
Model Checking Software, 10th International SPIN Workshop, Proceedings:
T. Ball, S.K. Rajamani (eds.)
Springer Lecture Notes in Computer Science 2648 (2003), 151–165.

Checking consistency of SDL+MSC

specifications?

Deepak D’Souza and Madhavan Mukund

Chennai Mathematical Institute
92 G N Chetty Road, Chennai 600 017, India

Email: {deepak,madhavan}@cmi.ac.in

Abstract. We consider the problem of checking whether a distributed
system described in SDL is consistent with a set of MSCs that constrain
the interaction between the processes. In general, the MSC constraints
may be both positive and negative. The system should execute all the
positive scenarios “sensibly”. On the other hand, the negative MSCs rule
out some interactions as illegal. We would then like to verify that all the
remaining legal interactions satisfy a desired global property, specified in
linear-time temporal logic. We outline an approach to solve this problem
using Spin, building in a modular way on existing tools.

1 Introduction

A distributed system involves several modules that interact with each other to
produce a global behaviour. The specification of each module in the system
describes its local data structures and control flow. At each step, a module
either executes an internal action to update its local data or communicates and
exchanges data with another module.

The interaction between modules is usually described in terms of scenarios,
using mechanisms such as use-cases and message sequence charts. In general, it
is difficult to exhaustively analyze all possible interaction scenarios and arrive at
a distributed implementation that permits precisely the set of desired scenarios.

A more realistic approach is to iteratively maintain two sets of scenarios,
positive and negative. Positive scenarios are those that the system is designed
to execute—for instance, these may describe a handshaking protocol to set up
a reliable communication channel between two hosts on a network. Negative
scenarios indicate undesirable behaviours that the designer is aware of, such as
a situation when both hosts simultaneously try to set up the channel, leading
to a collision. In general, the set of positive and negative scenarios is not likely
to be exhaustive—an interaction may not be ruled out by the set of negative
scenarios, even though it is not explicitly one of the positive scenarios.

A reasonable expectation at each stage in the iterative design of the system
is the following:

? Partly supported by a grant from Tata Research Development and Design Centre,
Pune, India.



152

– The system should be able to execute every positive scenario in at least one
way. Each such execution should leave the system in a specified safe state.

– All legal behaviours of the system—those that do not exhibit any of the
negative scenarios—should satisfy a desired global property.

If the system fails the first test, the existing design has a major flaw that must
be fixed. On the other hand, failure to pass the second test probably reveals an
incomplete understanding on the part of the system designer of which interaction
scenarios are undesirable. In either case, the test provides some insight into how
the design should be refined in the next iteration.

When the system passes both tests, the designer can concentrate on cutting
out the current set of negative scenarios to complete the design. The interactions
permitted by the system at this point may exceed the positive scenarios required
by the original design, but this relaxation on its own does not violate the global
specification. One virtue of this approach is that the designer naturally arrives
at a less constrained, simpler implementation of the specification, rather than a
precise implementation that may be unnecessarily complex.

To make the problem more concrete, we fix the following context: individ-
ual modules are described using the visual specification language SDL [11, 14].
Scenarios involving specific subsets of modules are specified using collections of
message sequence charts (MSCs) [10, 16]. The global specification is a formula
in linear-time temporal logic (LTL) [15, 12].

We propose a solution to the problem using the model-checking system
Spin [9]. The tools described in [4, 3] jointly provide an automated framework for
translating a large class of SDL specifications into Promela, the process descrip-
tion language used by Spin. Our approach is to add an extra monitor process to
the Promela translation of an SDL specification. Each of the Promela processes
arising out of the translation is modified so that it synchronizes with the monitor
process whenever it sends or receives a message. The monitor process can thus
track the communication pattern executed by the original set of processes.

One complication is that we interpret the positive and negative MSC specifi-
cations as templates that may embed loosely in the actual communication graph
of the processes [13]. The monitor process has to determine how the template is
embedded. For positive specifications, it suffices to guess the embedding. To deal
with negative specifications, however, we need to check embedability determin-
istically. We establish a graph-theoretic property of embeddings that permits us
to construct a deterministic monitor process. After constructing an appropriate
monitor process, depending on whether we are checking the positive or negative
scenarios, we enhance the original temporal logic specification for the system
with a temporal logic assertion about the monitor to form a more complex for-
mula that can be automatically converted into a Spin never claim.

