by tracing a path in the HMSC from an initial vertex to a terminal
vertex and concatenating the MSCs that are encountered along the path.

In order to analyze the collection of MSCs represented by an HMSC, one de-
sirable property is that these MSCs correspond to the behaviour of a finite-state
system. This property would be violated if the specification were to permit an
unbounded number of messages to accumulate in a channel. A sufficient condi-
tion to rule out such divergence in an HMSC is described in [3]. Subsequently, it
has been observed that HMSCs can also violate the finite-state property by ex-
hibiting nonregular behaviour over causally independent bounded channels [2].
To remedy this, a stronger criterion is established in [2] which suffices to ensure
that the behaviour described by an HMSC can be implemented by a (global)
finite-state system. This leads to a more general question of when a collection of
MSCs should be called regular. A robust notion of regularity has been proposed
in [9]. As shown in [8], this notion strictly subsumes the finite-state collections
generated by HMSCs. It turns out that the collections defined by HMSCs cor-
respond to the class of finitely-generated regular collections of MSCs.

One of the main contributions of [9] is a characterization of regular collections
of MSCs in terms of (distributed) finite-state devices called message-passing au-
tomata. This addresses the important synthesis problem for MSCs, first raised
in [5]; namely, how to convert requirements as specified by MSCs into distributed,
state-based specifications. The message-passing automata associated with regu-
lar collections of MSCs in [9] are, in general, nondeterministic. In this respect
the solution to the synthesis problem in [9] is not completely satisfactory, since
real life distributed protocols are normally deterministic.

In this paper, we strengthen the result of [9] by providing a technique for
decomposing a sequential automaton accepting a regular collection of MSCs
into a deterministic message-passing automaton. Our result can be viewed as the
message-passing analogue of the celebrated theorem of Zielonka from Mazurkie-
wicz trace theory establishing that regular trace languages precisely correspond
to the trace languages accepted by deterministic asynchronous automata [19].

In related work, a number of studies are available which are concerned with
individual MSCs in terms of their semantics and properties [1,10]. A variety
of algorithms have been developed for HMSCs in the literature—for instance,
pattern matching [11,14,15] and detection of process divergence and non-local
choice [3]. A systematic account of the various model-checking problems associ-
ated with HMSCs and their complexities is given in [2].

The paper is organized as follows. In the next section we introduce MSCs and
regular MSC languages. In Section 3 we define message-passing automata and
state the problem. Section 4 describes a time-stamping result for message-passing
systems from [13] which is crucial for proving our main result. In Section 5 we
then introduce the notion of residues and show how the ability to locally compute

923

residues would solve the decomposition problem. The next section describes
a procedure for locally updating residues. This procedure is formalized as a
message-passing automaton in Section 7.

2 Regular MSC Languages

Let P = {p,q,r,...} be a finite set of processes which communicate with each
other through messages. We assume that messages are never inserted, lost or
modified—that is, the communication medium is reliable. However, there may
be an arbitrary delay between the sending of a message and its receipt. We
assume that messages are delivered in the order in which they are sent—in other
words, the buffers between processes behave in a FIFO manner.

For each process p € P, we fix X, = {plg | p # ¢} U{p?q | p # q} to be the set
of communication actions in which p participates. The action plq is to be read
as p sends to q and the action p?q is to be read as p receives from q. We shall
not be concerned with the actual messages that are sent and received—we are
primarily interested in the pattern of communication between agents. We will
also not deal with the internal actions of the agents. We set X' = J . %), and
let a,b range over X.

For a € ¥ and u € ¥*, #,(u) denotes the number of occurrences of a in
u. A word u € X* is a proper communication sequence of the processes if for
each prefix v of w and each pair of processes p,q € P, #pq(v) > #g2p(v)—
that is, at any point in the computation, at most as many messages have been
received at g from p as have been sent from p to g. We say that u is a complete
communication sequence if u is a proper communication sequence and for each
pair of processes p,q € P, #p14(u) = #47p(u)—in other words, at the end of «,
all messages that have been sent have also been received. We shall often say that
u is proper (respectively, complete) to mean that u is a proper (respectively,
complete) communication sequence over Y.

Let u = apay ...a, € X* be proper. We can associate a natural X-labelled
partial order M, = (E,, <,\) with u where:

pPEP

— E={(i,a;) | i €{1,2,...,n}.
— AM(4,a;)) = a;. (If A(e) € X}, we say that e is a p-event.)
— For p,q € P, we define relations <,, C E' X E as follows:

e Forpe P, (i,a;) <pp (j,a;)if a;,a; € Tp, i < jand thereisnoi < k < j
such that ar € X,.

e For p,g € P, p # q, (i,a;) <pq (J,yq;j) if a; = plg, a; = ¢?p and the
sets {(k,ar) | k < i,ar, = plg} and {(k,ar) | k < j,ar = ¢?p} are of
the same cardinality. Since messages are assumed to be read in FIFO
fashion, (4,a;) <pq (j,a;) implies that the message read at the receive
event (j,a;) is the one sent at the send event (i, a;).

