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Abstrat. Message sequene harts (MSCs) are an appealing visual for-

malism often used to apture system requirements in the early stages of

design. An important question onerning MSCs is the following: how

does one onvert requirements represented by MSCs into state-based

spei�ations? A �rst step in this diretion was the de�nition in [9℄

of regular olletions of MSCs, together with a haraterization of this

lass in terms of �nite-state distributed devies alled message-passing

automata. These automata are, in general, nondeterministi. In this pa-

per, we strengthen this onnetion and desribe how to diretly asso-

iate a deterministi message-passing automaton with eah regular ol-

letion of MSCs. Sine real life distributed protools are deterministi,

our result is a more omprehensive solution to the synthesis problem

for MSCs. Our result an be viewed as an extension of Zielonka's theo-

rem for Mazurkiewiz trae languages [6, 19℄ to the setting of �nite-state

message-passing systems.

1 Introdution

Message sequene harts (MSCs) are an appealing visual formalism often used to

apture system requirements in the early stages of design. They are partiularly

suited for desribing senarios for distributed teleommuniation software [16℄.

They have also been alled timing sequene diagrams, message ow diagrams

and objet interation diagrams and are used in a number of software engineer-

ing methodologies [4, 7, 16℄. In its basi form, an MSC depits the exhange of

messages between the proesses of a distributed system along a single partially-

ordered exeution. A olletion of MSCs is used to apture the senarios that a

designer might want the system to exhibit (or avoid).

Given the requirements in the form of a olletion of MSCs, one an hope

to do formal analysis and disover errors at an early stage. A standard way to

?
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generate a olletion of MSCs is to use a High Level Message Sequene Chart

(HMSC) [12℄. An HMSC is a �nite direted graph in whih eah node is labelled,

in turn, by an HMSC. The HMSCs labelling the verties may not refer to eah

other. The olletion of MSCs represented by an HMSC onsists of all MSCs

obtained by traing a path in the HMSC from an initial vertex to a terminal

vertex and onatenating the MSCs that are enountered along the path.

In order to analyze the olletion of MSCs represented by an HMSC, one de-

sirable property is that these MSCs orrespond to the behaviour of a �nite-state

system. This property would be violated if the spei�ation were to permit an

unbounded number of messages to aumulate in a hannel. A suÆient ondi-

tion to rule out suh divergene in an HMSC is desribed in [3℄. Subsequently, it

has been observed that HMSCs an also violate the �nite-state property by ex-

hibiting nonregular behaviour over ausally independent bounded hannels [2℄.

To remedy this, a stronger riterion is established in [2℄ whih suÆes to ensure

that the behaviour desribed by an HMSC an be implemented by a (global)

�nite-state system. This leads to a more general question of when a olletion of

MSCs should be alled regular. A robust notion of regularity has been proposed

in [9℄. As shown in [8℄, this notion stritly subsumes the �nite-state olletions

generated by HMSCs. It turns out that the olletions de�ned by HMSCs or-

respond to the lass of �nitely-generated regular olletions of MSCs.

One of the main ontributions of [9℄ is a haraterization of regular olletions

of MSCs in terms of (distributed) �nite-state devies alled message-passing au-

tomata. This addresses the important synthesis problem for MSCs, �rst raised

in [5℄; namely, how to onvert requirements as spei�ed by MSCs into distributed,

state-based spei�ations. The message-passing automata assoiated with regu-

lar olletions of MSCs in [9℄ are, in general, nondeterministi. In this respet

the solution to the synthesis problem in [9℄ is not ompletely satisfatory, sine

real life distributed protools are normally deterministi.

In this paper, we strengthen the result of [9℄ by providing a tehnique for

deomposing a sequential automaton aepting a regular olletion of MSCs

into a deterministi message-passing automaton. Our result an be viewed as the

message-passing analogue of the elebrated theorem of Zielonka from Mazurkie-

wiz trae theory establishing that regular trae languages preisely orrespond

to the trae languages aepted by deterministi asynhronous automata [19℄.

In related work, a number of studies are available whih are onerned with

individual MSCs in terms of their semantis and properties [1, 10℄. A variety

of algorithms have been developed for HMSCs in the literature|for instane,

pattern mathing [11, 14, 15℄ and detetion of proess divergene and non-loal

hoie [3℄. A systemati aount of the various model-heking problems assoi-

ated with HMSCs and their omplexities is given in [2℄.

The paper is organized as follows. In the next setion we introdue MSCs and

regular MSC languages. In Setion 3 we de�ne message-passing automata and

state the problem. Setion 4 desribes a time-stamping result for message-passing

systems from [13℄ whih is ruial for proving our main result. In Setion 5 we

then introdue the notion of residues and show how the ability to loally ompute
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residues would solve the deomposition problem. The next setion desribes

a proedure for loally updating residues. This proedure is formalized as a

message-passing automaton in Setion 7.

2 Regular MSC Languages

Let P = fp; q; r; : : :g be a �nite set of proesses whih ommuniate with eah

other through messages. We assume that messages are never inserted, lost or

modi�ed|that is, the ommuniation medium is reliable. However, there may

be an arbitrary delay between the sending of a message and its reeipt. We

assume that messages are delivered in the order in whih they are sent|in other

words, the bu�ers between proesses behave in a FIFO manner.