The paper is organized as follows. We begin with a description of how we
interpret positive and negative MSC specifications. The next section provides
some background on synthesizing finite-state automata from MSCs. Section 4
is the heart of the paper, describing how we tackle the consistency problem in
Promela. We conclude with a summary and discussion of future work.



153

2 Positive and negative MSC specifications

We assume that the processes in the distributed system specified in SDL are con-
nected by one-way, point-to-point, FIFO channels. In general, a pair of processes
may be connected by more than one such channel.

A sequence of messages transmitted between the processes can be described
graphically using a message sequence chart (MSC). We do not formally define
either SDL or MSCs in this paper—both notations are reasonably intuitive and
we will explain the notation through some representative examples.

LISTEN

socket(SYN)

socket(SYN)

SYN_SENT

ACK_RECD

passive open

SYN_RECD socket(SYN)socket(ACK)

CLOSED

active open

socket(ACK)

socket(ACK)

ACK_SENT

socket(ACK) CONNECT

COLLIDE

Fig. 1. A simple TCP-like connection establishment protocol

In Figure 1, a simplified version of the connection phase of the TCP protocol
is specified in SDL. The system has two identical copies of this process. One of
the copies is expected to be passive (the server) while the other is active (the
client). The server performs a passive open and waits in state LISTEN. The client
performs an active open and sends a SYN to the server, who responds with an
ACK. The client then replies with another ACK and both client and server move
into the state CONNECT. If the client receives SYN after an active open, it aborts
the connection and goes into the state COLLIDE, indicating that a collision has
occurred with an active open of another client.

The desired global property for this run is that whenever both processes have
moved off the CLOSED state and at least one of them is the client, a connection
is established—that is, both processes reach the state CONNECT. However, it is



154

easy to observe that the property fails if both processes simultaneously perform
an active open. This will lead to both processes moving to the state COLLIDE.

We can rule out such a deadlock with the positive and negative MSC spec-
ifications in Figure 2. The positive MSC specifications are given by the MSCs
Allowed while the negative MSC specification is given by the MSC Disallowed.
The positive MSCs describe the two symmetric desirable scenarios where one
process acts as a client and the other as a server. The negative MSC describes
an undesirable scenario where both processes simultaneously start off as clients.
Notice that the positive and negative scenarios in this case are matched exactly
in the communication pattern of the system being analyzed.

We shall assume, in general, that both the sets Allowed and Disallowed are
finite—this is a reasonable assumption because most real world system specifi-
cations do, in fact, enumerate only a finite set of scenarios. We suggest how to
deal with a relaxation of this finiteness requirement in Section 5.

SYN SYN SYN

ACKACK

SYN

ACK ACK

DisallowedAllowed

Fig. 2. MSC specifications for the connection establishment protocol

As we have remarked, in the first example, the MSCs in Allowed and Disal-

lowed are matched exactly by the communication pattern between the processes.
In general, we relax the interpretation of the sets Allowed and Disallowed and
regard them as templates that may be embedded in the system behaviour.

The notion of one MSC being embedded in another is the usual one—there
is an injective function mapping the messages in the first MSC into the messages
in the second MSC that preserves the partial order between the events of the
first MSC. (The next section describes how to represent MSCs as labelled partial
orders. For a more formal definition of MSC embedding, see [13].)

For positive scenarios, embeddings permit the implementation to use auxil-
iary messages to implement the specification. Suppose we enhance our connection
establishment protocol to permit the processes to handle a collision as shown in
Figure 3. Nondeterministically, one of the processes decides to remain a client
and requests the other process to exchange roles by sending an XCH message. If
exactly one of the processes sends the XCH message, a connection is established.

The communication patterns exhibited by the enhanced protocol are shown
in Figure 4. Observe that two new patterns lead to connection. Both of these
embed the original positive specifications in Figure 2 (the embedded pattern is
shown using larger arrowheads). The negative behaviours can be characterized



155

LISTEN

socket(SYN)

socket(SYN)

SYN_SENT

ACK_RECD

CLOSED socket(SYN)

passive open

SYN_RECD

socket(ACK)

ACK_SENT

socket(ACK) CONNECT

socket(ACK)

active open

socket(ACK)

COLLIDE ACK_OKXCH_OK

socket(XCH) socket(XCH)

socket(XCH)

socket(ACK)socket(ACK)

XCH_SENTWAIT_XCH

socket(ACK)

socket(ACK) socket(ACK)

HANDLE_COLLISION

Fig. 3. An enhanced connection protocol

by the occurrence of crossing pairs of ACK messages or XCH messages. This
yields a revised set Disallowed—see Figure 5. Observe that both the positive and
negative scenarios in this case must be interpreted as templates to be embedded.

