
4th Asian Computing Siene Conferene, ASIAN '98

Proeedings: Jieh Hsiang and Atsushi Ohori (eds.)

Springer Leture Notes in Computer Siene 1538 (1998), 282{299.

Towards a haraterisation of �nite-state

message-passing systems

Madhavan Mukund

1?

, K Narayan Kumar

1??

,

Jaikumar Radhakrishnan

2

, and Milind Sohoni

3

1

SPIC Mathematial Institute, 92 G.N. Chetty Road, Madras 600 017, India.

E-mail: fmadhavan,kumarg�smi.ernet.in

2

Computer Siene Group, Tata Institute of Fundamental Researh, Homi Bhabha

Road, Bombay 400 005, India. E-mail: jaikumar�ts.tifr.res.in

3

Department of Computer Siene and Engineering, Indian Institute of Tehnology,

Bombay 400 076, India. E-mail: sohoni�se.iitb.ernet.in

Abstrat. We investigate an automata-theoreti model of distributed

systems whih ommuniate via message-passing. Eah node in the sys-

tem is a �nite-state devie. Channels are assumed to be reliable but may

deliver messages out of order. Hene, eah hannel is modelled as a set

of ounters, one for eah type of message. These ounters may not be

tested for zero.

Though eah node in the network is �nite-state, the overall system is

potentially in�nite-state beause the ounters are unbounded. We work

in an interleaved setting where the interations of the system with the

environment are desribed as sequenes. The behaviour of a system is

desribed in terms of the language whih it aepts|that is, the set

of valid interations with the environment that are permitted by the

system.

Our aim is to haraterise the lass of message-passing systems whose

behaviour is �nite-state. Our main result is that the language aepted by

a message-passing system is regular if and only if both the language and

its omplement are aepted by message-passing systems. We also exhibit

an alternative haraterisation of regular message-passing languages in

terms of deterministi automata.

1 Introdution

Today, distributed systems whih use asynhronous ommuniation are ubiquitous|

the Internet is a prime example. However, there has been very little work on

studying the �nite-state behaviour of suh systems. In partiular, this area

laks a satisfatory automata-theoreti framework. In ontrast, automata the-

ory for systems with synhronous ommuniation is well developed via Zielonka's

?

Partly supported by IFCPAR Projet 1502-1.

??

Currently on leave at Department of Computer Siene, State University of New

York at Stony Brook, NY 11794-4400, USA. E-mail: kumar�s.sunysb.edu.

283

asynhronous automata [Z87℄ and the onnetions to Mazurkiewiz trae the-

ory [M78℄.

In [MNRS98℄, we introdue networks of message-passing automata as a model

for distributed systems whih ommuniate via message-passing. Eah node in

the network is a �nite-state proess. The number of di�erent types of messages

used by the system is assumed to be �nite. This is not unreasonable if we dis-

tinguish \ontrol" messages from \data" messages.

In our model, hannels may reorder or delay messages, though messages are

never lost. Sine messages may be reordered, the state of eah hannel an be

represented by a �nite set of ounters whih reord the number of messages of

eah type that have been sent along the hannel but are as yet undelivered.

The nodes annot test if a ounter's value is zero|this restrition aptures the

intuition that it is not pratial for a node to deide that another proess has

not sent a message, sine messages may be delayed arbitrarily.

Though eah node in the network is �nite-state, the overall system is poten-

tially in�nite-state sine ounter values are unbounded. Our goal is to hara-

terise when suh a network is \e�etively �nite-state". This is important beause

�nite-state networks are amenable to veri�ation using automated tools [H91℄.

To make preise the notion of a network being \e�etively �nite-state", we use

formal language theory. The behaviour of the network is desribed in terms of its

interation with the environment. This an be represented as a formal language

over a �nite alphabet of possible interations. Our goal then is to haraterise

when the language aepted by a network is regular.

In [MNRS98℄, we assume that eah node interats independently with its en-

vironment. Thus, the behaviour of the overall network is desribed as a language

onsisting of tuples of strings. The main result is that the language aepted by

a robust message-passing network, whose behaviour is insensitive to message de-

lays and di�erenes in speed between nodes, an be \represented" by a sequential

regular language.

Here, we adopt an interleaved approah and reord the interations of a

network with its environment from the point of view of a sequential observer.

In this framework, it is suÆient to onentrate on the global states of the

system and regard the entire network as a single automaton equipped with a

set of ounters. Our main result is that a language L aepted by a message-

passing automaton is regular if and only if the omplement of L is also aepted

by a message-passing automaton. This is more general than requiring that L

be robust in the sense of [MNRS98℄|see Setion 5.1. We also demonstrate an

alternative haraterisation in terms of deterministi message-passing automata.

Along the way, we establish a variety of results about message-passing automata,

inluding pumping lemmas whih are useful for showing when languages are not

reognisable by these automata.

The paper is organised as follows. In the next setion we de�ne message-

passing automata and establish some basi results about them. In Setion 3 we

prove a Contration Lemma whih leads to the deidability of the emptiness

problem and the fat that the languages aepted by message-passing automata

284

are not losed under omplementation. Setion 4 desribes a family of pumping

lemmas whih are exploited in Setion 5 to prove our main results onerning

the regularity of languages aepted by message-passing automata. In the �nal

setion, we disuss in detail the onnetion between our results and those in

Petri net theory and point out diretions for future work. We have had to omit

many proofs in this extended abstrat. Full proofs and related results an be

found in [MNRS97,MNRS98℄.

2 Message-Passing Automata

Natural numbers and tuples As usual, N denotes the set f0; 1; 2; : : :g of

natural numbers. For i; j 2 N, [i::j℄ denotes the set fi; i+1; : : : ; jg, where [i::j℄ =

; if i > j. We ompare k-tuples of natural numbers omponent-wise. Let m =

hm

1

;m

2

; : : : ;m

k

i and n = hn

1

; n

2

; : : : ; n

k

i. Then m � n i� m

i

� n

i

for eah

i 2 [1::k℄.

Message-passing automata A message-passing automaton A is a tuple

(Q;�; �; T; q

in

; F), where:

{ Q is a �nite set of states, with initial state q

in

and aepting states F � Q.

{ � is a �nite input alphabet.

{ � is a �nite set of ounters. We use C;C

0

; : : : to denote ounters. With eah

ounter C, we assoiate two symbols, C

+

and C

�

. We write �

�

to denote

the set fC

+

jC 2 �g [fC

�

jC 2 �g.

{ T � Q� (� [�

�

)�Q is the transition relation.

Con�gurations A on�guration ofA is a pair (q; f) where q 2 Q and f : � ! N

is a funtion whih reords the values stored in the ounters. If the ounters are

C

1

; C

2

; : : : ; C

k

then we represent f by an element hf(C

1

); f(C

2

); : : : ; f(C

k

)i of

N

k

. By abuse of notation, the k-tuple h0; 0; : : : ; 0i is uniformly denoted 0, for all

values of k.