— The partial order < is the reflexive, transitive closure of the relations | J paeP <pg-

524

We shall call the structure M, generated from a complete communication
sequence u a Message Sequence Chart (MSC).! The partial order between events
in M, is a more faithful representation of the causality between events in u than
the sequential order induced by writing u as a string.

Henceforth, we shall implicitly associate with each proper word u the cor-
responding structure M, = (E,,<,A). In particular, E, always refers to the
set of events associated with the structure M, generated from a proper word wu.
Abusing terminology, we refer to M, as an MSC even if u is not complete.

Let M, = (Ey,<,\) be an MSC. For e € E,, el denotes, as usual, the set
{feE,|f<Le} For X C E,, X| is defined to be |, x el

We define a context-sensitive independence relation I C X* x (X x X) as
follows: (u,a,b) € I provided that w is proper, a € X, and b € X, for distinct
processes p and ¢, and, further, if a = plq and b = ¢7p then #,(u) > #u(u).
Observe that if (u,a,b) € I then (u,b,a) € I.

Let X° = {u € X* | u is complete}. We define ~ C X° x X° to be the least
equivalence relation such that if u = ujabus and u' = uibaus and (uy,a,b) € I
then u ~ u'. It is important to note that ~ is defined over X° (and not X*).

The following simple observation shows that each MSC corresponds to a
~-equivalence classes of complete communication sequences over X.

Proposition 2.1. Let u,v € X°. Then, v is a linearization of M, iff u ~ v.

We define L C X* to be a MSC language if every member of L is complete
and L is ~-closed (that is, for each uw € L, if w € L and u ~ v then v € L.) We
say that an MSC language L is a regular if L is a regular subset of X*.

Given a regular subset L C X*, we can decide whether L is a regular MSC
language. We say that a state s in a finite-state automaton is live if there is a
path from s to a final state. We then have the following result from [9].

Lemma 2.2. Let A= (S,Y, sin,d, F) be the minimal DFA representing L. Let
Chan = {(p,q) | p,q € P,p # q} denote the set of channels. L is a regular
MSC language iff we can associate with each live state s € S, a channel-capacity
function Ks : Chan — N which satisfies the following conditions.

(i) If s € {sin} U F then Ks(c) =0 for every c € Ch.

(i) If s,s' are live states and §(s,plq) = s’ then Ky ((p,q)) = Ks((p,q))+1 and
Ky (c) = Ks(c) for every ¢ # (p,q).-

(i1i) If s,s' are live states 6(s,q?p) = s' then Ks((p,q)) > 0, Ks((p,q)) =
Ko((p, 0))—1 and Ky () = Ko(c) for every c £ (p,a).

(iv) Suppose §(s,a) = s1 and 6(s1,b) = sy witha € ¥, andb e Xy, p#q. If it
is not the case that a = plq and b = ¢?p, or it is the case that Ks((p,q)) > 0,
there ezists s such that §(s,b) = s} and 6(s},a) = sa.

L Our definition captures the standard partial-order semantics associated with MSCs
[1,16]. See [9] for an equivalent definition of MSCs in terms of labelled partial orders.

925

Observe that the conditions described in the lemma can be checked in time
linear in the size of 4.

Item (iv) of the lemma has useful consequences. As usual, we extend J to
words and let §(s;,,u) denote the (unique) state reached by A on reading an
input u. Let v be a proper word and let a,b be communication actions such that
(u,a,b) belongs to the context-sensitive independence relation defined earlier.
Item (iv) guarantees that d(s;,,uab) = d(sin,uba). From this, we can conclude
that if v, w are complete words such that v ~ w, then 0(s;,,v) = §(Sin, w).

3 Message-passing automata

We now define distributed automata which accept MSC languages.

Message-passing automaton A message-passing automaton over X is a struc-
ture A = ({Ap}tpep, M, sin, F) where

— M is a finite alphabet of messages.
— Each component A, is of the form (S,, —,) where

e S, is a finite set of p-local states.

e =, C(Sp x Zp x M xSp) is the p-local transition relation.
— 8in € HpeP S, is the global initial state.
- FC HPE73 Sp is the set of global final states.

The local transition relation —, specifies how the process p sends and receives
messages. The transition (s, plg,m,s’) specifies that when p is in the state s, it
can send the message m to ¢ (by executing the communication action plg) and go
to the state s’. The message m is, as a result, appended to the queue of messages
in the channel (p,). Similarly, the transition (s,p?q, m,s’) signifies that at the
state s, the process p can receive the message m from ¢ by executing the action
p?q and go to the state s’. The message m is removed from the head of the queue
of messages in the channel (g, p).