For eah proess p 2 P , we �x �

p

= fp!q j p 6= qg[fp?q j p 6= qg to be the set

of ommuniation ations in whih p partiipates. The ation p!q is to be read

as p sends to q and the ation p?q is to be read as p reeives from q. We shall

not be onerned with the atual messages that are sent and reeived|we are

primarily interested in the pattern of ommuniation between agents. We will

also not deal with the internal ations of the agents. We set � =

S

p2P

�

p

and

let a; b range over �.

For a 2 � and u 2 �

�

, #

a

(u) denotes the number of ourrenes of a in

u. A word u 2 �

�

is a proper ommuniation sequene of the proesses if for

eah pre�x v of u and eah pair of proesses p; q 2 P , #

p!q

(v) � #

q?p

(v)|

that is, at any point in the omputation, at most as many messages have been

reeived at q from p as have been sent from p to q. We say that u is a omplete

ommuniation sequene if u is a proper ommuniation sequene and for eah

pair of proesses p; q 2 P , #

p!q

(u) = #

q?p

(u)|in other words, at the end of u,

all messages that have been sent have also been reeived. We shall often say that

u is proper (respetively, omplete) to mean that u is a proper (respetively,

omplete) ommuniation sequene over �.

Let u = a

0

a

1

: : : a

n

2 �

�

be proper. We an assoiate a natural �-labelled

partial order M

u

= (E

u

;�; �) with u where:

{ E = f(i; a

i

) j i 2 f1; 2; : : : ; ng.

{ �((i; a

i

)) = a

i

. (If �(e) 2 �

p

, we say that e is a p-event.)

{ For p; q 2 P , we de�ne relations <

pq

� E �E as follows:

� For p 2 P , (i; a

i

) <

pp

(j; a

j

) if a

i

; a

j

2 �

p

, i < j and there is no i < k < j

suh that a

k

2 �

p

.

� For p; q 2 P , p 6= q, (i; a

i

) <

pq

(j; a

j

) if a

i

= p!q, a

j

= q?p and the

sets f(k; a

k

) j k < i; a

k

= p!qg and f(k; a

k

) j k < j; a

k

= q?pg are of

the same ardinality. Sine messages are assumed to be read in FIFO

fashion, (i; a

i

) <

pq

(j; a

j

) implies that the message read at the reeive

event (j; a

j

) is the one sent at the send event (i; a

i

).

{ The partial order� is the reexive, transitive losure of the relations

S

p;q2P

<

pq

.
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We shall all the struture M

u

generated from a omplete ommuniation

sequene u a Message Sequene Chart (MSC).

1

The partial order between events

in M

u

is a more faithful representation of the ausality between events in u than

the sequential order indued by writing u as a string.

Heneforth, we shall impliitly assoiate with eah proper word u the or-

responding struture M

u

= (E

u

;�; �). In partiular, E

u

always refers to the

set of events assoiated with the struture M

u

generated from a proper word u.

Abusing terminology, we refer to M

u

as an MSC even if u is not omplete.

Let M

u

= (E

u

;�; �) be an MSC. For e 2 E

u

, e# denotes, as usual, the set

ff 2 E

u

j f � eg. For X � E

u

, X# is de�ned to be

S

e2X

e#.

We de�ne a ontext-sensitive independene relation I � �

�

� (� � �) as

follows: (u; a; b) 2 I provided that u is proper, a 2 �

p

and b 2 �

q

for distint

proesses p and q, and, further, if a = p!q and b = q?p then #

a

(u) > #

b

(u).

Observe that if (u; a; b) 2 I then (u; b; a) 2 I .

Let �

Æ

= fu 2 �

�

j u is ompleteg. We de�ne � � �

Æ

��

Æ

to be the least

equivalene relation suh that if u = u

1

abu

2

and u

0

= u

1

bau

2

and (u

1

; a; b) 2 I

then u � u

0

. It is important to note that � is de�ned over �

Æ

(and not �

�

).

The following simple observation shows that eah MSC orresponds to a

�-equivalene lasses of omplete ommuniation sequenes over �.

Proposition 2.1. Let u; v 2 �

Æ

. Then, v is a linearization of M

u

i� u � v.

We de�ne L � �

�

to be a MSC language if every member of L is omplete

and L is �-losed (that is, for eah u 2 L, if u 2 L and u � v then v 2 L.) We

say that an MSC language L is a regular if L is a regular subset of �

�

.

Given a regular subset L � �

�

, we an deide whether L is a regular MSC

language. We say that a state s in a �nite-state automaton is live if there is a

path from s to a �nal state. We then have the following result from [9℄.

Lemma 2.2. Let A = (S;�; s

in

; Æ; F ) be the minimal DFA representing L. Let

Chan = f(p; q) j p; q 2 P ; p 6= qg denote the set of hannels. L is a regular

MSC language i� we an assoiate with eah live state s 2 S, a hannel-apaity

funtion K

s

: Chan ! N whih satis�es the following onditions.

(i) If s 2 fs

in

g [ F then K

s

() = 0 for every  2 Ch.

(ii) If s; s

0

are live states and Æ(s; p!q) = s

0

then K

s

0

((p; q)) = K

s

((p; q))+1 and

K

s

0

() = K

s

() for every  6= (p; q).

(iii) If s; s

0

are live states Æ(s; q?p) = s

0

then K

s

((p; q)) > 0, K

s

0

((p; q)) =

K

s

((p; q))�1 and K

s

0

() = K

s

() for every  6= (p; q).

