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omes with a natural notion of omponent and indued notions of onurrenyand ausality. It has a well-understood theory, at least in the linear-time set-ting [Thi95℄. This model is also the basis for system desriptions in a number ofmodel-heking tools [Kur94,Hol97℄.We establish two main sets of results in this paper. First, we haraterizewhen an arbitrary transition system is isomorphi to a produt transition sys-tem with a spei�ed distribution of ations. Our haraterization is e�etive|for �nite-state spei�ations, we an synthesize a �nite-state implementation.We then show how to obtain implementations when onurreny is spei�ed interms of an abstrat independene relation, in the sense of Mazurkiewiz traetheory [Maz89℄. We also present realizability relationships between produt tran-sition systems in terms of a natural preorder over the distribution of ationsaross agents. Our result subsumes the work of Morin [Mor98℄ on synthesizingprodut systems from deterministi spei�ations.Our seond result deals with the situation when we have global spei�ationswhih are behaviourally equivalent to, but not neessarily isomorphi to, produtsystems. The notion of behavioural equivalene whih we use is strong bisimu-lation [Mil89℄. The synthesis problem here is to implement a global transitionsystem TS as a produt transition system fTS suh that TS and fTS are bisimilarto eah other. We show how to solve this problem when the implementation isdeterministi. Notie that the spei�ation itself may be nondeterministi. Sinedistributed systems implemented in hardware, suh as digital ontrollers, are de-terministi, the determinay assumption is a natural one. Solving the synthesisproblem modulo bisimulation in the general ase where the implementation maybe nondeterministi appears to be hard.The problem of expressing a global transition system as a produt of om-ponent transition systems modulo bisimilarity has also been investigated in theontext of proess algebras in [Mol89,MM93℄. In [GM92℄, Groote and Mollerexamine the use of deomposition tehniques for the veri�ation of parallel sys-tems. These results are established in the ontext of transition systems whihare generated using proess algebra expressions. Generalizing these results toarbitrary, unstrutured, �nite-state systems appears hard.The paper is organized as follows. In the next setion we formally introdueprodut transition systems and formulate the synthesis problem. In Setion 3,we haraterize the lass of transition systems whih are isomorphi to produttransition systems. The subsequent setion extends these results to the ontextwhere the distributed implementation is desribed using an independene rela-tion. Next, we show that deterministi systems admit anonial minimal imple-mentations. In Setion 6, we present our seond main result, haraterizing thelass of transition systems whih are bisimilar to deterministi produt systems.2 The synthesis problem for produt transition systemsLabelled transition systems provide a general framework for modelling omput-ing systems. A labelled transition system is de�ned as follows.



De�nition 2.1. Let � be a �nite nonempty set of ations. A labelled transitionsystem over � is a struture TS = (Q;!; qin), where Q is a set of states,qin 2 Q is the initial state and !� Q�� �Q is the transition relation.We abbreviate a transition sequene of the form q0 a1�! q1 � � � an�! qn asq0 a1���an�! qn. In every transition system TS = (Q;!; qin) whih we enounter,we assume that eah state in Q is reahable from the initial state|that is, foreah q 2 Q there exists a transition sequene qin = q0 a1���an�! qn = q.A large lass of distributed systems an be fruitfully modelled as networks ofloal transition systems whose moves are globally synhronized through ommonations. To formalize this, we begin with the notion of a distributed alphabet.De�nition 2.2. A distributed alphabet over �, or a distribution of �, is a tupleof nonempty sets e� = h�1; : : : ; �ki suh that S1�i�k �i = �. For eah ationa 2 �, the loations of a are given by the set lo e�(a) = fi j a 2 �ig. If e� islear from the ontext, we write just lo(a) to denote lo e�(a).We onsider two distributions to be the same if they di�er only in the order oftheir omponents.Heneforth, for any natural number k, [1::k℄ denotes the set f1; 2; : : : ; kg.De�nition 2.3. Let h�1; : : : ; �ki be a distribution of �. For eah i 2 [1::k℄, letTSi = (Qi;!i; qiin) be a transition system over �i. The produt (TS1 k � � � kTSk) is the transition system TS = (Q;!; qin) over � = S1�i�k �i, where:{ qin = (q1in; : : : ; qkin).{ Q � (Q1 � � � � �Qk) and !� Q�� �Q are de�ned indutively by:� qin 2 Q.� Let q 2 Q and a 2 �. For i 2 [1::k℄, let q[i℄ denote the ith omponent ofq. If for eah i 2 lo(a), TSi has a transition q[i℄ a�!i q0i, then q a�! q0and q0 2 Q where q0[i℄ = q0i for i 2 lo(a) and q0[j℄ = q[j℄ for j =2 lo(a).We often abbreviate the produt (TS1 k � � � k TSk) by ki2[1::k℄ TSi.The synthesis problemThe synthesis problem an now be formulated as follows. If TS =(Q;!; qin) is a transition system over �, and e� = h�1; : : : ; �ki is a distri-bution of �, does there exist a e�-implementation of TS|that is, a tuple oftransition systems hTS1; : : : ; TSki suh that TSi is a transition system over �iand the produt ki2[1::k℄ TSi is isomorphi to TS?Example 2.4. Let e� = hfa; g; fb; gi be a distribution of fa; b; g. The �rst tran-sition system below is e�-implementable|using expressions in the style of proessalgebra, we an write the produt as (a+ ) k (b+ ). Similarly, the seond tran-sition system may be implemented as (a+ ) k (b+ ).