We say that A is deterministic if the local transition relation —, for each
component A, satisfies the following conditions:

— (s,plg,m1,s}) € =, and (s, plg,mae, s5) € —, imply my = mo and s] = sb.
— (5,p%q,m, s1) € = and (s,p?q,m, s5) € —p imply 57 = s5.

In other words, when a component 4, of a deterministic automaton A ex-
ecutes a send action, the current state of A, uniquely determines the message
sent as well as the new state of A,, and when 4, executes a receive action,
the current state of A, and the nature of the message at the head of the queue
uniquely determine the new state of A,.

The set of global states of A is given by HpeP Sp. For a global state s, we let
sp denote the pth component of s. A configuration is a pair (s, x) where s is a
global state and x : Chan — M™ is the channel state which specifies the queue
of messages currently residing in each channel ¢. The initial configuration of A

526

is (sin, xe) where x<(c) is the empty string ¢ for every channel c. The set of final
configurations of A is F x {x.}.

We now define the set of reachable configurations Conf, and the global
transition relation = C Conf, x X' x Conf , inductively as follows:

— (Sin, Xe) € Conf 4.
— Suppose (s, x) € Conf,, (s',x') is a configuration and (s, plg,m, s;) € —
such that the following conditions are satisfied:
e 7 # p implies s, = s). for each r € P.
o X'((p,9)) = x((p,9)) - m and for ¢ # (p,), X'(c) = x(c).
Then (s, x) 2, (s',x") and (s',x") € Conf 4.
— Suppose (s, x) € Conf 4, (s',X") is a configuration and (sp, p?q, m, s;,) € =
such that the following conditions are satisfied:
e 1 # p implies s, = s!. for each r € P.
* x((g,p)) =m-Xx'((g,p)) and for every channel ¢ # (¢,p), x'(¢) = x(c).

Then (s, x) 2 (s',x") and (s',x") € Conf,.

Let u € X*. A run of A on v is a map p : Pre(u) — Conf, (where Pre(u)
is the set of prefixes of u) such that p(e) = (s, x:) and for each 7a € Pre(u),
p(1) == p(ta). The run p is accepting if p(u) is a final configuration. Let L(A) =
{u | A has an accepting run on u}. It is easy to see that every member of L(.A) is
complete and L(A) is ~-closed—that is, u € L(A) and u ~ v’ implies u' € L(A).

Unfortunately, L(A) need not be regular. Consider, for instance, a message-
passing automaton for the canonical producer-consumer system in which the
producer p sends an arbitrary number of messages to the consumer ¢. Since we
can reorder all the plg actions to be performed before all the ¢7p actions, the
queue in channel (p, q) is unbounded. Hence, the reachable configurations of this
system are not bounded and the corresponding language is not regular.

For B € N, we say that a configuration (s,y) of the message-passing au-
tomaton A is B-bounded if for every channel ¢ € Chan, it is the case that
Ix(c)| < B. We say that A is a B-bounded automaton if every reachable config-
uration (s, x) € Conf, is B-bounded.

Proposition 3.1. Let A be a B-bounded automaton over X. Then L(A) is a
reqular MSC language.

This result follows easily from the definitions. Our goal is to prove the con-
verse, which may be stated as follows.

Theorem 3.2. Let L be a reqular MSC language over Y. Then, there is a deter-
ministic B-bounded message-passing automaton A over X such that L(A) = L.

Our strategy to prove this result is as follows. For a regular MSC language
L, we consider the minimal DFA Aj for L. We construct a message-passing
automaton A which simulates the behaviour of A, on each complete word u €
X’*. The catch is that no single component of A is guaranteed to see all of u.

927

Thus, from the partial information available in each component about u, we
have to reconstruct the behaviour of Ay, on all of u. To achieve this, we need to
time-stamp events so that components can keep track of each others’ information
about the computation.

4 Bounded time-stamps

Partial computations Let u € X* be proper. A set of events I C E,, is called
an (order) ideal if I is closed with respect to <—that is, e € I and f < e implies
f eI as well.

Ideals denote consistent partial computations of u—notice that any lineariza-
tion of an ideal forms a proper communication sequence.

p-views For an ideal I, the <-maximum p-event in I is denoted max,(I),
provided #x,(I) > 0. The p-view of I, 0,(I), is the ideal max,(/){. Thus,
Op(I) consists of all events in I which p can “see”. (By convention, if max,(I) is
undefined—that is, if there is no p-event in I—the p-view 9,(I) is empty.) For
P C P, we use dp(I) to denote U, p 9p(1).