We use � to denote on�gurations. If � = (q; f), Q(�) denotes q and F (�)

denotes f . Further, for eah ounter C, C(�) denotes the value f(C).

Moves Eah move of a message-passing automaton onsists of either reading a

letter from its input or manipulating a ounter. Reading from the input repre-

sents interation with the environment. Inrementing and derementing ounters

orrespond to sending and reading messages, respetively.

Formally, a message-passing automaton moves from on�guration � to on-

�guration �

0

on d 2 � [�

�

if (Q(�); d;Q(�

0

)) 2 T and one of the following

holds:

{ d 2 � and F (�) = F (�

0

).

{ d = C

+

, C(�

0

) = C(�) + 1 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

{ d = C

�

, C(�

0

) = C(�)� 1 � 0 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

285

Suh a move is denoted �

(q;d;q

0

)

�! �

0

|that is, transitions are labelled by ele-

ments of T . Given a sequene of transitions t

1

t

2

: : : t

n

= (q

1

; d

1

; q

2

)(q

2

; d

2

; q

3

) : : :

(q

n

; d

n

; q

n+1

), the orresponding sequene d

1

d

2

: : : d

n

over � [�

�

is denoted

�(t

1

t

2

: : : t

n

).

Computations, runs and languages A omputation of A is a sequene

�

0

t

1

�! �

1

t

2

�! : : :

t

n

�! �

n

. We also write �

0

t

1

t

2

:::t

n

=) �

n

to indiate that there is

a omputation labelled t

1

t

2

: : : t

n

from �

0

to �

n

. Notie that �

0

and t

1

t

2

: : : t

n

uniquely determine all the intermediate on�gurations �

1

; �

2

; : : : ; �

n

. If the tran-

sition sequene is not relevant, we just write �

0

=) �

n

. As usual, �

t

1

t

2

:::t

n

=)

denotes that there exists �

0

suh that �

t

1

t

2

:::t

n

=) �

0

and � =) denotes that there

exists �

0

suh that � =) �

0

.

For K 2 N, a K-run of A is a omputation �

0

=) �

n

where C(�

0

) � K for

eah C 2 � .

If Æ is a string over � [�

�

, Æ �

�

denotes the subsequene of letters from

� in Æ. Let w = a

1

a

2

: : : a

k

be a string over �. A run of A over w is a 0-run

�

0

t

1

t

2

:::t

n

=) �

n

where Q(�

0

) = q

in

and �(t

1

t

2

: : : t

n

)�

�

= w. The run is said to be

aepting if Q(�

n

) 2 F . The string w is aepted by A if A has an aepting run

over w. The language aepted by A, denoted L(A), is the set of all strings over

� aepted by A.

A language over � is said to be message-passing reognisable if there is a

message-passing automaton with input alphabet � that aepts this language.

Example 2.1. Let L

ge

� fa; bg

�

be given by fa

m

b

n

j m � ng. This language is

message-passing reognisable. Here is an automaton for L

ge

. The initial state is

indiated by + and the �nal states have an extra irle around them.

a

C

+

b

C

�

b

+

The following result is basi to analysing the behaviour of message-passing

automata. It follows from the fat that any in�nite sequene of N -tuples of

natural numbers ontains an in�nite inreasing subsequene. We omit the proof.

Lemma 2.2. Let X be a set with M elements and hx

1

; f

1

i; hx

2

; f

2

i; : : : ; hx

m

; f

m

i

be a sequene over X �N

N

suh that eah oordinate of f

1

is bounded by K and

for i 2 [1::m�1℄, f

i

and f

i+1

di�er on at most one oordinate and this di�erene

is at most 1. There is a onstant ` whih depends only on M , N and K suh

that if m � `, then there exist i; j 2 [1::m℄ with i < j, x

i

= x

j

and f

i

� f

j

.

Weak pumping onstant We all the bound ` for M , N and K from the

preeding lemma the weak pumping onstant for (M;N;K), denoted �

M;N;K

.

It is easy to see that if hM

0

; N

0

;Ki � hM;N;Ki, then �

M

0

;N

0

;K

0

� �

M;N;K

.

286

3 A Contration Lemma

Lemma 3.1 (Contration). For every message-passing automaton A, there is

a onstant k suh that if �

0

t

1

t

2

:::t

m

=) �

m

is a omputation of A, with m > k, then

there exist i and j, m�k � i < j � m, suh that �

0

0

t

1

:::t

i

t

j+1

:::t

m

=) �

0

m�(j�i)

is also

a omputation of A, with with �

0

`

= �

`

for ` 2 [0::i℄ and Q(�

`

) = Q(�

0

`�(j�i)

)

for all ` 2 [j::m℄.

Proof Sketh. Let A have M states and N ounters. We show that k an be

hosen to be �

M;N;0

. Let �

0

t

1

t

2

:::t

m

=) �

m

be a omputation of A, withm > �

M;N;0

.

We de�ne a sequene f

m

; f

m�1

; : : : ; f

0

of funtions from � to N as follows:

f

m

(C) = 0; for all C 2 �

For i 2 [0::m�1℄; f

i

(C) =

8

<

:

f

i+1

(C) if �(t

i+1

) =2 fC

+

; C

�

g

f

i+1

(C)+1 if �(t

i+1

) = C

�

max(0; f

i+1

(C)�1) if �(t

i+1

) = C

+

We laim, without proof, that for eah i, the funtion f

i

represents the minimum

ounter values required to exeute the transition sequene t

i+1

t

i+2

: : : t

m

.

Claim: 8i 2 [1::m℄, (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) i� f � f

i

.

Corollary to Claim: For eah ounter C and for eah position i 2 [1::m℄,

C(�

i

) � f

i

(C).

Consider the sequene of N -tuples f

m

; f

m�1

; : : : f

0

. Sine its length exeeds

�

M;N;0

, by Lemma 2.2 there exist positions i and j, m � j > i � m��

M;N;0

suh

that f

j

� f

i

and Q(�

j

) = Q(�

i

). By the Corollary to Claim, for eah ounter C,

C(�

i

) � f

i

(C) � f

j

(C). Thus, �

i

t

j+1

t

j+2

:::t

m

=) whereby �

0

t

1

t

2

:::t

i

=) �

i

t

j+1

t

j+2

:::t

m

=)

�

0

m�(j�i)

is a valid omputation of A for some on�guration �

0

m�(j�i)

. Sine

Q(�

j

) = Q(�

i

) and the omputations �

j

t

j+1

t

j+2

:::t

m

=) �

m

and �

i

t

j+1

t

j+2

:::t

m

=)

�

0

m�(j�i)

are labelled by the same sequene of transitions, it follows that Q(�

`

) =

Q(�

0

`�(j�i)

) for eah ` 2 [j::m℄, as required. 2

Corollary 3.2. A message-passing automaton A with M states and N ounters

has an aepting omputation i� it has an aepting omputation whose length

is bounded by �

M;N;0

.