ab baab b ab baa    On the other hand, the system on the right is not e�-implementable. Intuitively,the argument is as follows. If it were implementable in two omponents withalphabets fa; g and fb; g,  would be enabled at the initial state in both om-ponents. But  an also our after both ations a and b have ourred. So,  ispossible after a in the �rst omponent and after b in the seond omponent. Thus,there are two  transitions in both omponents and the produt should exhibit alltheir ombinations, giving rise to the system in the entre. We an formalize thisargument one we have proved the results in the next setion.3 A haraterization of implementable systemsWe now haraterize e�-implementable systems. In this setion, unless otherwisespei�ed, we assume that e� = h�1; : : : ; �ki, with � = Si2[1::k℄�i.The basi idea is to label eah state of the given system by a k-tuple ofloal states (orresponding to a global state of a produt system) suh thatthe labelling funtion satis�es some onsisteny onditions. We formulate thislabelling funtion in terms of loal equivalene relations on the states of theoriginal system|for eah i 2 [1::k℄, if two states q1 and q2 of the original systemare i-equivalent, the interpretation is that the global states assigned to q1 and q2by the labelling funtion agree on the ith omponent. Our tehnique is similarto the one developed independently by Morin for the more restritive lass ofdeterministi transition system spei�ations [Mor98℄.Theorem 3.1. A transition system TS = (Q;!; qin) is e�-implementable withrespet to a distribution e� = h�1; : : : ; �ki if and only if for eah i 2 [1::k℄ thereexists an equivalene relation �i � (Q � Q) suh that the following onditionsare satis�ed:(i) If q a�! q0 and a =2 �i, then q �i q0.(ii) If q �i q0 for every i, then q = q0.(iii) Let q 2 Q and a 2 �. If for eah i 2 lo(a), there exist si; s0i 2 Q suh thatsi �i q, and si a�! s0i, then for eah hoie of suh si's and s0i's there existsq0 2 Q suh that q a�! q0 and for eah i 2 lo(a), q0 �i s0i.Proof. ()) : Suppose ki2[1::k℄ TSi is a e�-implementation of TS. We must exhibitk equivalene relations f�igi2[1::k℄, suh that onditions (i)|(iii) are satis�ed.Assume, without loss of generality, that TS is not just isomorphi to ki2[1::k℄ TSibut is in fat equal to ki2[1::k℄ TSi.