(iv) Suppose Æ(s; a) = s

1

and Æ(s

1

; b) = s

2

with a 2 �

p

and b 2 �

q

, p 6= q. If it

is not the ase that a = p!q and b = q?p, or it is the ase that K

s

((p; q)) > 0,

there exists s

0

1

suh that Æ(s; b) = s

0

1

and Æ(s

0

1

; a) = s

2

.

1

Our de�nition aptures the standard partial-order semantis assoiated with MSCs

[1, 16℄. See [9℄ for an equivalent de�nition of MSCs in terms of labelled partial orders.
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Observe that the onditions desribed in the lemma an be heked in time

linear in the size of Æ.

Item (iv) of the lemma has useful onsequenes. As usual, we extend Æ to

words and let Æ(s

in

; u) denote the (unique) state reahed by A on reading an

input u. Let u be a proper word and let a; b be ommuniation ations suh that

(u; a; b) belongs to the ontext-sensitive independene relation de�ned earlier.

Item (iv) guarantees that Æ(s

in

; uab) = Æ(s

in

; uba). From this, we an onlude

that if v; w are omplete words suh that v � w, then Æ(s

in

; v) = Æ(s

in

; w).

3 Message-passing automata

We now de�ne distributed automata whih aept MSC languages.

Message-passing automaton Amessage-passing automaton over� is a stru-

ture A = (fA

p

g

p2P

;M; s

in

;F) where

{ M is a �nite alphabet of messages.

{ Eah omponent A

p

is of the form (S

p

;!

p

) where

� S

p

is a �nite set of p-loal states.

� !

p

� (S

p

��

p

�M� S

p

) is the p-loal transition relation.

{ s

in

2

Q

p2P

S

p

is the global initial state.

{ F �

Q

p2P

S

p

is the set of global �nal states.

The loal transition relation!

p

spei�es how the proess p sends and reeives

messages. The transition (s; p!q;m; s

0

) spei�es that when p is in the state s, it

an send the messagem to q (by exeuting the ommuniation ation p!q) and go

to the state s

0

. The messagem is, as a result, appended to the queue of messages

in the hannel (p; q). Similarly, the transition (s; p?q;m; s

0

) signi�es that at the

state s, the proess p an reeive the message m from q by exeuting the ation

p?q and go to the state s

0

. The messagem is removed from the head of the queue

of messages in the hannel (q; p).

We say that A is deterministi if the loal transition relation !

p

for eah

omponent A

p

satis�es the following onditions:

{ (s; p!q;m

1

; s

0

1

) 2 !

p

and (s; p!q;m

2

; s

0

2

) 2 !

p

imply m

1

= m

2

and s

0

1

= s

0

2

.

{ (s; p?q;m; s

0

1

) 2 !

p

and (s; p?q;m; s

0

2

) 2 !

p

imply s

0

1

= s

0

2

.

In other words, when a omponent A

p

of a deterministi automaton A ex-

eutes a send ation, the urrent state of A

p

uniquely determines the message

sent as well as the new state of A

p

, and when A

p

exeutes a reeive ation,

the urrent state of A

p

and the nature of the message at the head of the queue

uniquely determine the new state of A

p

.

The set of global states of A is given by

Q

p2P

S

p

. For a global state s, we let

s

p

denote the pth omponent of s. A on�guration is a pair (s; �) where s is a

global state and � : Chan !M

�

is the hannel state whih spei�es the queue

of messages urrently residing in eah hannel . The initial on�guration of A
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is (s

in

; �

"

) where �

"

() is the empty string " for every hannel . The set of �nal

on�gurations of A is F � f�

"

g.

We now de�ne the set of reahable on�gurations Conf

A

and the global

transition relation ) � Conf

A

�� � Conf

A

indutively as follows:

{ (s

in

; �

"

) 2 Conf

A

.

{ Suppose (s; �) 2 Conf

A

, (s

0

; �

0

) is a on�guration and (s

p

; p!q;m; s

0

p

) 2 !

p

suh that the following onditions are satis�ed:

� r 6= p implies s

r

= s

0

r

for eah r 2 P .

� �

0

((p; q)) = �((p; q)) �m and for  6= (p; q), �

0

() = �().

Then (s; �)

p!q

=) (s

0

; �

0

) and (s

0

; �

0

) 2 Conf

A

.

{ Suppose (s; �) 2 Conf

A

, (s

0

; �

0

) is a on�guration and (s

p

; p?q;m; s

0

p

) 2 !

p

suh that the following onditions are satis�ed:

� r 6= p implies s

r

= s

0

r

for eah r 2 P .

� �((q; p)) = m � �

0

((q; p)) and for every hannel  6= (q; p), �

0

() = �().

Then (s; �)

p?q

=) (s

0

; �

0

) and (s

0

; �

0

) 2 Conf

A

.

Let u 2 �

�

. A run of A on u is a map � : Pre(u) ! Conf

A

(where Pre(u)

is the set of pre�xes of u) suh that �(") = (s

in

; �

"

) and for eah �a 2 Pre(u),

�(�)

a

=) �(�a). The run � is aepting if �(u) is a �nal on�guration. Let L(A) =

fu j A has an aepting run on ug. It is easy to see that every member of L(A) is

omplete and L(A) is �-losed|that is, u 2 L(A) and u � u

0

implies u

0

2 L(A).

Unfortunately, L(A) need not be regular. Consider, for instane, a message-

passing automaton for the anonial produer-onsumer system in whih the

produer p sends an arbitrary number of messages to the onsumer q. Sine we

an reorder all the p!q ations to be performed before all the q?p ations, the

queue in hannel (p; q) is unbounded. Hene, the reahable on�gurations of this

system are not bounded and the orresponding language is not regular.