The example in Figure 6 illustrates another aspect of treating scenarios mod-
ulo embedding. The free behaviour of these two processes permits communication
patterns like the k-MSC shown in the centre of Figure 7. The variable n in the
first process keeps track of the number of messages in the channel c2 that are
yet to be read by it.

If we impose the constraint Disallowed shown at the left of Figure 7, we rule
out k-MSCs for all k > 1. Effectively, the only legal communication pattern is the
one shown on the right of Figure 7. In other words, the MSC constraint Disallowed

guarantees that the system satisfies the property that in every reachable global
state, the value of n is bounded by 1. If we demanded an exact match of the
MSCs in Disallowed we would have to generate an infinite family of incomparable
MSCs, one for each k, to achieve the same effect.

3 From MSCs to finite-state automata

Each message in an MSC can be broken up into two events, one where the
message is sent and the other where it is received. Let P = {p, q, . . .} denote
the set of processes, Ch = {c, c′, . . .} the set of channels and ∆ = {m,m′, . . .} a
finite set of message types. Each channel is a point-to-point FIFO link between a



156

ACK

ACK

SYN SYN

ACK

ACK

SYN SYNSYN SYN

XCH
ACK

ACK ACK

ACK
XCH

SYN SYN

ACK

SYN SYN

XCH XCHACK

COLLIDECONNECT

Fig. 4. MSCs exhibited by the enhanced protocol

SYN

ACKACK

SYN

ACK ACK

ACK XCH XCHACK

DisallowedAllowed

Fig. 5. Positive and negative MSC specifications for the enhanced protocol

START

n := 0

n := n + 1

DECIDE

n := n − 1

TEST

n>0

END

Y

ECHO

c1(MSG)

c1(MSG)

c2(ACK)

c2(ACK)

START

Fig. 6. A counting process

{k

{k
Disallowed An illegal k−MSC Typical legal MSC

MSG

MSG

MSG

MSG

MSG
MSG

MSG

A
CK

A
CK

MSG

ACK

ACK

ACK
A

CK

A
CKA
CK

Fig. 7. MSC specifications for the counting process



157

pair of processes. Thus, we have functions src : Ch → P and tgt : Ch → P that
uniquely identify the source and target process of each channel. The transfer of a
messagem from p to q on channel c generates a matching pair of events; the send
event c!m and the receive event c?m. We need not mention the processes p and q
because these can be unambiguously recovered as src(c) and tgt(c), respectively.

The MSC defines a labelled partial order on these events. The partial order
on events is obtained from the two basic orders implicit in the MSC:

– The send event for a message precedes the corresponding receive event.
– All events executed by a single process are linearly ordered.

An MSC can be uniquely recovered from the set of linearizations of its events.
(In fact, a single linearization determines the structure of the MSC.) Stated
differently, each MSC has a canonical representation as a finite language over
the alphabet {c!m, c?m | c ∈ Ch,m ∈ ∆}. We can thus associate with an MSC
M a finite-state automaton AM that recognizes the set of its linearizations.

We can extend this framework to define regular collections of MSCs. We say
that a set M of MSCs is regular just in case the set of linearizations generated
by the MSCs in M forms a regular language. If we look at the minimum deter-
ministic finite-state automaton (DFA) AM associated with a regular collection
of MSCs M, we can uniquely associate with each state s in AM a vector of val-
ues indicating the number of messages pending (that is, as yet undelivered) in
each channel at that state. This vector is an invariant property of the state—no
matter which linearization takes us to this state, the channel contents at the
state will be according to the given vector [8].

A useful formalism for presenting sets of MSCs is that of a hierarchical mes-
sage sequence chart (HMSC). The most basic form of an HMSC is a message
sequence graph (MSG). An MSG is a finite, directed graph in which each vertex
is labelled by a single MSC. A path through the MSG traces out a single MSC
obtained by concatenating the MSCs observed at the vertices that lie along the
path. The MSG has a start vertex and a set of final vertices. The set of MSCs
generated by the MSG is the set traced out by paths that originate at the start
vertex and end at one of the final vertices. In general, an HMSC is like an MSG
except that the annotation of a vertex can, in turn, be an HMSC, with the
restriction that the overall level of nesting be bounded.