It is possible to provide an expliit upper bound for �

M;N;K

for all values of

M , N , and K. This fat, oupled with the preeding observation, yields the fol-

lowing result (whih an also be derived from the deidability of the reahability

problem for Petri nets).

Corollary 3.3. The emptiness problem for message-passing automata is deid-

able.

Corollary 3.4. Message-passing reognisable languages are not losed under

omplementation.

287

Proof Sketh. We saw earlier that L

ge

= fa

m

b

n

j m � ng is message-passing

reognisable. We show that the language L

lt

= fa

m

b

n

j m < ng is not message-

passing reognisable. Suppose that L

lt

is aepted by an automaton A

lt

with

M states and N ounters. Consider the string w = a

J

b

J+1

where J = �

M;N;0

and let � : �

0

t

1

t

2

:::t

n

=) �

n

be an aepting run of A

lt

on w. By applying the

Contration Lemma (repeatedly, if neessary) to �, we an obtain an aepting

run �

0

of A

lt

over a word of the form a

J

b

K

, where K � J , thus ontraditing

the assumption that L(A

lt

) = L

lt

. 2

4 A Colletion of Pumping Lemmas

Our main result is based on a series of pumping lemmas, whih we present in

this setion. For reasons of spae, we do not provide any proofs. More details

may be found in [MNRS97,MNRS98℄.

Change vetors For a string w and a symbol x, let #

x

(w) denote the number

of times x ours in w. Let v be a sequene of transitions. Reall that �(v)

denotes the orresponding sequene of letters. For eah ounter C, de�ne �

C

(v)

to be #

C

+
(�(v)) � #

C

�
(�(v)). The hange vetor assoiated with v, denoted

�v, is given by h�

C

(v)i

C2�

.

Proposition 4.1. Let A = (Q;�; �; T; q

in

; F) be a message-passing automaton.

(i) For any omputation �

v

=) �

0

of A and any ounter C 2 � , j�

C

(v)j � jvj.

(ii) For any on�guration � and sequene of transitions v, �

v

=) i� for eah

pre�x u of v and eah ounter C 2 � , C(�) +�

C

(u) � 0.

(iii) Let �

u

=) �

0

v

=) with Q(�) = Q(�

0

) and n 2 N suh that, for every ounter

C 2 � , either �

C

(u) � 0 or C(�) � njuj+ jvj. Then, �

u

n

v

=).

Proof.

(i) This follows from the fat that eah move an hange a ounter value by at

most 1.

(ii) This follows immediately from the de�nition of a omputation.

(iii) The proof is by indution on n.

Basis: For n = 0, there is nothing to prove.

Indution step: Let n > 0 and assume the result holds for n�1. We will show

that �

u

=) �

0

u

n�1

v

=) .

From the assumption, we know that �

u

=) �

0

. To show that �

0

u

n�1

v

=) , we

examine the value of eah ounter C at �

0

. If �

C

(u) < 0, then C(�) �

288

njuj + v. Sine C(�

0

) = C(�

0

) + �

C

(u) and j�

C

(u)j � juj, it follows that

C(�

0

) � (n�1)juj+ v. From the indution hypothesis, we an then onlude

that �

0

u

n�1

v

=) .

2

Pumpable deomposition Let A be a message-passing automaton with N

ounters and let � : �

0

t

1

t

2

:::t

m

=) �

m

be a omputation of A. A deomposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

u

3

=) � � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � is said

to be pumpable if it satis�es the following onditions:

(i) n � N .

(ii) For eah k 2 [1::n℄, Q(�

i

k

) = Q(�

j

k

).

(iii) For eah v

k

, k 2 [1::n℄, �v

k

is non-zero and has at least one positive entry.

(iv) Let C be a ounter and k 2 [1::n℄ suh that �

C

(v

k

) is negative. Then, there

exists ` < k suh that �

C

(v

`

) is positive.

We refer to v

1

; v

2

; : : : ; v

n

as the pumpable bloks of the deomposition. We say

that a ounter C is pumpable if �

C

(v

i

) > 0 for some pumpable blok v

i

. The

following lemma shows that all the pumpable ounters of a pumpable deom-

position are simultaneously unbounded. We omit the proof. (This is similar to

a well-known result of Karp and Miller in the theory of vetor addition sys-

tems [KM69℄.)

Lemma 4.2 (Counter Pumping). Let A be a message-passing automaton

and � a K-run of A, K 2 N, with a pumpable deomposition of the form �

0

u

1

=)

�

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

: Then, for any

I; J 2 N, with I � 1, there exist `

1

; `

2

; : : : ; `

n

2 N and a K-run �

0

of A of the

form �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) �

0

i

0

2

v

`

2

2

=) �

0

j

0

2

� � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

suh that

�

0

satis�es the following properties:

(i) �

0

= �

0

0

.

(ii) Q(�

0

p

) = Q(�

m

).

(iii) For i 2 [1::n℄, `

i

� I.

(iv) For every ounter C, C(�

0

p

) � C(�

m

).

(v) Let �

pump

be the set of pumpable ounters in the pumpable deomposition of

�. For eah ounter C 2 �

pump

, C(�

0

p

) � J .

Proof. The proof is by indution on n, the number of pumpable bloks in the

deomposition.

Basis: If n = 0, there is nothing to prove.

Indution step: Let n > 0 and assume the lemma holds for all deompositions

with n�1 pumpable bloks. For eah ounter C, let J

C

= max(J;C(�

m

)).

289

By the indution hypothesis, for all I

0

; J

0

2 N, I

0

� 1, we an transform the

pre�x � : �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

v

n�1

=) �

j

n�1

u

n

=) �

i

n

of � into a K-run

�

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

v

`

n�1

n�1

=) �

0

j

0

n�1

u

n

=) �

0

i

0

n

satisfying the onditions of

the lemma. We shall hoose I

0

and J

0

so that the transition sequene v

`

n

n

u

n+1

an be appended to �

0

to yield the run laimed by the lemma.

To �x values for I

0

and J

0

, we �rst estimate the value of `

n

, the number

of times we need to pump v

n

to satisfy all the onditions of the lemma. Let

�

n

pos

= fC j �

C

(v

n

) > 0g. It is suÆient if the number `

n

is large enough for

eah ounter C 2 �

n

pos

to exeed J

C

at the end of the new omputation. For a

ounter C 2 �

n

pos

to be above J

C

at the end of the omputation, it is suÆient

for C to have the value J

C

+ ju

n+1

j after v

`

n

n

. By the indution hypothesis, the

value of C before v

`

n

n

is at least C(�

i

n

). Hene, it would take d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e

iterations of v

n

for C to reah the required value after v

`

n

n

. On the other hand,

we should also ensure that `

n

� I . Thus, it is safe to set `

n

to be the maximum

of I and max

C2�

n

pos

d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e.