Latest information Let I C E, be an ideal and p,q € P. Then latest(I)
denotes the set of events {max,(I) | p € P}. For p € P, we let latest,(I) denote
the set latest(0,(I)). A typical event in latest,(I) is of the form max, (0, (1)) and
denotes the <-maximum g-event in 9,(I). This is the latest g-event in I that p
knows about. For convenience, we denote this event latest,q(I). (As usual, if
there is no g-event in 9,(I), the quantity latestp.o(I) is undefined.)

It is clear that for g # p, latestpq(I) will always correspond to a send
action from Y,. However latestp4(I) need not be of the form g¢lp; the latest
information that p has about ¢ in I may have been obtained indirectly.

Message acknowledgments Let I C E, be an ideal and e € I an event of
the form plq. Then, e is said to have been acknowledged in I if the correspond-
ing receive event f such that e <,, f exists and, moreover, belongs to 0,(I).
Otherwise, e is said to be unacknowledged in I.

Notice that it is not enough for a message to have been received in I to deem
it to be acknowledged. We demand that the event corresponding to the receipt
of the message be “visible” to the sending process.

For an ideal I and a pair of processes p,q, let unack,_4(I) be the set of
unacknowledged plq events in 1.

B-bounded computations Let u € X* be proper and let M, = (Ey, <, \).
We say that w is B-bounded, for B € N, if for every pair of processes p,q and
for every ideal I C E, unackp—,(I) contains at most B events.

The following result is immediate.

Proposition 4.1. Let u € X* be proper. The word u is B-bounded iff for every
linearization v of M, for every prefix w of v and for every pair of processes p, q,

#p!q(w) - #q?p(w) <B.

528

It is easy to see that during the course of a B-bounded computation, none of
the message buffers ever contains more than B undelivered messages, regardless
of how the events are sequentialized. Thus, if each component A4, of a message-
passing automaton is able to keep track of the sets {unackp_,(Ey)}qep for
each word u, this information can be used to inhibit sending messages along
channels which are potentially saturated. This would provide a mechanism for
constraining an arbitrary message-passing automaton to be B-bounded.

Primary information Let I C E be an ideal. The primary information of I,
primary([), consists of the following events in I:

— The set latest(I) = {max,(I) | p € P}.
— The collection of sets unack(I) = {unackp—q(I) | p,q € P}.

For p € P, we denote primary(0,(I)) by primary,(I). Thus, primary,(I)
reflects the primary information of p in I. Observe that for B-bounded compu-
tations, the number of events in primary(I) is bounded.

In [13], a protocol is presented for processes to keep track of their primary in-
formation during the course of an arbitrary computation.? This protocol involves
appending a bounded amount of information to each message in the underly-
ing computation, provided the computation is B-bounded. To ensure that the
message overhead is bounded, the processes use a distributed time-stamping
mechanism which consistently assigns “names” to events using a bounded set of
labels.

Consistent time-stamping Let £ be a finite set of labels. For a proper com-
munication sequence u, we say that 7 : E, — L is a consistent time-stamping
of E, by L if for each pair of (not necessarily distinct) processes p,q and for
each ideal I the following holds: if e, € primary,(I), e, € primary,(I) and
7(ep) = T(ey) then e, = e,.

In the protocol of [13], whenever a process p sends a message to g, it first
assigns a time-stamp to the new message from a finite set of labels. Process p
then appends its primary information to the message being sent. Notice that the
current send event will form part of the primary information since it is the latest
p-event in 9, (E,). When ¢ receives the message, it can consistently update its
primary information to reflect the new information received from p.

The two tricky points in the protocol are for p to decide when it is safe to
reuse a time-stamp, and for ¢ to decide whether the information received from
p is really new. In order to solve these problems, the protocol of [13] requires
processes to also maintain additional time-stamps, corresponding to secondary
information. Though we do not need the details of how the protocol works, we
will need to refer to secondary information in the proof of our main theorem.

Secondary information Let I be an ideal. The secondary information of I is
the collection of sets primary(el) for each event e in primary(I). This collection

% In [13], the primary information of an ideal I is defined to include more events than
just latest(I) U unack(I). However, for our purposes, it suffices to treat events in
latest(I) U unack(I) as primary.

929

of sets is denoted secondary(I). As usual, for p € P, secondary,(I) denotes the
set secondary(0p(I)).

In our framework, the protocol of [13] can now be described as follows.

Theorem 4.2. For any B € N, we can construct a deterministic B-bounded
message-passing automaton AP = ({Af}pgp, MB B FB) such that for every
B-bounded proper communication sequence u, AP inductively generates a con-
sistent time-stamping T of E,. Moreover, for each component Af of AB, the
local state of Af at the end of u records the information primary,(E,) and
secondary ,(E,) in terms of the time-stamps assigned by 7.