For i 2 [1::k℄, let TSi = (Qi;!i; qiin). We then have Q � (Q1�� � ��Qk) andqin = (q1in; : : : ; qkin). De�ne �i� (Q�Q) as follows: q �i q0 i� q[i℄ = q0[i℄.Sine TS is a produt transition system, it is lear that onditions (i) and(ii) are satis�ed. To establish ondition (iii), �x q 2 Q and a 2 �. Suppose thatfor eah i 2 lo(a) there is a transition si a�! s0i suh that si �i q. Clearly, foreah i 2 lo(a), si a�! s0i implies si[i℄ a�!i s0i[i℄. Moreover si[i℄ = q[i℄ by thede�nition of �i. Sine TS is a produt transition system, this implies q a�! q0,where q0[i℄ = s0i[i℄ for i 2 lo(a) and q0[i℄ = q[i℄ otherwise.(() : Suppose we are given equivalene relations f�i � (Q � Q)gi2[1::k℄ whihsatisfy onditions (i)|(iii). For eah q 2 Q and i 2 [1::k℄, let [q℄i def= fs j s �i qg.For i 2 [1::k℄, de�ne the transition system TSi = (Qi;!i; qiin) over �i as follows:{ Qi = f[q℄i j q 2 Qg, with qiin = [qin℄i.{ [q℄i a�!i [q0℄i i� a 2 �i and there exists s a�! s0 with s �i q and s0 �i q0.We wish to show that TS is isomorphi to ki2[1::k℄ TSi. Let ki2[1::k℄ TSi =( bQ; ; q̂in). We laim that the required isomorphism is given by the funtionf : Q! bQ, where f(q) = ([q℄1; : : : ; [q℄k).{ We an show that f is well-de�ned|that is f(q) 2 bQ for eah q|by indu-tion on the length of the shortest path from qin to q. We omit the details.{ We next establish that f is a bijetion. Clearly ondition (ii) implies that fis injetive. To argue that f is onto, let ([s1℄1; : : : ; [sk℄k) 2 bQ be reahablefrom q̂in in n steps. We proeed by indution on n.� Basis: If n = 0, ([s1℄1; : : : ; [sk℄k) = q̂in = f(qin).� Indution step:Let ([r1℄1; : : : ; [rk℄k) be reahable from q̂in in n�1 steps. Consider a move([r1℄1; : : : ; [rk ℄k) a ([s1℄1; : : : ; [sk℄k). By the indution hypothesis thereexists q 2 Q suh that f(q) = ([q℄1; : : : ; [q℄k) = ([r1℄1; : : : ; [rk℄k). Now,([r1℄1; : : : ; [rk ℄k) a ([s1℄1; : : : ; [sk℄k) implies that [ri℄i a�!i [si℄i for eahi 2 lo(a). Hene, for eah i 2 lo(a), there exist r0i; s0i suh that r0i �i ri,s0i �i si and r0i a�! s0i. By ondition (iii), sine q �i ri, for any hoieof suh r0i's and s0i's there exists q0 suh that q a�! q0 and q0 �i s0i foreah i 2 lo(a). We want to show that f(q0) = ([s1℄1; : : : ; [sk℄k). Fori 2 lo(a) we already know that q0 �i s0i �i si. So suppose i =2 lo(a). Inthis ase q a�! q0 implies [q0℄i = [q℄i, by ondition (i). From [q℄i = [ri℄iand [ri℄i = [si℄i it follows that [q0℄i = [si℄i.{ It is now easy to argue that f is an isomorphism|we omit the details.An e�etive synthesis proedureObserve that Theorem 3.1 yields an e�etive synthesis proedure for �nite-state spei�ations whih is exponential in the size of the original transitionsystem and the number of omponents in the distributed alphabet. The numberof ways of partitioning a �nite-state spae using equivalene relations is boundedand we an exhaustively hek eah hoie to see if it meets riteria (i){(iii) inthe statement of the theorem.