For B 2 N, we say that a on�guration (s; �) of the message-passing au-

tomaton A is B-bounded if for every hannel  2 Chan , it is the ase that

j�()j � B. We say that A is a B-bounded automaton if every reahable on�g-

uration (s; �) 2 Conf

A

is B-bounded.

Proposition 3.1. Let A be a B-bounded automaton over �. Then L(A) is a

regular MSC language.

This result follows easily from the de�nitions. Our goal is to prove the on-

verse, whih may be stated as follows.

Theorem 3.2. Let L be a regular MSC language over �. Then, there is a deter-

ministi B-bounded message-passing automaton A over � suh that L(A) = L.

Our strategy to prove this result is as follows. For a regular MSC language

L, we onsider the minimal DFA A

L

for L. We onstrut a message-passing

automaton A whih simulates the behaviour of A

L

on eah omplete word u 2

�

�

. The ath is that no single omponent of A is guaranteed to see all of u.
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Thus, from the partial information available in eah omponent about u, we

have to reonstrut the behaviour of A

L

on all of u. To ahieve this, we need to

time-stamp events so that omponents an keep trak of eah others' information

about the omputation.

4 Bounded time-stamps

Partial omputations Let u 2 �

�

be proper. A set of events I � E

u

is alled

an (order) ideal if I is losed with respet to �|that is, e 2 I and f � e implies

f 2 I as well.

Ideals denote onsistent partial omputations of u|notie that any lineariza-

tion of an ideal forms a proper ommuniation sequene.

p-views For an ideal I , the �-maximum p-event in I is denoted max

p

(I),

provided #

�

p

(I) > 0. The p-view of I , �

p

(I), is the ideal max

p

(I)#. Thus,

�

p

(I) onsists of all events in I whih p an \see". (By onvention, if max

p

(I) is

unde�ned|that is, if there is no p-event in I|the p-view �

p

(I) is empty.) For

P � P , we use �

P

(I) to denote

S

p2P

�

p

(I).

Latest information Let I � E

u

be an ideal and p; q 2 P . Then latest(I)

denotes the set of events fmax

p

(I) j p 2 Pg. For p 2 P , we let latest

p

(I) denote

the set latest(�

p

(I)). A typial event in latest

p

(I) is of the form max

q

(�

p

(I)) and

denotes the �-maximum q-event in �

p

(I). This is the latest q-event in I that p

knows about. For onveniene, we denote this event latest

p q

(I). (As usual, if

there is no q-event in �

p

(I), the quantity latest

p q

(I) is unde�ned.)

It is lear that for q 6= p, latest

p q

(I) will always orrespond to a send

ation from �

q

. However latest

p q

(I) need not be of the form q!p; the latest

information that p has about q in I may have been obtained indiretly.

Message aknowledgments Let I � E

u

be an ideal and e 2 I an event of

the form p!q. Then, e is said to have been aknowledged in I if the orrespond-

ing reeive event f suh that e <

pq

f exists and, moreover, belongs to �

p

(I).

Otherwise, e is said to be unaknowledged in I .

Notie that it is not enough for a message to have been reeived in I to deem

it to be aknowledged. We demand that the event orresponding to the reeipt

of the message be \visible" to the sending proess.

For an ideal I and a pair of proesses p; q, let unak

p!q

(I) be the set of

unaknowledged p!q events in I .

B-bounded omputations Let u 2 �

�

be proper and let M

u

= (E

u

;�; �).

We say that u is B-bounded, for B 2 N, if for every pair of proesses p; q and

for every ideal I � E, unak

p!q

(I) ontains at most B events.

The following result is immediate.

Proposition 4.1. Let u 2 �

�

be proper. The word u is B-bounded i� for every

linearization v of M

u

, for every pre�x w of v and for every pair of proesses p; q,

#

p!q

(w) �#

q?p

(w) � B.
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It is easy to see that during the ourse of a B-bounded omputation, none of

the message bu�ers ever ontains more than B undelivered messages, regardless

of how the events are sequentialized. Thus, if eah omponent A

p

of a message-

passing automaton is able to keep trak of the sets funak

p!q

(E

u

)g

q2P

for

eah word u, this information an be used to inhibit sending messages along

hannels whih are potentially saturated. This would provide a mehanism for

onstraining an arbitrary message-passing automaton to be B-bounded.

Primary information Let I � E be an ideal. The primary information of I ,

primary(I), onsists of the following events in I :

{ The set latest(I) = fmax

p

(I) j p 2 Pg.

{ The olletion of sets unak(I) = funak

p!q

(I) j p; q 2 Pg.

For p 2 P , we denote primary(�

p

(I)) by primary

p

(I). Thus, primary

p

(I)

reets the primary information of p in I . Observe that for B-bounded ompu-

tations, the number of events in primary(I) is bounded.

In [13℄, a protool is presented for proesses to keep trak of their primary in-

formation during the ourse of an arbitrary omputation.

2

This protool involves

appending a bounded amount of information to eah message in the underly-

ing omputation, provided the omputation is B-bounded. To ensure that the

message overhead is bounded, the proesses use a distributed time-stamping

mehanism whih onsistently assigns \names" to events using a bounded set of

labels.