It is not difficult to show that HMSCs can define collections of MSCs that are
not regular. A sufficient condition is that the HMSC satisfy a structural condition
called boundedness [2]. Unfortunately, boundedness is not a necessary condition
for regularity—in general, it is undecidable whether an HMSC defines a regular
language [7]. However bounded HMSCs do satisfy a completeness property. It
turns out that bounded HMSCs can describe all finitely-generated regular col-
lections of MSCs—that is, collections that are generated by concatenating MSCs
from a finite set of “atomic” MSCs [7].

In this paper, we restrict our attention to finite collections of MSCs, which
are always regular. For reasons that we shall make clear in the next section, we
will treat each MSC separately. In Section 5, we will discuss the possibility of
extending our work to deal with infinite regular collections of MSCs.



158

4 Monitoring communications in Promela

As we mentioned in the Introduction, the tools described in [4, 3] provide a
mechanism for translating SDL processes into Promela, the process description
language used by the Spin system. We add a monitor process to the Promela
translation of the SDL code and modify the code of every other process p to
synchronize with the monitor process each time p communicates with another
process q in the system. Before describing how to construct such a monitor
process, we show how we use it to solve the problem of checking that the given
SDL specification is consistent with the positive and negative MSC scenarios.

4.1 Verification using the monitor process

Let M be an MSC scenario. We assume that we can construct a monitor process
with a local boolean variable good that is initially false and becomes true when
the monitor detects that a run of the system embeds the MSC M .

Positive specifications For a positive scenario M , the problem of checking
consistency can be broken up into two subgoals:

– Liveness: Show that it is possible for the system to exhibit the scenario M
(in an embedded form).

– Safety: Show that whenever the system exhibits the scenario M , it satisfies
a desirable global property. For instance, in Figure 1, the desirable property
is that the two processes reach the state CONNECT. In general, we may
assume that this desired property is specified by an LTL formula ϕM .

The LTL formula 3good specifies that the monitor process detects an em-
bedding of M . To check the liveness condition, we can do conventional LTL
model-checking for the formula ¬3good. If the system does satisfy this speci-
fication, then no execution of the system embeds the MSC M and the system
under test fails the liveness condition.

To verify the safety condition, we check that the modified system incorporat-
ing the monitor process satisfies the LTL formula 3good ⇒ ϕM . This formula
asserts that any execution that embeds M must satisfy ϕM .

Thus, both the conditions that we need to verify reduce to model-checking
formulas of LTL, which is built in to Spin. An important observation is that we
do not need to reimplement the translation from LTL formulas into Spin never
claims—we can use any standard translation, such as the algorithm from [6] that
is built in to Spin or the newer translation described in [5].

Negative specifications Let M be a negative scenario and let ψ denote a
desirable global property of the system. The goal is to show that any run of the
system that does not embed M satisfies ψ. Equivalently, we have to show that
every run either embeds M or satisfies ψ. This is captured by the LTL formula
3good∨ψ. Thus, verifying the consistency of negative scenarios also reduces to
conventional LTL model-checking.



159

Nondeterminism in the monitor There is an important distinction between
the positive and negative cases. The natural approach to detect whether M
can be embedded in the communication pattern of the current run is to use
nondeterminism. However, because of the nondeterminism, there will, in general,
be runs of the system where the main computation does embed M but the
monitor does not reach the state good.

This does not matter for positive specifications. For the liveness condition
we use the negated formula ¬3good which checks that no run of the monitor
reaches the state good. For the safety formula 3good ⇒ ϕM , for every execution
of the system that embeds M , there will be at least one run of the monitor that
enters the state good and it is sufficient to verify that ϕM holds for such runs.

In the negative case, however, for the LTL formula to correctly capture the
property we wish to verify, we must ensure that the monitor process reaches the
state good whenever the current interleaving embeds M . For this, we need a
more restrictive monitor process. One way to achieve the stronger requirement
is to make the monitor deterministic.

4.2 Constructing the monitor process

Let mon be a new Promela process type and let snoop be a new channel shared
by all the Promela process types, including mon, defined as: snoop = chan[0]

of (chan,byte,bit). The channel snoop is synchronous and each rendezvous
exchanges a channel name, a message type and a bit indicating send/receive.