4 Synthesis and independene relationsAn abstrat way of enrihing a labelled transition system with information aboutonurreny is to equip the underlying alphabet with an independene relation|intuitively, this relation spei�es whih pairs of ations in the system an beexeuted independent of eah other.De�nition 4.1. An independene relation over � is a symmetri, irreexiverelation I � � ��.Eah distribution e� = h�1; : : : ; �ki indues a natural independene relationI e� over�|two ations are independent if they are performed at nonoverlappingsets of loations aross the system. Formally, for a; b 2 �, a I e� b , lo(a) \lo(b) = ;. The following example shows that di�erent distributions may yieldthe same independene relation.Example 4.2. If � = fa; b; ; dg and I = f(a; b); (b; a)g, then the distributionse� = hfa; ; dg; fb; ; dgi, e�0 = hfa; ; dg; fb; g; fb; dgi and e�00 = hfa; g; fa; dg;fb; g; fb; dg; f; dgi all give rise to the independene relation I.However for eah independene relation I there is a standard distribution indu-ing I , whose omponents are the maximal liques of the dependeny relationD = (� � �) � I . In the example above, the standard distribution is the onedenoted e�. Heneforth, we will denote the standard distribution for I by e�I .The synthesis problem with respet to an independene relationWe an phrase the synthesis problem in terms of independene relations asfollows. Given a transition system TS = (Q;!; qin) and a nonempty indepen-dene relation I over �, does there exist an I-implementation of TS, that is ae�-implementation of TS suh that e� indues I?We show that if a transition system admits a e�-implementation then it alsoadmits a e�I e� -implementation. Thus the synthesis problem with respet to inde-pendene relations redues to the synthesis problem for standard distributions.We begin by showing that a system that has an implementation over a distri-bution e� also has an implementation over any oarser distribution e� , obtainedby merging some omponents of e� and possibly adding some new ones.De�nition 4.3. Let e� = h�1; : : : ; �ki and e� = h�1; : : : ; �`i be distributions of�. Then e� . e� if for eah i 2 [1::k℄, there exists j 2 [1::`℄ suh that �i � �j .If e� . e� we say that e� is �ner than e� , or e� is oarser than e�.We then have the following simple observation.Proposition 4.4. If e� . e� then Ie� � I e�.Note that . is not a preorder in general. In fat e� . e� means that the maximalelements of e� are inluded in those of e� . Let us denote by ' the relation . \ &.Then, e� ' e� just means that e� and e� have the same maximal elements|ingeneral, it does not guarantee that they are idential. However, when restritedto distributions \without redundanies", . beomes a preorder.



De�nition 4.5. A distribution e� = h�1; : : : ; �ki of � is said to be simple iffor eah i; j 2 [1::k℄, i 6= j implies that �i 6� �j .Proposition 4.6. Let e� and e� be simple distributions of �. If e� ' e� thene� = e� .For any independene relation I over �, the assoiated standard distribution e�Iis a simple distribution, and is the oarsest distribution induing I . At the otherend of the spetrum, we an de�ne the �nest distribution induing I as follows:De�nition 4.7. Let I be an independene relation over �, and D = (���)�I.The distribution e�I over � is de�ned by:e�I = ffx; yg j (x; y) 2 D; x 6= yg [ ffxg j x I y for eah y 6= xgProposition 4.8. Let I be an independene relation over �. Then the distri-bution e�I is the �nest simple distribution over � that indues I.A �ner distribution an be faithfully implemented by a oarser distribution.Lemma 4.9. Let e� = h�1; : : : ; �ki and e� = h�1; : : : ; �`i be distributions of �suh that e� . e� . Then, for eah produt transition system ki2[1::k℄ TSi over e�,there exists an isomorphi produt transition system ki2[1::`℄ TSi over e� .Proof. For eah i 2 [1::k℄ let f(i) denote the least index j in [1::`℄ suh that�i � �j . For eah j 2 [1::`℄, de�ne TSj = ( bQj ; j ; q̂jin) as follows.{ If j is not in the range of f , then bQj = fq̂jing, and q̂jin a j q̂jin for eah a 2 �j .{ If j is in the range of f , let f�1(j) = fi1; i2; : : : ; img. Set TSj = (TSi1 k� � � k TSim).It is then straightforward to verify that ki2[1::k℄ TSi is isomorphi to ki2[1::`℄TSi. We omit the details.Corollary 4.10. Let TS = (Q;!; qin) be a transition system over �, and e�and e� be two distributions of � suh that e� . e� . If TS is e�-implementable itis also e� -implementable.Let I be an independene relation over �. We have already observed that e�I isthe oarsest distribution of� whose indued independene relation is I . Couplingthis remark with the preeding orollary, we an now settle the synthesis problemwith respet to independene relations.Corollary 4.11. Let TS = (Q;!; qin) be a transition system over �, and e�be a distribution of � induing the independene relation I. Then if TS is e�-implementable it is also e�I -implementable. Moreover TS is I-implementable ifand only if it is e�I -implementable.We remark that the onverse of Lemma 4.9 is not true|if e� . e� , it may bethe ase that TS is e� -implementable but not e�-implementable. Details an befound in the full paper [CMT99℄.