Consistent time-stamping Let L be a �nite set of labels. For a proper om-

muniation sequene u, we say that � : E

u

! L is a onsistent time-stamping

of E

u

by L if for eah pair of (not neessarily distint) proesses p; q and for

eah ideal I the following holds: if e

p

2 primary

p

(I), e

q

2 primary

q

(I) and

�(e

p

) = �(e

q

) then e

p

= e

q

.

In the protool of [13℄, whenever a proess p sends a message to q, it �rst

assigns a time-stamp to the new message from a �nite set of labels. Proess p

then appends its primary information to the message being sent. Notie that the

urrent send event will form part of the primary information sine it is the latest

p-event in �

p

(E

u

). When q reeives the message, it an onsistently update its

primary information to reet the new information reeived from p.

The two triky points in the protool are for p to deide when it is safe to

reuse a time-stamp, and for q to deide whether the information reeived from

p is really new. In order to solve these problems, the protool of [13℄ requires

proesses to also maintain additional time-stamps, orresponding to seondary

information. Though we do not need the details of how the protool works, we

will need to refer to seondary information in the proof of our main theorem.

Seondary information Let I be an ideal. The seondary information of I is

the olletion of sets primary(e#) for eah event e in primary(I). This olletion

2

In [13℄, the primary information of an ideal I is de�ned to inlude more events than

just latest (I) [ unak (I). However, for our purposes, it suÆes to treat events in

latest (I) [ unak(I) as primary.
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of sets is denoted seondary(I). As usual, for p 2 P , seondary

p

(I) denotes the

set seondary(�

p

(I)).

In our framework, the protool of [13℄ an now be desribed as follows.

Theorem 4.2. For any B 2 N, we an onstrut a deterministi B-bounded

message-passing automaton A

B

= (fA

B

p

g

p2P

;M

B

; s

B

in

;F

B

) suh that for every

B-bounded proper ommuniation sequene u, A

B

indutively generates a on-

sistent time-stamping � of E

u

. Moreover, for eah omponent A

B

p

of A

B

, the

loal state of A

B

p

at the end of u reords the information primary

p

(E

u

) and

seondary

p

(E

u

) in terms of the time-stamps assigned by � .

5 Residues and deomposition

As we mentioned earlier, our strategy to prove our main theorem is to onstrut

a message-passing automaton A whih simulates the behaviour of the minimal

DFA for L, A

L

= (S;�; s

in

; Æ; F ), on eah omplete ommuniation sequene u.

In other words, after reading u, the omponents in A must be able to deide

whether Æ(s

in

; u) 2 F . Unfortunately, after reading u eah omponent in A

only has partial information about Æ(s

in

; u)|the omponent A

p

only \knows

about" those events from E

u

whih lie in the p-view �

p

(E

u

). We have to devise

a sheme to reover the state Æ(s

in

; u) from the partial information available

with eah proess after reading u.

Another ompliation is that proesses an only maintain a �nite amount of

information. We need a way of representing arbitrary words in a bounded, �nite

way. This an be done by reording for eah word w, its \e�et" as ditated by the

minimal automaton A

L

. We assoiate with eah word u a funtion f

u

: S ! S,

where S is the set of states of A

L

, suh that f

u

(s) = Æ(s; u). The following

observations follow from the fat that A

L

is the minimal DFA reognizing L.

Proposition 5.1. Let u;w 2 �

�

. Then:

(i) Æ(s

in

; u) = f

u

(s

in

).

(ii) f

uw

= f

w

Æ f

u

, where Æ denotes funtion omposition.

Clearly the funtion f

w

: S ! S orresponding to a word w has a bounded

representation. For an input u, if the omponents in A ould ompute the fun-

tion f

u

they would be able to determine whether Æ(s

in

; u) 2 F|by part (i) of

the preeding proposition, Æ(s

in

; u) = f

u

(s

in

). As the following result demon-

strates, for any input u, it suÆes to ompute f

v

for some linearization v of the

MSC M

u

.

Proposition 5.2. Let

^

L be a regular MSC language. For omplete sequenes

u; v 2 �

�

, if u � v then f

u

= f

v

.

Proof: Follows from the strutural properties of A

L

desribed in Lemma 2.2.

2
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Before proeeding, we need a onvention for representing the subsequene of

ommuniation ations generated by a subset of the events in an MSC.

Partial words Let u = a

1

a

2

: : : a

n

be proper and let X � E

u

be given by

f(i

1

; a

i

1

); (i

2

; a

i

2

); : : : ; (i

k

; a

i

k

)g, where i

1

< i

2

< � � � < i

k

. Then, u[X ℄ denotes

the subsequene a

i

1

a

i

2

: : : a

i

k

(whih need not be proper).

The following fat, analogous to standard results in Mazurkiewiz trae the-

ory, will be used several times in our onstrution. We omit the proof.

Lemma 5.3. Let u be proper and let I; J � E

u

be ideals suh that I � J . Then

u[J ℄ � u[I ℄u[J n I ℄.

Corollary 5.4. Let u be a word and I

1

� I

2

� � � � � I

k

� E

u

be a sequene of

nested ideals. Then u[I

k

℄ � u[I

1

℄u[I

2

n I

1

℄ � � �u[I

k

n I

k�1

℄.

Returning to our problem, suppose that P onsists ofm proesses fp

1

; p

2

; : : : ; p

m

g.