We assume that the SDL specification is written so that whenever p sends
a message to q, the first component of the message designates one of the finite
message-types used in the scenario specifications. We modify the Promela code
of every process p in the SDL translation so that each statement of the form
c!m(a1,...,ak) is replaced by atomic{snoop!c,m,0; c!m(a1,...,ak)}. In a
similar fashion, each statement c?m(x1,...,xk) is replaced by
atomic{snoop!c,m,1; c?m(x1,...,xk)}.

The messages on snoop inform the monitor process about the messages being
exchanged by the main Promela processes. The atomic construct ensures that
the sequence of communications observed by the monitor process is identical to
the actual communication pattern in the current interleaved execution of the
Promela processes. In the third parameter sent via snoop, 0 indicates a send
and 1 a receive. The parameters (a1,...,ak) and (x1,...,xk) associated with
message-type m are not relevant and hence ignored by snoop.

This transformation of the Promela processes generated automatically from
the original SDL specification by the tools described in [4, 3] is completely uni-
form and can be achieved using a simple edit script.

A nondeterministic monitor Recall that the goal of the monitor is to detect
whether the system specification embeds M . As we saw in Section 3, a regular
MSC language is one for which we can construct a finite-state automaton over
the alphabet {c!m, c?m | c ∈ Ch,m ∈ ∆} that recognizes the set of linearizations
of all the MSCs in the language.



160

A single MSC M is a trivial example of a regular MSC language for which
it is very simple to construct a recognizing automaton. If we project the events
of M onto a process p, the semantics of MSCs guarantees that these p-events
are linearly ordered. Thus, we can represent the MSC M in a canonical way in
terms of the sequences of p-events that it generates, for each process p ∈ P .

Clearly, for each sequence of p-events, we can construct a DFA that checks
that its input matches this sequence—for the sequence a1a2 . . . am, the automa-
ton has m+1 states s0, s1, . . . , sm with initial state s0, accepting state sm and
transitions si−1

ai−→ si, i ∈ {1, 2, . . . ,m}. We can then run the DFAs for all the
p-projections of M in parallel as a (free) product automaton to obtain a DFA
AM that recognizes all the linearizations of M .

The monitor process simulates AM to decide whether the system run exhibits
the MSC M . Since we are looking for embeddings, rather than faithful copies, of
M , the monitor nondeterministically decides which send and receive events to
include in the embedding. For this to work correctly, the monitor must ensure
that whenever it includes a send (respectively, receive) event in the embedding,
it also includes the matching receive (respectively, send) event.

To make a consistent nondeterministic choice across matching events, the
monitor maintains as auxiliary data a list Marked of pairs of type (chan,int).
If a pair (c, i) is present in Marked, it means that the message at position i in
channel c has been included in the embedding.

The monitor process executes an infinite loop that consists of receiving an
event on the channel snoop and then dealing with it as follows.

– If the new event is a send event c!m, the monitor decides (nondeterministi-
cally) whether to include the new message in the embedding.

If it decides not to include the message, there is no further work to be
done and the monitor returns to the head of the loop to await the next event
on channel snoop.

If the monitor does include the message in the embedding, it performs
the following steps:

• Add the pair (c, len(c) + 1) to the list Marked, where len is the built-in
Promela function that returns the length of the queue on channel c.

• Simulate AM for one step on the action c!m.

– If the new event is a receive event c?m, the monitor deterministically per-
forms the following action:

• For each pair (c′, i′) in Marked, if c′ = c then decrement i′.
• After the decrement, if the pair (c, 0) appears in Marked, delete it and

simulate AM for one step on the action c?m.

Thus, the monitor decides the fate of each message when it sees the send
event. If the message is included in the embedding it is marked and tracked as
it progresses through the queue. When it reaches the head of the queue, the
corresponding receive event is also included in the embedding.

Note that the state space of the monitor consists of the state space of the
DFA AM augmented with the list Marked. We can maintain Marked as an array.



161

A trivial upper bound for the number of entries in Marked is the sum of the
capacities of the channels as declared in the Promela specification. A much
better upper bound is the maximum of the channel capacities assigned to the
states of the DFA AM (as described in Section 3). Further, each entry in Marked

is bounded by the channel capacities in the Promela specification. Thus, the
monitor process always has a bounded state space.

A deterministic monitor As we noted earlier, to check the consistency of a
negative scenario M , we need to construct a deterministic monitor for M . An
obvious approach is to apply the subset construction to the nondeterministic
monitor described above. This will blow up the state space of the monitor by
an unacceptable amount since the set of possible states includes all possible
configurations of the list Marked.