5 Residues and decomposition

As we mentioned earlier, our strategy to prove our main theorem is to construct
a message-passing automaton A which simulates the behaviour of the minimal
DFA for L, A, = (S, X, 8,9, F), on each complete communication sequence w.
In other words, after reading u, the components in A must be able to decide
whether §(s;,,u) € F. Unfortunately, after reading u each component in A
only has partial information about 0(s;,,u)—the component A, only “knows
about” those events from E, which lie in the p-view 0,(E,). We have to devise
a scheme to recover the state §(s;,,u) from the partial information available
with each process after reading w.

Another complication is that processes can only maintain a finite amount of
information. We need a way of representing arbitrary words in a bounded, finite
way. This can be done by recording for each word w, its “effect” as dictated by the
minimal automaton A4y. We associate with each word w a function f, : S — S,
where S is the set of states of Ay, such that f,(s) = d(s,u). The following
observations follow from the fact that Az, is the minimal DFA recognizing L.

Proposition 5.1. Let u,w € X*. Then:

(i) fuw = fuw o fu, where o denotes function composition.

Clearly the function f,, : § — S corresponding to a word w has a bounded
representation. For an input u, if the components in A could compute the func-
tion f, they would be able to determine whether §(s;,,u) € F—by part (i) of
the preceding proposition, (s, u) = fu(sin). As the following result demon-
strates, for any input wu, it suffices to compute f, for some linearization v of the
MSC M,.

Proposition 5.2. Let L be a reqular MSC language. For complete sequences
u,v € X*, if u ~v then f, = f,.

Proof: Follows from the structural properties of A; described in Lemma 2.2.
O

530

Before proceeding, we need a convention for representing the subsequence of
communication actions generated by a subset of the events in an MSC.

Partial words Let u = ajay...a, be proper and let X C E, be given by
{(il,ail), (iz,aiZ),. . (ik,aik)}, where 71 < i3 < --- < ig. Then, U,[X] denotes
the subsequence a;, a;, - .. a;, (which need not be proper).

The following fact, analogous to standard results in Mazurkiewicz trace the-
ory, will be used several times in our construction. We omit the proof.

Lemma 5.3. Let u be proper and let I, J C E,, be ideals such that I C J. Then
ulJ] ~ u[Iu[J \ I].

Corollary 5.4. Let u be a word and I C I, C --- C I, C E,, be a sequence of

nested ideals. Then u[li] ~ u[li]u[ls \ I1]- - u[l} \ Ix—1].

Returning to our problem, suppose that P consists of m processes {p1,p2, ..., Pm}-
Consider a complete word u. We wish to compute f, for some v ~ u. Suppose
we construct a chain of subsets of processes) = Qo C Q1 C Q2 C - C Q=P
such that for j € {1,2,...,m}, Q; = Q;-1 U {p;}. From Corollary 5.4, we then
have

u = u[dq,, (Eu)] ~ u[dq,(Eu)]u[0q, (Eu) \ 90, (Eu)] - - - u[0q,, (Bu) \ 9q,, , (Eu)]

Observe that 0g; (Ey) \ 0g,_, (£,) is the same as 0y, (Ey) \ 0g,_, (Ey). Thus,
we can rewrite the expression above as

u = u[dq,, (Eu)] ~ ulllu[8p, (Eu) \ 8o (Eu)] - - u[Bp,, (Eu) \ g, _, (Eu)] ($)

The word u[0y; (Ey) \ 0q,_, (E.)] is the portion of u which p; has seen but
which the processes in ()1 have not seen. This is a special case of what we call
a residue.

Residues Let u be proper, I C E, an ideal and p € P a process. R(u,p,I)
denotes the word u[0,(E,) \ I] and is called the residue of u at p with respect
to I. Observe that any residue of the form R(u, p, I) can equivalently be written
R(u,p,0p(Ey,) N I).

Using the notation of residues, we can write the word u[0,, (E.) \ 0g;_, (Eu.)]
as R(u,p;,0q,_, (Ey)). A residue of this form is called a process residue: R(u, p, I)
is a process residue if R(u,p,I) = R(u,p,0p(FE,)) for some P C P. We say that
R(u,p,0p(E,)) is the P-residue of u at p.

Unfortunately, a process residue at p may change due to an action of another
process. For instance, if we extend a word w by an action a = ¢7p, it is clear
that R(u,p, 04(E,)) will not be the same as R(ua, p, 9;(Ey,)) since g will get to
know about more events from d,(u) after receiving the message via the action
a. On the other hand, since p does not move on an action of the form ¢?p, p has
no chance to update its g-residue when the action ¢7p occurs.

However, it turns out that each process can maintain a set of residues based
on its primary information such that these primary residues subsume the process
residues. The key technical fact which makes this possible is the following.

931

Lemma 5.5. For any non-empty ideal I, and p,q € P, the mazimal events in
Op(I) N Oy(I) lie in primary,(I) N primary,(I).