Consider a omplete word u. We wish to ompute f

v

for some v � u. Suppose

we onstrut a hain of subsets of proesses ; = Q

0

� Q

1

� Q

2

� � � � � Q

m

= P

suh that for j 2 f1; 2; : : : ;mg, Q

j

= Q

j�1

[ fp

j

g. From Corollary 5.4, we then

have

u = u[�

Q

m

(E

u

)℄ � u[�

Q

0

(E

u

)℄u[�

Q

1

(E

u

) n �

Q

0

(E

u

)℄ � � �u[�

Q

m

(E

u

) n �

Q

m�1

(E

u

)℄

Observe that �

Q

j

(E

u

)n�

Q

j�1

(E

u

) is the same as �

p

j

(E

u

)n�

Q

j�1

(E

u

). Thus,

we an rewrite the expression above as

u = u[�

Q

m

(E

u

)℄ � u[;℄u[�

p

1

(E

u

) n �

Q

0

(E

u

)℄ � � �u[�

p

m

(E

u

) n �

Q

m�1

(E

u

)℄ (})

The word u[�

p

j

(E

u

) n �

Q

j�1

(E

u

)℄ is the portion of u whih p

j

has seen but

whih the proesses in Q

j�1

have not seen. This is a speial ase of what we all

a residue.

Residues Let u be proper, I � E

u

an ideal and p 2 P a proess. R(u; p; I)

denotes the word u[�

p

(E

u

) n I ℄ and is alled the residue of u at p with respet

to I . Observe that any residue of the form R(u; p; I) an equivalently be written

R(u; p; �

p

(E

u

) \ I).

Using the notation of residues, we an write the word u[�

p

j

(E

u

)n�

Q

j�1

(E

u

)℄

asR(u; p

j

; �

Q

j�1

(E

u

)). A residue of this form is alled a proess residue:R(u; p; I)

is a proess residue if R(u; p; I) = R(u; p; �

P

(E

u

)) for some P � P . We say that

R(u; p; �

P

(E

u

)) is the P -residue of u at p.

Unfortunately, a proess residue at p may hange due to an ation of another

proess. For instane, if we extend a word u by an ation a = q?p, it is lear

that R(u; p; �

q

(E

u

)) will not be the same as R(ua; p; �

q

(E

ua

)) sine q will get to

know about more events from �

p

(u) after reeiving the message via the ation

a. On the other hand, sine p does not move on an ation of the form q?p, p has

no hane to update its q-residue when the ation q?p ours.

However, it turns out that eah proess an maintain a set of residues based

on its primary information suh that these primary residues subsume the proess

residues. The key tehnial fat whih makes this possible is the following.
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Lemma 5.5. For any non-empty ideal I, and p; q 2 P, the maximal events in

�

p

(I) \ �

q

(I) lie in primary

p

(I) \ primary

q

(I).

Proof: We show that for eah maximal event e in �

p

(I) \ �

q

(I), either e 2

latest(�

p

(I)) \ unak(�

q

(I)) or e 2 unak(�

p

(I)) \ latest(�

q

(I)).

First suppose that �

p

(I) n �

q

(I) and �

q

(I) n �

p

(I) are both nonempty. Let e

be a maximal event in �

p

(I) \ �

q

(I). Suppose e is an r-event, for some r 2 P .

Sine �

p

(I)n�

q

(I) and �

q

(I)n�

p

(I) are both nonempty, it follows that r =2 fp; qg.

The event e must have �-suessors in both �

p

(I) and �

q

(I). However, observe

that any event f an have at most two immediate �-suessors|one \internal"

suessor within the proess and, if f is a send event, one \external" suessor

orresponding to the mathing reeive event.

Thus, the maximal event e must be a send event, with a <

rr

suessor

e

r

and a <

rs

suessor e

s

, orresponding to some s 2 P . Assume that e

r

2

�

q

(I) n �

p

(I) and e

s

2 �

p

(I) n �

q

(I). Sine the r-suessor of e is outside �

p

(I),

e = max

r

(�

p

(I)). So e belongs to latest(�

p

(I)). On the other hand, e is an un-

aknowledged r!s event in �

q

(I). Thus, e 2 unak

r!s

(�

q

(I)), whih is part of

unak(�

q

(I)).

Symmetrially, if e

r

2 �

p

(I) n �

q

(I) and e

s

2 �

q

(I) n �

p

(I), we �nd that e

belongs to unak(�

p

(I)) \ latest(�

q

(I)).

We still have to onsider the ase when �

p

(I) � �

q

(I) or �

q

(I) � �

p

(I).

Suppose that �

p

(I) � �

q

(I), so that �

p

(I)\�

q

(I) = �

p

(I). Let e = max

p

(�

q

(I)).

Clearly, �

p

(I) = e#. Consider any r-event f in �

p

(I), where r =2 fp; qg. Sine

f < e, f annot be maximal in �

p

(I). Thus, the only maximal event in �

p

(I) is

the p-event e. Sine e has a suessor in �

q

(I), e must be a send event and is

hene in unak(�

p

(I)). Thus, e 2 unak(�

p

(I)) \ latest(�

q

(I)). Symmetrially,

if �

q

(I) � �

p

(I), the unique maximal event e in �

q

(I) belongs to latest(�

p

(I)) \

unak(�

q

(I)). 2

Let us all R(u; p; I) a primary residue if I is of the form X# for some subset

X � primary

p

(E

u

). Clearly, for p; q 2 P , R(u; p; �

q

(E

u

)), an be rewritten as

R(u; p; �

p

(E

u

)\�

q

(E

u

)). So, by the previous result the q-residue R(u; p; �

q

(E

u

))

is a primary residue R(u; p;X#) for some X � primary(�

p

(E

u

)). Further, the

set X an be e�etively omputed from the primary information of p and q. In

fat, it turns out that all proess residues an be e�etively desribed in terms

of primary residues.