A more realistic approach is to use a greedy algorithm to discover the shortest
embedding of the negative scenario in the system run. To explain this approach
we need to establish a result about MSC embeddings.

Recall that an MSC M can be equipped with a partial order ≤M on the
events in M (see Section 3). Let m1 and m2 be two messages in M , on channels
c1 and c2, respectively. We can extend the partial order ≤M from events to
messages, as follows: m1 ≤M m2 if c1!m1 ≤M c2!m2 and c1?m1 ≤M c2?m2.
Notice that if m1 and m2 are both messages on the same channel then the FIFO
semantics for channels ensures that either m1 ≤M m2 or m2 ≤M m1.

We can now order embeddings of MSCs. Let f1 : M1 → M2 and f2 : M1 →
M2 be two embeddings of MSC M1 into MSC M2. We say that f1 ≤ f2 if for
each message m in M1, f1(m) ≤M2

f2(m).

Theorem 1. Let M1,M2 be MSCs such that M1 can be embedded into M2.
Then, there is a unique minimum embedding (with respect to ≤) of M1 into M2.

Proof Sketch: For any pair of embeddings f1, f2, we construct a new embedding
f ′ such that for each message m, f ′(m) is the minimum of f1(m) and f2(m).
Clearly f ′ ≤ f1 and f ′ ≤ f2. To complete the proof, we have to show that f ′ is
indeed an embedding. We omit the details due to lack of space. ut

We can now program the monitor process to recognize the minimum embed-
ding of M1 into M2 in a greedy manner. The monitor records a finite history
of the messages exchanged by the system that it has heard about via the chan-
nel snoop. This history is recorded as a (possibly partial) MSC in terms of the
projections of the MSC onto each process p (see Section 3).

We say that an MSC M is atomic if it cannot be written as a concatenation
of smaller MSCs [7]. For instance, in Figure 2, the MSC on the right is atomic,
while both MSCs on the left can be decomposed into three atomic MSCs.

Let M be a negative scenario to be matched against the system. Let M1 ·
M2 · · ·Mk be a decomposition ofM into atomic MSCs. Then, we can sequentially
search for embeddings of the atomic MSCs M1, M2, . . . , Mk. Thus, we may



162

assume, without loss of generality, that at each stage we are trying to detect an
embedding of an atomic MSC M .

Suppose, then, that we want to check whether the scenario M can be embed-
ded into the (possibly partial) MSC M ′, where M and M ′ are both atomic. We
may assume that M ′ consists of only those message types that occur in M—we
need not record messages that will never be matched. Our strategy is to check
the embedding at the level of sequences, for canonical linearizations of M and
M ′. To fix a canonical linearization, we specify an arbitrary linear order on the
channels. There is then a unique linearization of the events of the MSC such that
e precedes e′ in the linearization if (i) e < e′ in the underlying partial order on
events or (ii) e and e′ are unordered but the channel on which e occurs is below
the channel on which e′ occurs or (iii) e is a send event and e′ is a (non-matching)
receive event along on the same channel.

In [13], a näıve one pass algorithm is used to check the embedding of one
MSC in another. Essentially, this algorithm checks that the linearization of the
template M is a subsequence of the linearization of the system behaviour M ′.
The correctness of this algorithm crucially relies on closure with respect to race
conditions [1]. In this semantics, along a process line, if a send event is immedi-
ately followed by a receive event, the two events can also occur transposed. This
would imply that a template where two messages cross (for instance, the SYN

messages in Figure 2) would be matched by an execution where the first message
is received by the second process before it despatches the second message. This
does not seem reasonable, so we interpret scenarios literally.

If we do not implicitly close scenarios with respect to race conditions, we
need to use backtracking for template matching. Consider Figure 8. Let the
channels corresponding to m and m′ be c and c′, respectively, with c less than
c′ in the linear order on channels. Then, the canonical linearizations of the two
MSCs are c!m c′!m′ c?m c′?m′ and c!m c!m c?m c′!m′ c?m c′?m′. The näıve
greedy subsequence algorithm will incorrectly try to match the event c!m from
the template on the left to the first occurrence of c!m on the right.

m m’
m

m m’

Fig. 8. Template matching requires backtracking

The backtracking algorithm proceeds as follows. Let σ = e0e1 . . . en be the
canonical linearization of the template M and σ′ = e′

0
e′
1
. . . e′` be the canonical

linearization of the system history M ′ (which may not be a complete MSC). For
each index j ∈ {0, . . . , `}, we maintain a pointer µ(j) into the set {−1, 0, 1, . . . , n}.