We set I

0

= I and estimate a value for J

0

suh that �

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

with

eah ounter C 2 (� n �

n

pos

) ahieving a value of at least C(�

m

) at �

0

p

and eah

ounter C 2 (�

pos

n �

n

pos

) ahieving a value of at least J

C

at �

0

p

.

By the indution hypothesis, Q(�

0

i

0

n

) = Q(�

i

n

) and F (�

0

i

0

n

) � F (�

i

n

). Sine

�

i

n

v

n

u

n+1

=) , it follows that �

0

i

0

n

v

n

u

n+1

=) . By Proposition 4.1 (iii), to ensure that

�

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

, it is suÆient to raise eah ounter C with �

C

(v

n

) < 0 to a

value of at least `

n

jv

n

j+ ju

n+1

j at �

0

i

0

n

. If �

C

(v

n

) < 0 then, by the de�nition of

pumpable deompositions, �

C

(v

i

) > 0 for some i 2 [1::n�1℄, so C gets pumped

above J

0

in �

0

.

Any ounter C suh that �

C

(v

n

) � 0 will surely exeed C(�

m

) at �

0

p

. On

the other hand, a ounter C suh that �

C

(v

n

) < 0 an derease by at most

`

n

jv

n

j+ ju

n+1

j after �

0

i

0

n

.

Putting these two fats together, it suÆes to set J

0

to `

n

jv

n

j + ju

n+1

j +

max

fCj�

C

(v

n

)<0g

J

C

.

Let �

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

. By the

indution hypothesis, we know that �

0

0

= �

0

and for i 2 [1::n�1℄, `

i

� I . By

onstrution, `

n

� I as well. We have also ensured that for every ounter C,

C(�

0

p

) � C(�

m

) and for every ounter C 2 �

pos

, C(�

0

p

) � J . The fat that

Q(�

0

p

) = Q(�

m

) follows from the fat that eah v

n

loop brings the automaton

bak to Q(�

0

i

0

n

) = Q(�

i

n

), and the fat that both � and �

0

go through the same

sequene of transitions u

n+1

at the end of the omputation. 2

Having shown that all pumpable ounters of a pumpable deomposition an

be simultaneously raised to arbitrarily high values, we desribe a suÆient on-

dition for a K-run to admit a non-trivial pumpable deomposition.

290

Strong pumping onstant For eah M;N;K 2 N, we de�ne the strong

pumping onstant �

M;N;K

by indution on N as follows (reall that �

M;N;K

denotes the weak pumping onstant for (M;N;K)):

8M;K 2 N: �

M;0;K

= 1

8M;N;K 2 N: �

M;N+1;K

= �

M;N;�

M;N+1;K

+K

+ �

M;N+1;K

+K

Lemma 4.3 (Deomposition). Let A be a message-passing automaton with

M states and N ounters and let K 2 N. Let � : �

0

t

1

t

2

:::t

m

=) �

m

be any K-

run of A. Then, there is a pumpable deomposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=)

�

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � suh that for every ounter C,

if C(�

j

) > �

M;N;K

for some j 2 [0::m℄, then there exists k 2 [1::n℄, suh that

�

C

(v

k

) is positive.

To prove this lemma, we need the following result.

Proposition 4.4. Let A be a message-passing automaton with M states and N

ounters and let � : �

0

=) �

n

be a K-run of A in whih some ounter value

exeeds �

M;N;K

+K. Then, there is a pre�x � : �

0

=) �

s

of � suh that:

{ For eah m 2 [0::s℄ and every ounter C, C(�

m

) < �

M;N;K

+K.

{ There exists r 2 [0::s�1℄, suh that � : �

0

=) �

r

=) �

s

, Q(�

r

) = Q(�

s

)

and F (�

r

) < F (�

s

).

Proof. Suppose that the lemma does not hold. Let � : �

0

t

1

t

2

:::t

n

=) �

n

be a

omputation of minimum length whih fails to satisfy the lemma. Sine the

initial ounter values in � are bounded by K and some ounter value exeeds

�

M;N;K

+K in �, it must be the ase that the length of � is at least �

M;N;K

.

By the de�nition of �

M;N;K

, there exist i and j, i < j � �

M;N;K

suh

that Q(�

i

) = Q(�

j

) and F (�

i

) � F (�

j

). Sine � is a K-run and j � �

M;N;K

, all

ounter values at the on�gurations �

0

; �

1

; : : : ; �

j

must be bounded by �

M;N;K

+

K. If F (�

i

) < F (�

j

), � would satisfy the lemma with r = i and s = j, so it must

be the ase F (�

i

) = F (�

j

).

Sine �

i

= �

j

, we an onstrut a shorter omputation �

0

= �

0

t

1

t

2

:::t

i

=)

�

i

t

j+1

�! �

j+1

t

j+2

�! � � �

t

n

�! �

n

. It is easy to see that the same ounter whose

value exeeded �

M;N;K

+K in � must also exeed �

M;N;K

+K in �

0

|the only

on�gurations visited by � whih are not visited by �

0

are those in the inter-

val �

i+1

; �

i+2

; : : : �

j

. However, we have already seen that all ounter values in

�

0

; �

1

; : : : ; �

j

are bounded by �

M;N;K

+K.

It is lear that if �

0

satis�es the lemma, then so does �. On the other hand, if

�

0

does not satisfy the lemma, then � is not a minimum length ounterexample

to the lemma. In either ase we obtain a ontradition. 2

We now return to the proof of the Deomposition Lemma.

291

Proof. (of Lemma 4.3) The proof is by indution on N , the number of ounters.

Basis: If N = 0, set n = 0 and u

1

= �.

Indution step: Let �

gt

denote the set of ounters whose values exeed �

M;N;K

in the K-run �.

If �

gt

= ;, we set n = 0 and u

1

= �.

Otherwise, by Proposition 4.4, we an �nd positions r and s in � suh that

�

0

u

0

=) �

r

v

0

=) �

s

=) �

m

, with Q(�

r

) = Q(�

s

), F (�

r

) < F (�

s

) and all ounter

values at �

0

; �

1

; : : : ; �

s

bounded by �

M;N;K

+K.

Let � be the input alphabet of A and � its set of ounters. Fix a ounter

C

0

in whih inreases stritly between �

r

and �

s

|that is, C

0

(�

s

) > C

0

(�

r

). By

our hoie of �

r

and �

s

, suh a ounter must exist. Construt an automaton

A

0

with input alphabet � [fC

0+

; C

0�

g and ounters � n fC

0

g. The states and

transitions of A

0

are the same as those of A. In other words, A

0

behaves like A

exept that it treats moves involving the ounter C

0

as input letters.

Consider the omputation �

s

t

s+1

t

s+2

:::t

m

=) �

m

of A. It is easy to see that there

is a orresponding omputation �

0

: �

0

s

t

s+1

t

s+2

:::t

m

=) �

0

m

of A

0

suh that for eah

k 2 [s::m℄, Q(�

k

) = Q(�

0

k

) and for eah ounter C 6= C

0

, C(�

k

) = C(�

0

k

).