We begin with a simple observation, whose proof we omit.

Proposition 5.6. Let u 2 �

�

be proper and p 2 P. For ideals I; J � E

u

, let

R(u; p; I) and R(u; p; J) be primary residues suh that R(u; p; I) = R(u; p;X

I

#)

and R(u; p; J) = R(u; p;X

J

#) for X

I

; X

J

� primary

p

(E

u

). Then R(u; p; I [ J)

is also a primary residue and R(u; p; I [ J) = R(u; p; (X

I

[X

J

)#).

Our laim that all proess residues an be e�etively desribed in terms of

primary residues an then be formulated as follows.
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Lemma 5.7. Let u 2 �

�

be proper, p 2 P and Q � P. Then R(u; p; �

Q

(E

u

))

is a primary residue R(u; p;X#) for p. Further, the set X � primary

p

(E

u

) an

be e�etively omputed from the information in

S

q2fpg[Q

primary

q

(E

u

).

Proof: Let Q = fq

1

; q

2

; : : : ; q

k

g. We an rewrite R(u; p; �

Q

(E

u

)) as

R(u; p;

S

i2[1::k℄

�

q

i

(E

u

)). From Lemma 5.5 it follows that for eah i 2 f1; 2; : : : ; kg,

p an ompute a set X

i

� primary

p

(E

u

) from the information in primary

p

(E

u

)[

primary

q

i

(E

u

) suh that R(u; p; �

q

i

(E

u

)) = R(u; p;X

i

#). From Proposition 5.6,

it then follows thatR(u; p; �

Q

(E

u

)) = R(u; p;

S

i2f1;2;:::;kg

�

q

i

(E

u

)) = R(u; p;X#)

where X =

S

i2f1;2;:::;kg

X

i

. 2

6 Updating residues

We now desribe how, while reading a word u, eah proess p maintains the

funtions f

w

for eah primary residue w of u at p.

Initially, at the empty word u = ", every primary residue from

fR(u; p;X#)g

p2P;X�primary(�

p

(E

u

))

is just the empty word ". So, all primary

residues are represented by the identity funtion Id : fs 7! sg.

Let u 2 �

�

and a 2 �. Assume indutively that every p 2 P has omputed

at the end of u the funtion f

w

for eah primary residue w = R(u; p;X#),

where X � primary(�

p

(E

u

)). We want to ompute for eah p the orresponding

funtions after the word ua.

Suppose a is of the form p!q and X � primary

p

(E

ua

). Let e

a

denote the

event orresponding to the new ation a. If e

a

2 X , then R(ua; p;X#) = ", so

we represent the residue by the identity funtion Id . On the other hand, if a =2 X ,

then X � primary

p

(E

u

), so we already have a residue of the form R(u; p;X).

We then set R(ua; p;X#) to be f

a

ÆR(u; p;X#). For r 6= p, the primary residues

are unhanged when going from u to ua.

The ase where a is of the form p?q is more interesting. As before, the primary

residues are unhanged for r 6= p. We show how to alulate all the new primary

residues for p using the information obtained from q. This will use the following

result.

Lemma 6.1. Let u 2 �

�

be proper. Let p; q 2 P and e 2 E

u

suh that e 2

primary

q

(E

u

) but e =2 �

p

(E

u

). Then R(u; p; e#) is a primary residue R(u; p;X#)

for p. Further, the set X � primary(�

p

(E

u

)) an be e�etively omputed from

the information in primary

p

(E

u

) and seondary

q

(E

u

).

Proof: Let e be an r-event, r 2 P and let J = �

p

(E

u

) [ e#. By onstrution,

max

p

(J) = max

p

(E

u

). On the other hand, max

r

(J) = e, sine e is an r-event

and we assumed that e =2 �

p

(E

u

).

By Lemma 5.5, the maximal events in �

p

(J) \ �

r

(J) lie in primary

p

(J) \

primary

r

(J). Sine max

p

(J) = max

p

(E

u

), primary

p

(J) = primary

p

(E

u

). On the

other hand, primary

r

(J) = primary(e#), whih is a subset of seondary

q

(E

u

),

sine e 2 primary

q

(E

u

).
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Thus, the set of maximal events in �

p

(J)\�

r

(J), whih is the same as �

p

(E

u

)\

e#, is ontained in primary

p

(E

u

) \ primary(e#). These events are available in

primary

p

(E

u

) [ seondary

q

(E

u

). 2

Suppose that X � primary

p

(E

ua

). Suppose that X = fx

1

; x

2

; : : : ; x

k

g.

We �rst argue that for eah x

i

2 X ,R(u; p; x

i

#) is a primary residueR(u; p; Y

i

#),

where Y

i

� primary

p

(E

u

). If x

i

2 primary

p

(E

u

), then R(u; p; x

i

#) is already a

primary residue, so we an set Y

i

= fx

i

g. If, however, x

i

=2 primary

p

(E

u

), then

x

i

must have been ontributed from primary

q

(u) through the message reeived

at the ation a. We have x

i

2 primary

q

(E

u

) but x

i

=2 �

p

(E

u

). Thus, appealing

to Lemma 6.1, we an identify Y

i

� primary

p

(E

u

) suh that R(u; p; fx

i

g#) =

R(u; p; Y

i

#).