Proof: We show that for each maximal event e in 0,(I) N 9,(I), either e €
latest (0, (1)) N unack(9y(I)) or e € unack(9p(I)) N latest(0y(I)).

First suppose that 0,(I) \ 9;(I) and 9,(I) \ 9p(I) are both nonempty. Let e
be a maximal event in 9,(I) N 9,(I). Suppose e is an r-event, for some r € P.
Since 0p(I)\04(I) and 04(I)\ 9, (I) are both nonempty, it follows that r ¢ {p, ¢}.
The event e must have <-successors in both 9,(I) and 9,(I). However, observe
that any event f can have at most two immediate <-successors—one “internal”
successor within the process and, if f is a send event, one “external” successor
corresponding to the matching receive event.

Thus, the maximal event e must be a send event, with a <, successor
e and a <,y successor ez, corresponding to some s € P. Assume that e, €
04(I) \ Op(I) and es € 9,(I) \ 94(I). Since the r-successor of e is outside 9,(I),
e = max,(9,(I)). So e belongs to latest(0,(I)). On the other hand, e is an un-
acknowledged r!s event in 9y(I). Thus, e € unack,_s(94(I)), which is part of
unack(04(I)).

Symmetrically, if e, € 0,(I) \ 0,(I) and es € 9,(I) \ 9p(I), we find that e
belongs to unack(0p(I)) N latest(0y(I)).

We still have to consider the case when 0,(I) C 04(I) or 9;(I) C 0,(I).
Suppose that 0, (I) C 90,4(I), so that Op(I) NI (I) = 0p(I). Let e = max, (9, (I)).
Clearly, 0,(I) = el. Consider any r-event f in 0,(I), where r ¢ {p,q}. Since
f < e, f cannot be maximal in 9, (I). Thus, the only maximal event in 0,([) is
the p-event e. Since e has a successor in J,([), e must be a send event and is
hence in unack(0p(I)). Thus, e € unack(0y(I)) N latest(9,(I)). Symmetrically,
if 94(I) C 0p(I), the unique maximal event e in 9,(I) belongs to latest(9,(I)) N
unack(0,(I)). O

Let us call R(u,p,I) a primary residue if I is of the form X | for some subset
X C primary,(E,). Clearly, for p,q € P, R(u,p,d;(E,)), can be rewritten as
R(u,p,0p(Ey)NOy(Ey)). So, by the previous result the g-residue R(u, p, 0;(Ey))
is a primary residue R(u,p, X]) for some X C primary(0,(E,)). Further, the
set X can be effectively computed from the primary information of p and ¢. In
fact, it turns out that all process residues can be effectively described in terms
of primary residues.

We begin with a simple observation, whose proof we omit.

Proposition 5.6. Let u € X* be proper and p € P. For ideals I,J C E,, let
R(u,p,I) and R(u,p,J) be primary residues such that R(u,p,I) = R(u,p, X))
and R(u,p,J) = R(u,p, X;{) for X;,X; C primary,(E,). Then R(u,p,I U J)
is also a primary residue and R(u,p,IUJ) = R(u,p, (X; U X)]).

Our claim that all process residues can be effectively described in terms of
primary residues can then be formulated as follows.

932

Lemma 5.7. Let u € X* be proper, p € P and Q@ C P. Then R(u,p,0g(Ey))
is a primary residue R(u,p, X{) for p. Further, the set X C primary,(E,) can
be effectively computed from the information in qu{p}uQ primary,(E,).

Proof: Let @ = {q,q,.-.,q}- We can rewrite R(u,p,0q(E,)) as
R(u,p, Uie[l..k] 0q: (Ey))- From Lemma 5.5 it follows that for each i € {1,2,...,k},
p can compute a set X; C primary,,(E,) from the information in primary,, (£,)U
primary, (E,) such that R(u,p, 0y, (Ey)) = R(u,p, X;l). From Proposition 5.6,
it then follows that R(u, p, 0g(Ey)) = R(u,p, Uz‘e{l,Z,...,k} 0g: (Ey)) = R(u,p, X 1)

Where X = Ui6{1,2,...,k} Xl O

6 Updating residues

We now describe how, while reading a word u, each process p maintains the
functions f,, for each primary residue w of u at p.

Initially, at the empty word w = &, every primary residue from
{R(u, p, X 1) }pep, x Cprimary(a,(E,)) 1S just the empty word e. So, all primary
residues are represented by the identity function Id : {s — s}.

Let v € X* and a € Y. Assume inductively that every p € P has computed
at the end of w the function f, for each primary residue w = R(u,p, X]),
where X C primary(0p(E,)). We want to compute for each p the corresponding
functions after the word ua.