From Proposition 4.4, we know that �

0

is in fat a (�

M;N;K

+K)-run of A

0

.

Further, for every ounter C in �

gt

n fC

0

g, there exists a j 2 [s::m℄, suh that

C(�

0

j

) = C(�

j

) > �

M;N;K

> �

M;N�1;�

M;N;K

+K

. (In the K-run �, no ounter

ould have exeeded �

M;N;K

before �

s

beause Proposition 4.4 guarantees that

all ounter values at �

0

; �

1

; : : : ; �

s

are bounded by �

M;N;K

+K.) By the indution

hypothesis, we an �nd a pumpable deompostion

�

0

s

u

0

1

=) �

0

i

0

1

v

0

1

=) �

0

j

0

1

u

0

2

=) �

0

i

0

2

v

0

2

=) �

0

j

0

2

u

0

3

=) � � �

u

0

p

=) �

0

i

0

p

v

0

p

=) �

0

j

0

p

u

0

p+1

=) �

m

of �

0

suh that if C is a ounter with C(�

0

j

) > �

M;N�1;�

M;N;K

+K

for some

j 2 [s::m℄, then there exists k 2 [1::p℄ suh that �

C

(v

0

k

) is positive.

Consider the orresponding omputation

�

s

u

0

1

=) �

i

0

1

v

0

1

=) �

j

0

1

u

0

2

=) �

i

0

2

v

0

2

=) �

j

0

2

� � �

u

0

p

=) �

i

0

p

v

0

p

=) �

j

0

p

u

0

p+1

=) �

m

of A. In this omputation, for eah k 2 [1::p℄, Q(�

i

0

k

) = Q(�

0

i

0

k

) = Q(�

0

j

0

k

) =

Q(�

j

0

k

). Further, for eah C 2 �

gt

nfC

0

g, C(�

i

0

k

) = C(�

0

i

0

k

) and C(�

j

0

k

) = C(�

0

j

0

k

).

We pre�x the omputation �

s

u

0

1

v

0

1

:::u

0

p+1

=) �

m

with the K-run �

0

u

0

=) �

r

v

0

=)

�

s

whih we used to identify �

s

and �

r

. We then assert that the omposite

K-run

�

0

u

0

=) �

r

v

0

=) �

s

u

0

1

=) �

i

00

1

v

0

1

=) �

j

00

1

u

0

2

=) �

i

00

2

v

0

2

=) �

j

00

2

� � �

u

0

p

=) �

i

00

p

v

0

p

=) �

j

00

p

u

0

p+1

=) �

m

:

provides the deomposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

292

of � laimed in the statement of the lemma. In other words, u

1

= u

0

, v

1

= v

0

,

�

i

1

= �

r

and �

j

1

= �

s

, while for k 2 [2::n℄, u

k

= u

0

k�1

, v

k

= v

0

k�1

, �

i

k

= �

i

0

k�1

and �

j

k

= �

j

0

k�1

.

Let us verify that this deomposition satis�es all the onditions required by

the lemma.

First we verify that this deomposition is pumpable.

{ Sine p � N�1, it is lear than n = p+1 � N .

{ By onstrutionQ(�

i

1

) = Q(�

r

) = Q(�

s

) = Q(�

j

1

). For k 2 [2::n℄, Q(�

i

k

) =

Q(�

i

0

k�1

) = Q(�

j

0

k�1

) = Q(�

j

k

).

{ We know that �v

1

= �v

0

is non-zero and stritly positive by the hoie of

v

0

. For k 2 [2::n℄, we know that �

C

(v

k

) = �

C

(v

0

k�1

) for C 6= C

0

. Sine we

have already established that �v

0

k�1

is non-zero and has at least one positive

entry for k 2 [2::n℄, it follows that the orresponding hange vetors �v

k

are

also non-zero and have at least one positive entry.

{ Let C be a ounter and k 2 [1::n℄ suh that �

C

(v

k

) is negative. Sine

�v

1

= �v

0

is positive by the hoie of v, it must be that k 2 [2::n℄. If

C 6= C

0

, then �

C

(v

0

k�1

) = �

C

(v

k

) is negative. In this ase, we already know

that there exists ` 2 [2::k�1℄, suh that �

C

(v

0

`�1

) = �

C

(v

`

) is positive.

On the other hand, if C = C

0

, it ould be that �

C

0

(v

0

z

) is negative for all

z 2 [1::p℄, sine C

0

is treated as an input letter rather than as a ounter in

the automaton A

0

. However, we know that �

C

0

(v

1

) = �

C

0

(v

0

) is positive by

the hoie of v

0

and C

0

, so C

0

also satis�es the ondition of the lemma.

Finally, let C be a ounter suh that C(�

j

) > �

M;N;K

for some j 2 [1::m℄.

If C 6= C

0

, then C(�

j

) > �

M;N�1;�

M;N;K

+K

for some j 2 [s::m℄, so we already

know that �

C

(v

0

k�1

) = �

C

(v

k

) is positive for some k 2 [2::n℄. On the other

hand, if C = C

0

, we know that �

C

(v

1

) = �

C

(v

0

) is positive by the hoie of v

0

and C

0

.

2

The Counter Pumping Lemma allows us to pump bloks of transitions in

a omputation. However, it is possible for a pumpable blok to onsist solely

of invisible transitions whih inrement and derement ounters. Using the De-

omposition Lemma, we an prove a more traditional kind of pumping lemma,

stated in terms of input strings. We omit the proof.

Lemma 4.5 (Visible Pumping). Let L be a message-passing reognisable lan-

guage. There exists n 2 N suh that for all input strings w, if w 2 L and

jwj � n then w an be written as w

1

w

2

w

3

suh that jw

1

w

2

j � n, jw

2

j � 1 and

w

1

w

i

2

w

3

2 L for all i � 1.

Another onsequene of Lemmas 4.2 and 4.3 is a strit hierarhy theorem for

message-passing automata, whose proof we omit.

Lemma 4.6 (Counter Hierarhy). For k 2 N, let L

k

be the set of languages

reognisable by message-passing automata with k ounters. Then, for all k, L

k

(

L

k+1

.

293

5 Regularity of Message-Passing Reognisable Languages

Automata with bounded ounters

Let A = (Q;�; �; T; q

in

; F) be a message-passing automaton. For K 2 N, de�ne

A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) to be the �nite-state automaton over the

alphabet � [�

�

given by:

{ Q[K℄ = Q� ff j f : � �! [0::K℄g, with Q[K℄

in

= (q

in

; 0).

{ F [K℄ = F � ff j f : � �! [0::K℄g.

{ If (q; d; q

0

) 2 T , then ((q; f); d; (q

0

; f

0

)) 2 T [K℄ where:

� If d 2 �, f

0

= f .