5 Canonial implementations and determinayA system may have more than one e�-implementation for a �xed distribution e�.For instane, the system d b aba b aa bhas two implementations with respet to the distributed alphabet e� = hfa; ; dg;fb; ; dgi, namely a+ (a+ d) k (b+ d) and (a+ d) k b+ (b+ d).One question that naturally arises is whether there exists a unique minimalor maximal family of equivalene relations f�1; : : : ;�kg on states that makesTheorem 3.1 go through. We say that a family f�1; : : : ;�kg is minimal (respe-tively, maximal) if there is no other family f�01; : : : ;�0kg with respet to whihTS is e�-implementable with �0i � �i (respetively, �i � �0i) for eah i 2 [1::k℄.It turns out that for deterministi systems, we an �nd unique minimal im-plementations. A transition system TS = (Q;!; qin) is deterministi if q a�! q0and q a�! q00 imply that q0 = q00.Theorem 5.1. Suppose TS = (Q;!; qin) is deterministi and e�-implementable.Then there exists a unique minimal family f�1; : : : ;�kg of equivalene relationson states with respet to whih TS is e�-implementable.Proof. Suppose that f�1; : : : ;�kg and f�01; : : : ;�0kg are two families whih rep-resent e�-implementations of TS. Let fb�1; : : : ; b�kg be the intersetion family,given by q b�i q0 , q �i q0 ^ q �0i q0.By de�nition, b�i ��i and b�i ��0i. Thus, it suÆes to show that fb�1; : : : ; b�kgrepresents a e�-implementation of TS. From the de�nition of the relationsfb�1; : : : ; b�kg, it is obvious that both onditions (i) and (ii) of Theorem 3.1 aresatis�ed. Now suppose that q 2 Q and a 2 �. For every i 2 lo(a), let si; s0i 2 Qbe suh that si b�i q and si a�! s0i. This means that for every i 2 lo(a), bothsi �i q and si �0i q. Hene by ondition (iii) there exists q0 suh that q a�! q0and q0 �i s0i for every i 2 lo(a). Similarly, there exists q00 suh that q a�! q00and q00 �i s0i for every i 2 lo(a). Sine TS is deterministi, it must be q0 = q00.Thus, q0 = q00 is suh that q0 b�i s0i for eah i 2 lo(a).This result leads us to onjeture that the synthesis problem for deterministisystems is muh less expensive omputationally than the synthesis problem in thegeneral ase, sine it suÆes to look for the unique minimal family of equivalenerelations whih desribe the implementation.
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We onlude this setion by observing that a de-terministi system may have more than one maximalfamily f�1; : : : ;�kg for whih it is e�-implementable.For instane the system on the left has two distintmaximal implementations with respet to the distri-bution hfa; g; fb; gi, namely (�x X: a+ X) k b+ band a + a k (�x Y: b + Y ), whose omponents arenot even language equivalent.6 Synthesis modulo bisimulationIn the ourse of speifying a system, we may aidentally destroy its inherentprodut struture. This may happen, for example, if we optimize the designand eliminate redundant states. In suh situations, we would like to be able toreonstrut a produt transition system from the redued spei�ation. Sine thesynthesized system will not, in general, be isomorphi to the spei�ation, weneed a riterion for ensuring that the two systems are behaviourally equivalent.We use strong bisimulation [Mil89℄ for this purpose.In general, synthesizing a behaviourally equivalent produt implementationfrom a redued spei�ation appears to be a hard problem. In this setion, weshow how to solve the problem for redued spei�ations whih an be imple-mented as deterministi produt transition systems|that is, the global transi-tion system generated by the implementation is deterministi. Notie that thespei�ation itself may be nondeterministi. Sine many distributed systems im-plemented in hardware, suh as digital ontrollers, are atually deterministi,our haraterization yields a synthesis result for a large lass of useful systems.We begin by realling the de�nition of bisimulation.De�nition 6.1. A bisimulation between a pair of transition systems TS1 =(Q1;!1; q1in) and TS2 = (Q2;!2; q2in) is a relation R � (Q1 �Q2) suh that:{ (q1in; q2in) 2 R.{ If (q1; q2) 2 R and q1 a�!1 q01, there exists q02, q2 a�!2 q02 and (q01; q02) 2 R.{ If (q1; q2) 2 R and q2 a�!2 q02, there exists q01, q1 a�!1 q01 and (q01; q02) 2 R.The synthesis problem modulo bisimilarityThe synthesis problem modulo bisimilarity an now be formulated as follows.If TS = (Q;!; qin) is a transition system over �, and e� = h�1; : : : ; �ki is adistribution of �, does there exist a produt system ki2[1::k℄ TSi over e� suhthat ki2[1::k℄ TSi is bisimilar to TS?To settle this question for deterministi implementations, we need to onsiderprodut languages.Languages Let TS = (Q;!; qin) be a transition system over �. The languageof TS is the set L(TS) � �� onsisting of the labels along all runs of TS. Inother words, L(TS) = fw j qin w�! q; q 2 Qg.