Suppose a is of the form plg and X C primary,(Ey.). Let e, denote the
event corresponding to the new action a. If e, € X, then R(ua,p, X]) = ¢, so
we represent the residue by the identity function Id. On the other hand, if a ¢ X,
then X C primary,(E,), so we already have a residue of the form R(u,p, X).
We then set R(ua,p, X]) to be f, o R(u,p, X|). For r # p, the primary residues
are unchanged when going from u to ua.

The case where a is of the form p?q is more interesting. As before, the primary
residues are unchanged for r» # p. We show how to calculate all the new primary
residues for p using the information obtained from ¢. This will use the following
result.

Lemma 6.1. Let u € X* be proper. Let p,q € P and e € E, such that e €
primary ,(E,) but e ¢ 0,(Ey). Then R(u,p,el) is a primary residue R(u,p, X|)
for p. Further, the set X C primary(0p,(Ey)) can be effectively computed from
the information in primary,(E,) and secondary,(E,).

Proof: Let e be an r-event, r € P and let J = 0,(E,) Uel. By construction,
max,(J) = max,(E,). On the other hand, max,(J) = e, since e is an r-event
and we assumed that e ¢ 0p(E,).

By Lemma 5.5, the maximal events in 9,(J) N 0,(J) lie in primary,(J) N
primary,.(J). Since max, (J) = max,(E,), primary,(J) = primary,(E,). On the
other hand, primary,.(J) = primary(el), which is a subset of secondary,(E.),
since e € primary, (E,).

933

Thus, the set of maximal events in 0, (J)N0, (J), which is the same as 9,(E,)N
el, is contained in primary,(E,) N primary(el). These events are available in
primary,(E,) U secondary,(Ey). O

Suppose that X C primary,(Ey.). Suppose that X = {z1,22,...,7x}.

We first argue that for each x; € X, R(u,p, z;}) is a primary residue R(u, p, Y;l),
where Y; C primary,(Ey). If z; € primary,(E,), then R(u,p,z;]) is already a
primary residue, so we can set Y; = {z;}. If, however, x; ¢ primary,(E,), then
x; must have been contributed from primary,(u) through the message received
at the action a. We have x; € primary,(E,) but z; ¢ 0,(E,). Thus, appealing
to Lemma 6.1, we can identify Y; C primary,(E,) such that R(u,p, {z;}]) =
R(u,p,Yil).

Since X = U,eq12,... k) ©i» We can appeal to Proposition 5.6 to argue that
R(u,p,X|) is the primary residue R(u,p,Y]) where ¥ = Ui€{1727___7k} Y;. We
can then set R(ua,p, X|) = fo o R(u,p,Y]).

Thus, after each action that is performed, the process performing the action
can effectively update its primary residues using the primary and secondary
information available to it.

7 A deterministic message-passing automaton for L

We can now construct a deterministic B-bounded message-passing automaton
corresponding to a given regular MSC language L. We first observe that there
is a bound B € N such that every word in L is B-bounded.

Proposition 7.1. Let L C X* be a regular MSC language. There is an effec-
tively computable bound B € N such that every word in L is B-bounded.

Proof: Let Ay, = (S,%,sin,0,F) be the minimal DFA for L. Recall that we
can associate with each live state in S and each channel (p,q) € Chan a channel-
capacity function Ks : Chan — N. Let B be the maximum value of Ks((p,q))
over all live states s and all channels (p, q).

We know that for any word u in L, the run of A; on wu visits only live
states. Thus, while processing u, no channel’s capacity ever exceeds the bound B.
Moreover, since L is ~-closed, every interleaving v of M, belongs to L and the run
of Ar, on each such interleaving also respects this bound. From Proposition 4.1,
we can conclude that in every ideal I C E,, for any pair p, ¢ of processes, the
set unacky_q(I) contains at most B-events. Thus, u is B-bounded. O

We now construct a B-bounded message-passing automaton A =
({Ap}tper, M, sin, F) for L, where B is the bound derived from the minimal
DFA Ay for L as described in the preceding proposition.

Recall that AP = ({AD},ep, MP, s, FP) is the time-stamping automaton
for B-bounded computations, where the state of each component records the
primary and secondary information of the component in terms of a consistent

set of time-stamps.

534

— The message alphabet of A is the alphabet M used by the time-stamping
automaton AP,

— In A, a typical state of a component A, is a pair (sp,sg) where sp is a
state drawn from Af and sg is the collection {fx : S — S}Xgpr,-mwyp(Eu)
of primary residues of A, at the end of a word w.

— The local transition relation —, of each component 4, is as follows:

e For a of the form plg, the tuple ((sB, sr),a,m, (s, sl)) € —p provided
(sB,a,m,sg) € —)5 and the residues in s, are derived from the residues
in sp using the time-stamping information in sp, as described in Sec-
tion 6.