� If d = C

+

, f

0

(C

0

) = f(C

0

) for all C

0

6= C and

f

0

(C) =

�

f(C)+1 if f(C) < K

K otherwise:

� If d = C

�

, f

0

(C

0

) = f(C

0

) for all C

0

6= C, f(C) � 1 and

f

0

(C) =

�

f(C)�1 if f(C) < K

K otherwise:

Eah transition t = ((q; f); d; (q

0

; f

0

)) 2 T [K℄ orresponds to a unique transition

(q; d; q

0

) 2 T , whih we denote t

�1

. For a sequene of transitions t

1

t

2

: : : t

n

, we

write (t

1

t

2

: : : t

n

)

�1

for t

�1

1

t

�1

2

: : : t

�1

n

. For any sequene t

1

t

2

: : : t

n

of transitions

in T [K℄, �(t

1

t

2

: : : t

n

) = �((t

1

t

2

: : : t

n

)

�1

). Moreover, if (q

0

; f

0

0

)

t

1

t

2

:::t

n

=) (q

n

; f

0

n

)

and (q

0

; f

0

)

(t

1

t

2

:::t

n

)

�1

=) �

n

, then Q(�

n

) = q

n

.

Thus, the �nite-state automaton A[K℄ behaves like a message-passing au-

tomaton exept that it deems any ounter whose value attains a value K to be

\full" . One a ounter is delared to be full, it an be deremented as many

times as desired. The following observations are immediate.

Proposition 5.1. (i) If (q

0

; f

0

0

)

t

0

1

�! (q

1

; f

0

1

)

t

0

2

�! � � �

t

0

n

�! (q

n

; f

0

n

) is a omputa-

tion of A then, (q

0

; f

0

)

t

1

�! (q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) is a omputation of

A[K℄ where

{ t

0

1

t

0

2

: : : t

0

n

= (t

1

t

2

: : : t

n

)

�1

.

{ 8C 2 �: 8i 2 [1::n℄: f

i

(C) =

�

f

0

i

(C) if f

0

j

(C) < K for all j � i

K otherwise

(ii) Let (q

0

; f

0

)

t

1

�! (q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) be a omputation of A[K℄.

Then there is a maximal pre�x t

1

t

2

: : : t

`

of t

1

t

2

: : : t

n

suh that there is a

omputation (q

0

; f

0

0

)

t

�1

1

�! (q

1

; f

0

1

)

t

�1

2

�! : : :

t

�1

`

�! (q

`

; f

0

`

) of A with f

0

= f

0

0

.

Moreover, if ` < n, then for some ounter C, �(t

0

`+1

) = C

�

, f

0

`

(C) = 0 and

there is a j < ` suh that f

0

j

(C) = K.

(iii) Let L(A[K℄) be the language over �[�

�

aepted by A[K℄. Let L

�

(A[K℄) =

fw�

�

j w 2 L(A[K℄)g. Then, L(A) � L

�

(A[K℄).

294

Synhronised produts of message-passing automata

Produt automata Let A

i

= (Q

i

; �

i

; �

i

; T

i

; q

i

in

; F

i

), i = 1; 2, be a pair of

message-passing automata. The produt automaton A

1

� A

2

is the struture

(Q

1

�Q

2

; �

1

[�

2

; �

1

[�

2

; T

1

�T

2

; (q

1

in

; q

2

in

); F

1

�F

2

), where ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2

T

1

� T

2

i� one of the following holds:

{ d 2 (�

1

[�

1

) \ (�

2

[�

2

) and (q

i

; d; q

0

i

) 2 T

i

for i 2 f1; 2g.

{ d 2 (�

1

[�

1

) n (�

2

[�

2

), (q

1

; d; q

0

1

) 2 T

1

and q

2

= q

0

2

.

{ d 2 (�

2

[�

2

) n (�

1

[�

1

), (q

2

; d; q

0

2

) 2 T

2

and q

1

= q

0

1

.

For t = ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2 T and i 2 f1; 2g, let �

i

(t) denote (q

i

; d; q

0

i

)

if d 2 (�

i

[�

i

) and the empty string " otherwise. As usual, �

i

(t

1

t

2

: : : t

n

) is

just �

i

(t

1

)�

i

(t

2

) : : : �

i

(t

n

). Thus, for a sequene of transitions � = t

1

t

2

: : : t

n

over

T

1

�T

2

, �

1

(�) and �

2

(�) denote the projetions of � onto the transitions ofA

1

and

A

2

respetively. Clearly, �(t

1

t

2

: : : t

n

)�

(�

i

[�

i

)

= �(�

i

(t

1

t

2

: : : t

n

)) for i 2 f1; 2g.

We shall often write a on�guration ((q

1

; q

2

); f) of A

1

� A

2

as a pair of

on�gurations ((q

1

; f

1

); (q

2

; f

2

)) of A

1

and A

2

, where f

1

and f

2

are restritions

of f to �

1

and �

2

respetively.

The following observations are easy onsequenes of the de�nition of produt

automata.

Proposition 5.2. (i) ((q

1

in

; 0); (q

2

in

; 0))

t

1

t

2

:::t

n

=) ((q

1

; f

1

); (q

2

; f

2

)) is a omputa-

tion of A

1

�A

2

if and only if (q

1

in

; 0)

�

1

(t

1

t

2

:::t

n

)

=) (q

1

; f

1

) and (q

2

in

; 0)

�

2

(t

1

t

2

:::t

n

)

=)

(q

2

; f

2

) are omputations of A

1

and A

2

respetively.

(ii) If �

1

= �

2

and �

1

\ �

2

= ;, then L(A

1

�A

2

) = L(A

1

) \ L(A

2

).

5.1 Regularity and losure under omplementation

Our �rst haraterisation of regular message-passing reognisable languages is

the following.

Theorem 5.3. Let L be a language over �. L and L are message-passing reog-

nisable i� L is regular.

This result is related to the main result of [MNRS98℄ whih states that if we

reord the behaviour of message-passing systems as tuples of sequenes, every

robust system is e�etively �nite-state. In the sequential setting, a language L

would be robust in the sense of [MNRS98℄ if there were a single automaton A

with aept and rejet states suh that for eah word w 2 L, every run of A on

w leads to an aept state and for eah word w =2 L, every run of A on w leads

to a rejet state. Here, the requirement on L is muh weaker|all we demand

is that both L and L be aepted independently by message-passing automata,

possibly with very di�erent state spaes.

To prove the theorem, we need an auxiliary result. Let L � �

�

be suh that

both L and its omplement L are message-passing reognisable. Let L = L(A)

and L = L(A), where we may assume that A and A use disjoint sets of ounters.

295

The language aepted by A�A must be empty. LetM be the number of states

of A � A and N be the number of ounters that it uses. Let K be a number

greater than �

M;N;0

, the strong pumping onstant for (M;N; 0). Reall that

A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) is a �nite-state automaton without ounters

working on the input alphabet � [�

�

.