163

If event e′j has already been matched to event ei, then µ(j) = i. Otherwise e′j is
unmatched and µ(j) = −1. Initially, we set µ(j) = −1 for all j.

We now scan σ and σ′ from left to right. Assume that we are currently
scanning ei and e′j and the partial embedding constructed so far is reflected in
the values of µ(k), for k < j.

– If ei = e′j = c!m, set µ(j) = i and increment both i and j.
– If ei = e′j = c?m, let e′k = c!m be the matching send event in σ′. If µ(k) 6= −1,

set µ(j) = i and increment both i and j. Otherwise, set µ(j) = −1 and
increment j.

– If ei 6= e′j and e′j = c′!m′, set µ(j) = −1 and increment j.
– If ei 6= e′j and e′j = c′?m′, let e′k = c′!m′ be the matching send event in σ′. If
µ(k) = −1, set µ(j) = −1 and increment j. Otherwise, backtrack by setting
i to µ(k), µ(k′) to −1 for all k′ ∈ {k, k+1, . . . , j} and j to k+1.

Thus, backtracking occurs when we try to skip over a receive event whose
corresponding send has been matched.

We now describe the deterministic monitor. Each time the monitor receives
a new event via snoop, it does the following:

– If the message type does not occur in the pattern to be matched, do nothing.
– If the message is a send event, the event is added to the history.
– If the event is a receive event, the event is added to the history and we apply

the backtracking algorithm described above to check if the current history
embeds M .

If the algorithm succeeds, we move onto to the next (atomic) MSC to be
embedded.

If the backtracking algorithm fails but the current history is a (complete)
atomic MSC, we discard the atomic MSC and start a fresh history.

If the backtracking algorithm fails but the current history is an incomplete
MSC, we can discard any minimal event in the history that was bypassed by
the backtracking algorithm before reaching the end of the current history.
(Since backtracking is deterministic, such an event will always be skipped,
even after the history is extended.) This prunes the history.

Spin permits hidden global variables. The value of such a variable is always
undefined when enumerating the state space. Thus, hidden variables do not
increase the number of reachable states. All the auxiliary variables used by the
monitor for the backtracking algorithm can thus be declared to be hidden.

Our tactic for pruning histories does not, per se, guarantee that the history
is bounded. It is possible to do a more careful analysis and develop a criterion
to discard useless events from the history in such a way that the history size is
always bounded. However, it seems more pragmatic to fix a reasonable upper
bound on the history size based on the size of the template to be matched and
live with the possibility of false negatives rather than add further complexity to
the deterministic monitor process.

In the worst-case, our backtracking algorithm takes exponential time. How-
ever, in practice we believe that it is relatively efficient because it matches one
atomic MSC at a time, and atomic MSCs are generally quite small.



164

5 Discussion

The monitor processes described here have been constructed by hand for some
examples, including the ones described in this paper. However, we still have to
automate the process of generating the monitor process directly from the positive
and negative scenarios.

It is worth noting that at a theoretical level, the problem we have addressed is
relatively straightforward. The system specification S can be modelled as a sys-
tem of communicating finite-state processes. We can abstract away from internal
actions and obtain a corresponding message-passing automaton AS describing
its communication patterns [8]. Similarly, we can represent the single positive
and negative MSC scenario specifications by message-passing automata Apos

and Aneg , respectively. Checking the positive specification amounts to checking
whether the language L(Apos) has a nonempty intersection with L(AS), while
checking the negative specification amounts to checking whether L(AS)\L(Aneg)
is contained in the set of models L(ϕ) of the property ϕ.

An important aspect of our work is that our approach to solve the problem
uses an existing verification system. The solution builds on existing work in a
modular way. At one end, we use the SDL to Promela translation from [4, 3]. At
the other end, we use the standard translation from LTL to never claim processes
in Spin [5, 6]. Our contribution is to augment the Promela specification with a
monitor process that synchronizes with every other process in the system. This
requires us to modify the Promela code produced by the translation from SDL,
but the modification is uniform and and hence not difficult to implement.