Moreover, according to the primary information in spg, it should be the
case that |unack,—q(Ey)| < B for the word u read so far. Otherwise,
this send action is disabled.

e For a of the form p?q, the tuple ((sp, sg),a,m, (s, s)) € —p provided
(sB,a,m,sy) € —)5 and the residues in s, are derived from the residues
in sg using the time-stamping information in sp and the message m, as
described in Section 6.

— In the initial state of A, the local state of each component A, is of the form
(8% in> Sh.in) Where s, is the initial state of A and s}, ; records each
residue to be the identity function Id.

— The global state {(s%,s%)}pep belongs to the set F of final states if the
primary residues stored in the global state record that §(s;,,u) € F for the
word u read so far. (This is achieved by evaluating the expression ({) in
Section 5.)

From the analysis of the previous section, it is clear that A accepts precisely
the language L. The last clause in the transition relation —, for send actions
ensures that A will not admit a run in which unack,—,(E,) grows beyond B
events for any input v and any pair of processes p,q. This ensures that every
reachable configuration of A is B-bounded. Finally, we observe that A4 is de-
terministic because the time-stamping automaton A® is deterministic and the
update procedure for residues described in Section 6 is also deterministic.

We have thus succeeded in proving the main result we were after (The-
orem 3.2)—namely, that for every regular MSC language L over X, there is
a deterministic B-bounded message-passing automaton A4 over X such that
L(A)=L.

We conclude by providing an upper bound for the size of A, which can be
computed by estimating the number of bits required to record the time-stamps
and residues which form the local state of a process.

Proposition 7.2. Let n be the number of processes in the system, m be the
number of states of the minimal DFA Ay, for L and B the bound computed from
the channel-capacity functions of Ap. Then, the number of local states of each

. 0(Bn?)
component A, is at most 22 mlogm)

935

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Alur, R., Holzmann, G.J., and Peled, D.: An analyzer for message sequence charts.

Software Concepts and Tools, 17(2) (1996) 70-77.

. Alur, R., and Yannakakis, M.: Model checking of message sequence charts. Proc.

CONCUR’99, LNCS 1664, Springer Verlag (1999) 114-129.

Ben-Abdallah, H., and Leue, S.: Syntactic detection of process divergence and non-
local choice in message sequence charts. Proc. TACAS’97, LNCS 1217, Springer-
Verlag (1997) 259-274.

Booch, G., Jacobson, I., and Rumbaugh, J.: Unified Modeling Language User
Guide. Addison Wesley (1997).

. Damm, W., and Harel, D.: LCS’s: Breathing life into message sequence charts.

Proc. FMOODS’99, Kluwer Academic Publishers (1999) 293-312.

Diekert, V., and Rozenberg, G. (Eds.): The book of traces. World Scientific (1995).
Harel, D., and Gery, E.: Executable object modeling with statecharts. IEEE Com-
puter, July 1997 (1997) 31-42.

Henriksen, J.G., Mukund, M., Narayan Kumar K., and Thiagarajan, P.S.: On
message sequence graphs and finitely generated regular MSC languages, to appear
in Proc. ICALP 2000, LNCS, Springer-Verlag (2000).

Henriksen, J.G., Mukund, M., Narayan Kumar K., and Thiagarajan, P.S.: Regular
collections of message sequence charts, to appear in Proc. MFCS 2000, LNCS,
Springer-Verlag (2000).

Ladkin, P.B., and Leue, S.: Interpreting message flow graphs. Formal Aspects of
Computing 7(5) (1975) 473-509.

Levin, V., and Peled, D.: Verification of message sequence charts via template
matching. Proc. TAPSOFT’97, LNCS 1214, Springer-Verlag (1997) 652-666.
Mauw, S., and Reniers, M.A.: High-level message sequence charts, Proc. SDL 97,
Elsevier (1997) 291-306.

Mukund, M., Narayan Kumar, K., and Sohoni, M.: Keeping track of the lat-
est gossip in message-passing systems. Proc. Structures in Concurrency Theory
(STRICT), Workshops in Computing Series, Springer-Verlag (1995) 249-263.
Muscholl, A.: Matching Specifications for Message Sequence Charts. Proc. FOS-
SACS’99, LNCS 1578, Springer-Verlag (1999) 273-287.

Muscholl, A., Peled, D., and Su, Z.: Deciding properties for message sequence
charts. Proc. FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226-242.
Rudolph, E., Graubmann, P.; and Grabowski, J.: Tutorial on message sequence
charts. In Computer Networks and ISDN Systems—SDL and MSC, Volume 28
(1996).

Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.), Handbook
of Theoretical Computer Science, Volume B, North-Holland, Amsterdam (1990)
133-191.

Thomas, W.: Languages, Automata, and Logic. In Rozenberg, G., and Salomaa,
A. (Eds.), Handbook of Formal Language Theory, Vol. III, Springer-Verlag, New
York (1997) 389-455.

Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O.—Inf. Théor. et
Appl., 21 (1987) 99-135.