Lemma 5.4. L(A[K℄�A) = ;.

Proof. Let A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) and A = (Q;�; � ; T ; q

in

F). Eah

omputation � ofA[K℄�A is of the form ((q

0

; 0); (q

0

; 0))

u

1

�! ((q

1

; f

1

); (q

1

; f

1

))

u

2

�!

� � �

u

n

�! ((q

n

; f

n

); (q

n

; f

n

)), where, for i 2 [0::n℄, u

i

2 T [K℄� T .

By Propositions 5.1 and 5.2, orresponding to the sequene u

1

u

2

: : : u

n

there

exists a maximal sequene of transitions v

1

v

2

: : : v

m

of A�A where:

{ Eah v

i

belongs to T � T .

{ For eah i 2 [1::m℄, �

2

(v

i

) = �

2

(u

i

).

{ For eah i 2 [1::m℄, �

1

(v

i

) =

�

(�

1

(u

i

))

�1

if �

1

(u

i

) 6= "

" otherwise

{ �

0

: ((q

0

; 0); (q

0

; 0))

v

1

�! ((q

1

; f

0

1

); (q

1

; f

1

))

v

2

�! � � �

v

m

�! ((q

m

; f

0

m

); (q

m

; f

m

)) is

a omputation of A�A.

{ If m < n, then for some

^

C 2 � , �(u

m+1

) =

^

C

�

, f

0

m

(

^

C) = 0 and f

0

j

(

^

C) = K

for some j 2 [0::m℄.

Let us de�ne the residue length of � to be n�m.

Suppose that L(A[K℄�A) is non-empty. Sine L(A�A) is empty, it is easy

to see that any aepting run of A[K℄�A has a non-zero residue length. Without

loss of generality, assume that the run � onsidered earlier is an aepting run

of A[K℄ � A whose residue length is minimal. Then, in the orresponding run

�

0

of A � A, the ounter

^

C 2 � attains the value K along �

0

and then goes

to 0 at the end of the run so that the move labelled

^

C

�

is not enabled at

((q

m

; f

0

m

); (q

m

; f

m

)).

Sine K exeeds the strong pumping onstant for A�A, by Lemma 4.2 we

an �nd an alternative run �̂

0

: ((q

0

; 0); (q

0

; 0))

v

0

1

v

0

2

:::v

0

`

=) ((q

0

`

; f

0

`

); (q

0

`

; f

0

`

)) with

(q

0

`

; q

0

`

) = (q

m

; q

m

), f

0

`

(

^

C) � K, and all other ounter values at (f

0

`

; f

0

`

) at least

as large as at (f

m

; f

0

m

). In partiular, every ounter whih exeeded the uto�

value K along �

0

is pumpable and thus exeeds K along �̂

0

as well.

By Propositions 5.1 and 5.2, we an onstrut a orresponding sequene of

transitions u

0

1

u

0

2

: : : u

0

`

over T [K℄�T suh that �

1

(v

0

1

v

0

2

: : : v

0

`

) = (�

1

(u

0

1

u

0

2

: : : u

0

`

))

�1

and �

2

(v

0

1

v

0

2

: : : v

0

`

) = �

2

(u

0

1

u

0

2

: : : u

0

`

), where �̂ : ((q

0

; 0); (q

0

; 0))

u

0

1

u

0

2

:::u

0

`

=)

((q

00

`

; f

00

`

); (q

0

`

; f

0

`

)) is a run of A[K℄ � A with (q

00

`

; q

0

`

) = (q

m

; q

m

) and f

00

`

(C) �

f

m

(C) for eah C 2 � .

We already know that f

0

`

(C) � f

m

(C) for eah C 2 � . Further, sine every

ounter whih exeeded the uto� value K along �

0

also exeeds K along �̂

0

, we

know that any ounter whih has beome full along � would also have saturated

296

along �̂. Thus, we an extend �̂ to an aepting run � by appending the sequene

of transitions u

m+1

u

m+2

: : : u

n

whih our at the end of the aepting run �.

Reall that �(u

m+1

) =

^

C

�

and f

0

`

(

^

C) � 1 by our hoie of �̂

0

. From this, it

follows that the residue length of the newly onstruted aepting run � is at

least one less than the residue length of �, whih is a ontradition, sine � was

assumed to be an aepting run of minimal residue length. 2

We an now prove Theorem 5.3.

Proof. (of Theorem 5.3)

Let L = L(A) and L = L(A). De�ne A[K℄ as above. We laim that L

�

(A[K℄) =

L(A). By Proposition 5.1, we know that L(A) � L

�

(A[K℄). On the other hand,

from the previous lemma it follows that L

�

(A[K℄)\L(A) = ;. This implies that

L

�

(A[K℄) � L(A), whih means that L

�

(A[K℄) � L(A). So L(A) = L

�

(A[K℄).

Sine A[K℄ is a �nite-state automaton, it follows that L(A) is regular. Therefore,

if a language and its omplement are message-passing reognisable then the

language is regular.

The onverse is obvious. 2

Observe that our onstrution is e�etive|given message-passing automata A

and A for L and L respetively, we an onstrut a �nite-state automaton A[K℄

for L.

5.2 Regularity and determinay

Our next haraterisation of regularity is in terms of deterministi message-

passing automata.

Deterministi Message-Passing Automata A message-passing automaton

A = (Q;�; �; T; q

in

; F) is said to be deterministi if the following two onditions

hold:

{ If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

; d

2

2 �, then d

1

= d

2

implies q

1

= q

2

.

{ If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

2 �

�

, then d

1

= d

2

and q

1

= q

2

.

Though this notion of determinism seems rather strong, any relaxation of

the de�nition will allow deterministi automata to simulate non-deterministi

automata in a trivial manner. If we permit the automaton to hoose between

a ounter move and another transition (whih may or may not be a ounter

move), we an add a spurious ounter C and replae any non-deterministi hoie

between transitions t

1

= (q; d; q

1

) and t

2

= (q; d; q

2

) by a hoie between t

1

and

a move (q; C

+

; q

C

) involving C whih leads to a new state where t

0

2

= (q

C

; d; q

2

)

is enabled.

The following result haraterises languages aepted by deterministi message-

passing automata. Similar results have been demonstrated for deterministi Petri

net languages [Pel87,V82℄.

297

Proposition 5.5. Let A be a deterministi message-passing automaton. Then,

either L(A) is regular or there is a word w =2 L(A) suh that every extension of

w also does not belong to L(A).

Proof Sketh. Let A be a deterministi message-passing automaton. We say that

A is � -bloked on a word w if, while reading w, A gets stuk at a state with a

single outgoing edge labelled C

�

, for some ounter C. If A is � -bloked on w,

it is easy to see A is also � -bloked on w

0

for any extension w

0

of w, so every

extension of w is outside L(A).