Another important contribution is the way we combine branching-time and
linear-time specifications, using MSC constraints in conjunction with LTL for-
mulas. In our setup, the MSC constraints describe those runs of the system that
are “interesting”, which is a branching-time assertion. The LTL formula is then
treated as a conventional linear-time specification that has to hold universally
along all the selected runs. This method of combining of branching-time and
linear-time specifications does not appear to have been studied and seems to be
of independent interest.

An interesting question is how to generalize the analysis to the case where
the set of scenarios is infinite, but regular (in the sense of Section 3). For positive
scenarios, we can still construct a nondeterministic monitor, so checking safety is
a simple extension of what is done for finite sets of MSCs. However, the strategy
for establishing liveness of positive scenarios no longer works. If we check for the
satisfiability of the formula ¬3good, where the boolean condition good denotes
that one of a set M of MSCs has been observed, what we capture is a situation
where the system cannot execute any of the scenarios in M. Thus, the situation
where the system can execute some, but not all, of the scenarios in M, would not
be caught by this approach. This problem does not appear to admit an obvious
solution even at a theoretical level, using automata.

The analysis for negative scenarios is also complicated when we have an
infinite set of scenarios. There does not appear to be an obvious way to construct



165

an unambiguous monitor in this case. Without this, as we indicated earlier, the
formula good∨ ψ no longer captures the property that we are trying to check.

Yet another theoretical issue that remains to be resolved is the exact com-
plexity of the problem of detecting when one MSC embeds into another. As we
mentioned earlier, a näıve linear-time greedy algorithm is presented in [13], but
with respect to a semantics where MSC events may be reordered in the presence
of race conditions. Without this relaxation on the order of events, it is not clear
that a deterministic polynomial-time algorithm exists.

References

1. R. Alur, G. Holzmann and D. Peled: An analyzer for message sequence charts.
Software Concepts and Tools, 17(2) (1996) 70–77.

2. R. Alur and M. Yannakakis: Model checking of message sequence charts. Proc.
CONCUR’99, LNCS 1664, Springer-Verlag (1999) 114–129.

3. D. Bosnacki, D. Dams, L. Holenderski and N. Sidorova: Model checking SDL with
Spin, Proc TACAS 2000, LNCS 1785, Springer-Verlag (2002) 363–377.

4. M. Bozga, J-C. Fernandez, L. Ghirvu, S. Graf, J.P. Karimm, L. Mounier and
J. Sifakis: If: An intermediate representation for SDL and its applications, Proc.
SDL-FORUM ’99, Montreal, Canada, 1999.

5. P. Gastin and D. Oddoux: Fast LTL to Büchi automata translation, Proc. CAV
2001, LNCS 2102, Springer-Verlag (2001) 53–65.

6. R. Gerth, D. Peled, M.Y. Vardi and P. Wolper: Simple on-the-fly automatic verifi-
cation of linear temporal logic, Proc PSTV 95, Warsaw, Poland, Chapman & Hall
(1995) 3–18.

7. J.G. Henriksen, M. Mukund, K. Narayan Kumar and P.S. Thiagarajan: On Mes-
sage Sequence Graphs and Finitely Generated Regular MSC Languages, Proc.
ICALP 2000, LNCS 1853, Springer-Verlag (2000) 675–686.

8. J.G. Henriksen, M. Mukund, K. Narayan Kumar and P.S. Thiagarajan: Regular
Collections of Message Sequence Charts’, Proc. MFCS 2000, LNCS 1893, Springer-
Verlag (2000) 405–414.

9. G.J. Holzmann: The model checker SPIN, IEEE Trans. on Software Engineering,
23, 5 (1997) 279–295.

10. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU, Geneva
(1999).

11. ITU-T Recommendation Z.100: Specification and Description Language (SDL).
ITU, Geneva (1999).

12. Z. Manna and A. Pnueli: The Temporal Logic of Reactive and Concurrent Systems,
Springer-Verlag, Berlin (1991).

13. A. Muscholl, D. Peled, and Z. Su: Deciding properties for message sequence charts.
Proc. FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226–242.

14. A. Olson et al : System Engineering using SDL-92, Elsevier, North-Holland (1997).
15. A. Pnueli: The Temporal Logic of Programs, Proc. 18th IEEE FOCS (1977) 46–57.
16. E. Rudolph, P. Graubmann and J. Grabowski: Tutorial on message sequence charts,

Computer Networks and ISDN Systems—SDL and MSC, Volume 28 (1996).