Sine X =

S

i2f1;2;:::;kg

x

i

, we an appeal to Proposition 5.6 to argue that

R(u; p;X#) is the primary residue R(u; p; Y #) where Y =

S

i2f1;2;:::;kg

Y

i

. We

an then set R(ua; p;X#) = f

a

Æ R(u; p; Y #).

Thus, after eah ation that is performed, the proess performing the ation

an e�etively update its primary residues using the primary and seondary

information available to it.

7 A deterministi message-passing automaton for L

We an now onstrut a deterministi B-bounded message-passing automaton

orresponding to a given regular MSC language L. We �rst observe that there

is a bound B 2 N suh that every word in L is B-bounded.

Proposition 7.1. Let L � �

�

be a regular MSC language. There is an e�e-

tively omputable bound B 2 N suh that every word in L is B-bounded.

Proof: Let A

L

= (S;�; s

in

; Æ; F ) be the minimal DFA for L. Reall that we

an assoiate with eah live state in S and eah hannel (p; q) 2 Chan a hannel-

apaity funtion K

s

: Chan ! N. Let B be the maximum value of K

s

((p; q))

over all live states s and all hannels (p; q).

We know that for any word u in L, the run of A

L

on u visits only live

states. Thus, while proessing u, no hannel's apaity ever exeeds the bound B.

Moreover, sine L is�-losed, every interleaving v ofM

u

belongs to L and the run

of A

L

on eah suh interleaving also respets this bound. From Proposition 4.1,

we an onlude that in every ideal I � E

u

, for any pair p; q of proesses, the

set unak

p!q

(I) ontains at most B-events. Thus, u is B-bounded. 2

We now onstrut a B-bounded message-passing automaton A =

(fA

p

g

p2P

;M; s

in

;F) for L, where B is the bound derived from the minimal

DFA A

L

for L as desribed in the preeding proposition.

Reall that A

B

= (fA

B

p

g

p2P

;M

B

; s

B

in

;F

B

) is the time-stamping automaton

for B-bounded omputations, where the state of eah omponent reords the

primary and seondary information of the omponent in terms of a onsistent

set of time-stamps.
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{ The message alphabet of A is the alphabet M

B

used by the time-stamping

automaton A

B

.

{ In A, a typial state of a omponent A

p

is a pair (s

B

; s

R

) where s

B

is a

state drawn from A

B

p

and s

R

is the olletion ff

X

: S ! Sg

X�primary

p

(E

u

)

of primary residues of A

p

at the end of a word u.

{ The loal transition relation !

p

of eah omponent A

p

is as follows:

� For a of the form p!q, the tuple ((s

B

; s

R

); a;m; (s

0

B

; s

0

R

)) 2 !

p

provided

(s

B

; a;m; s

0

B

) 2 !

B

p

and the residues in s

0

R

are derived from the residues

in s

R

using the time-stamping information in s

B

, as desribed in Se-

tion 6.

Moreover, aording to the primary information in s

B

, it should be the

ase that junak

p!q

(E

u

)j < B for the word u read so far. Otherwise,

this send ation is disabled.

� For a of the form p?q, the tuple ((s

B

; s

R

); a;m; (s

0

B

; s

0

R

)) 2 !

p

provided

(s

B

; a;m; s

0

B

) 2 !

B

p

and the residues in s

0

R

are derived from the residues

in s

R

using the time-stamping information in s

B

and the message m, as

desribed in Setion 6.

{ In the initial state of A, the loal state of eah omponent A

p

is of the form

(s

p

B;in

; s

p

R;in

) where s

p

B;in

is the initial state of A

B

p

and s

p

R;in

reords eah

residue to be the identity funtion Id .

{ The global state f(s

p

B

; s

p

R

)g

p2P

belongs to the set F of �nal states if the

primary residues stored in the global state reord that Æ(s

in

; u) 2 F for the

word u read so far. (This is ahieved by evaluating the expression (}) in

Setion 5.)

From the analysis of the previous setion, it is lear that A aepts preisely

the language L. The last lause in the transition relation !

p

for send ations

ensures that A will not admit a run in whih unak

p!q

(E

u

) grows beyond B

events for any input u and any pair of proesses p; q. This ensures that every

reahable on�guration of A is B-bounded. Finally, we observe that A is de-

terministi beause the time-stamping automaton A

B

is deterministi and the

update proedure for residues desribed in Setion 6 is also deterministi.

We have thus sueeded in proving the main result we were after (The-

orem 3.2)|namely, that for every regular MSC language L over �, there is

a deterministi B-bounded message-passing automaton A over � suh that

L(A) = L.

We onlude by providing an upper bound for the size of A, whih an be

omputed by estimating the number of bits required to reord the time-stamps

and residues whih form the loal state of a proess.

Proposition 7.2. Let n be the number of proesses in the system, m be the

number of states of the minimal DFA A

L

for L and B the bound omputed from

the hannel-apaity funtions of A

L

. Then, the number of loal states of eah

omponent A

p

is at most 2

(2

O(Bn

2

)

m logm)

.
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