If A is not � -bloked for any word w, we onstrut a �nite-state automaton

A

0

with "-moves over � with the same state spae as A. In A

0

, eah ounter

move (q; d; q

0

), d 2 �

�

, is replaed by a "-move (q; "; q

0

). There is a natural

orrespondene between omputations of A and runs of A

0

. It is easy to see that

L(A) � L(A

0

). Using the fat that A is not � -bloked for any word w, we an

show that any aepting run of A

0

an be mapped bak to an aepting run of

A. Thus L(A

0

) � L(A). In other words, L(A

0

) = L(A), so L(A) is regular. 2

The preeding haraterisation implies that non-deterministi message-passing

automata are stritly more powerful than deterministi message-passing au-

tomata. Consider the language L = fw j w = w

1

a

m

b

n

aw

2

g where w

1

; w

2

2

fa; bg

�

and m � n � 1. This language is message-passing reognisable but vio-

lates the ondition of Proposition 5.5: L is not regular and for any word w =2 L,

we an always �nd an extension of w in L|for instane, waba 2 L for all

w 2 fa; bg

�

.

Observe, however, that even deterministi message-passing automata are

stritly more powerful than normal �nite-state automata. For instane, the lan-

guage L

ge

of Example 2.1 is not regular but the automaton aepting the lan-

guage is deterministi.

With these observations about deterministi automata behind us, we an now

state our alternative haraterisation of regularity. First, we need some notation.

For a string w, let w

R

denote the string obtained by reading w from right to

left. For a language L, let L

R

be the set of strings fw

R

j w 2 Lg.

Theorem 5.6. Let L be a message-passing reognisable language suh that L

R

is reognised by a deterministi message-passing automaton. Then, L is regular.

The idea is to ompute a onstant � whih depends on the number of states

M and the number of ounters N of A and to then show that L is reognised

by the �nite-state automaton L[� ℄. The proof is quite involved and we omit it

due to lak of spae.

6 Disussion

Other models for asynhronous ommmuniation Many earlier attempts

to model asynhronous systems fous on the in�nite-state ase|for instane, the

298

port automaton model of Panangaden and Stark [PS88℄ and the I/O automaton

model of Lynh and Tuttle [LT87℄. Also, earlier work has looked at issues far

removed from those whih are traditionally onsidered in the study of �nite-state

systems.

Reently, Abdulla and Jonsson have studied deision problems for distributed

systems with asynhronous ommuniation [AJ93℄. However, they model han-

nels as unbounded, �fo bu�ers, a framework in whih most interesting questions

beome undeidable. The results of [AJ93℄ show that the �fo model beomes

tratable if messages may be lost in transit: questions suh as reahability of

on�gurations beome deidable. While their results are, in general, inompara-

ble to ours, we remark that their positive results hold for our model as well.

Petri net languages Our model is losely related to Petri nets [G78,J86℄. We

an go bak and forth between labelled Petri nets and message-passing networks

while maintaining a bijetion between the �ring sequenes of a net N and the

omputations of the orresponding automaton A.

There are several ways to assoiate a language with a Petri net [H75,J86,Pet81℄.

The �rst is to examine all �ring sequenes of the net. The seond is to look at

�ring sequenes whih lead to a set of �nal markings. The third is to identify

�ring sequenes whih reah markings whih dominate some �nal marking. The

third lass orresponds to message-passing reognisable languages.

A number of positive results have been established for the �rst lass of

languages|for instane, regularity is deidable [GY80,VV80℄. On the other

hand, a number of negative results have been established for the seond lass of

languages|for instane, it is undeidable whether suh a language ontains all

strings [VV80℄. However, none of these results, positive or negative, arry over

to the third lass|ours is one of the few tangible results for this lass of Petri

net languages.

Diretions for future work We believe that Theorem 5.6 holds even with-

out the determinay requirement on L

R

. An interesting question is to develop a

method for transforming sequential spei�ations in terms of message-passing au-

tomata into equivalent distributed spei�ations in terms of the message-passing

network model of [MNRS98℄. Another hallenging question is the deidability of

regularity for message-passing reognisable languages.

Referenes

[AJ93℄ P.A. Abdulla and B. Jonsson: Verifying programs with unreliable hannels,

in Pro. 8th IEEE Symp. Logi in Computer Siene, Montreal, Canada

(1993).

[GY80℄ A. Ginzburg and M. Yoeli: Vetor Addition Systems and Regular Lan-

guages, J. Comput. System. Si. 20 (1980) 277{284

[G78℄ S.A. Greibah: Remarks on Blind and Partially Blind One-Way Multi-

ounter Mahines, Theoret. Comput. Si 7 (1978) 311{324.

[H75℄ M. Hak: Petri Net Languages, C.S.G. Memo 124, Projet MAC, MIT

(1975).

299

[H91℄ G.J. Holzmann: Design and validation of omputer protools, Prentie Hall

(1991).

[J86℄ M. Jantzen: Language Theory of Petri Nets, in W. Brauer, W. Reisig,

G. Rozenberg (eds.), Petri Nets: Central Models and Their Properties,

Advanes in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397{412.

[KM69℄ R.M. Karp and R.E. Miller: Parallel Program Shemata, J. Comput. Sys-

tem Si., 3 (4) (1969) 167{195.

[LT87℄ N.A. Lynh and M. Tuttle: Hierarhial Corretness Proofs for Distributed

Algorithms, Tehnial Report MIT/LCS/TR-387, Laboratory for Com-

puter Siene, MIT (1987).

[M78℄ A. Mazurkiewiz: Conurrent Program Shemes and their Interpretations,

Report DAIMI-PB-78, Computer Siene Department, Aarhus University,

Denmark (1978).

[MNRS97℄ M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni:

Message-Passing Automata and Asynhronous Communiation, Report

TCS-97-4, SPIC Mathematial Institute, Madras, India (1997).

[MNRS98℄ M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni: Robust

Asynhronous Protools are Finite-State, Pro. ICALP 98, Springer LNCS

(1998) (to appear).

[PS88℄ P. Panangaden and E.W. Stark: Computations, Residuals, and the Power

of Indeterminay, in T. Lepisto and A. Salomaa (eds.), Pro. ICALP '88,

Springer LNCS 317 (1988) 439{454.

[Pel87℄ E. Pelz: Closure Properties of Deterministi Petri Nets, Pro. STACS 87,

Springer LNCS 247, (1987) 371-382.

[Pet81℄ J.L. Peterson: Petri net theory and the modelling of systems, Prentie Hall

(1981).

[VV80℄ R. Valk and G. Vidal-Naquet: Petri Nets and Regular Languages, J. Com-

put. System. Si. 20 (1980) 299{325.

[V82℄ G. Vidal-Naquet: Deterministi languages for Petri nets, Appliation and

Theory of Petri Nets, Informatik-Fahberihte 52, Springer-Verlag (1982).

[Z87℄ W. Zielonka: Notes on Finite Asynhronous Automata, R.A.I.R.O.|Inf.

Th�eor. et Appl., 21 (1987) 99{135.