Notie that L(TS) is always pre�x-losed and always ontains the emptyword. Moreover, L(TS) is regular whenever TS is �nite. For the rest of thissetion, we assume all transition systems whih we enounter are �nite.Produt languages Let L � �� and let e� = h�1; : : : ; �ki be a distributionof �. For w 2 ��, let w��i denote the projetion of w onto �i, obtained byerasing all letters in w whih do not belong to �i.The language L is a produt language over e� if for eah i 2 [1::k℄ there is alanguage Li � ��i suh that L = fw j w��i 2 Li; i 2 [1::k℄g.For deterministi transition systems, bisimilarity oinides with languageequivalene. We next show that we an extend this result to get a simple har-aterization of transition systems whih are bisimilar to deterministi produttransition systems. We �rst reall a basi de�nition.Bisimulation quotient Let TS = (Q;!; qin) be a transition system and let�TS be the largest bisimulation relation between TS and itself. The relation�TS de�nes an equivalene relation over Q. For q 2 Q, let [q℄ denote the �TS-equivalene lass ontaining q. The bisimulation quotient of TS is the transitionsystem TS=�TS = ( bQ; ; [qin℄) where{ bQ = f[q℄ j q 2 Qg.{ [q℄ a [q0℄ if there exist q1 2 [q℄ and q01 2 [q0℄ suh that q1 a�! q01.The main result of this setion is the following.Theorem 6.2. Let TS be a transition system over � and let e� be a distributionof �. The system TS is bisimilar to a deterministi produt transition systemover e� i� TS satis�es the following two onditions.{ The bisimulation quotient TS=�TS is deterministi.{ The language L(TS) is a produt language over e�.To prove this theorem, we �rst reall the following basi onnetion betweenprodut languages and produt systems [Thi95℄.Lemma 6.3. L(ki2[1::i℄ TSi) = fw j w��i 2 L(TSi); i 2 [1::k℄g.We also need the useful fat that a produt language is always the produtof its projetions [Thi95℄.Lemma 6.4. Let L � �� and let e� = h�1; : : : ; �ki be a distribution of �.For i 2 [1::k℄, let Li = fw ��i j w 2 Lg. Then, L is a produt language i�L = fw j w��i 2 Li; i 2 [1::k℄g.Notie that Lemma 6.4 yields an e�etive proedure for heking if a �nite-state transition system aepts a produt language over a distribution h�1; : : : ; �ki.For i 2 [1::k℄, onstrut the �nite-state system TSi suh that L(TSi) = L��iand then verify that L(TS) = L(ki2[1::k℄ TSi).Next, we state without proof some elementary fats about bisimulations.



Lemma 6.5. (i) Let TS be a deterministi transition system. Then, TS=�TSis also deterministi.(ii) Let TS1 and TS2 be deterministi transition systems over �. If L(TS1) =L(TS2) then TS1 is bisimilar to TS2.(iii) Let TS1 and TS2 be bisimilar transition systems. Then TS1=�TS1 andTS2=�TS2 are isomorphi. Further L(TS1) = L(TS2).We now prove both parts of Theorem 6.2.Lemma 6.6. Suppose that a transition system TS is bisimilar to a determin-isti produt transition system. Then, TS=�TS is deterministi and L(TS) is aprodut language.Proof. Let TS =ki2[1::i℄ TSi be a deterministi produt transition system suhthat TS is bisimilar to TS.By Lemma 6.5 (iii), L(TS) = L(TS). Sine L(TS) is a produt language, itfollows that L(TS) is a produt language.To hek that TS=�TS is deterministi, we �rst observe that TS=�dTS is de-terministi, by Lemma 6.5 (i). By part (iii) of the same lemma, TS=�TS mustbe isomorphi to TS=�dTS . Hene, TS=�TS is also deterministi.Lemma 6.7. Let TS be a transition system over � and e� be a distribution of�, suh that TS=�TS is deterministi and L(TS) is a produt language over e�.Then, TS is bisimilar to a deterministi produt transition system over e�.Proof. Let e� = h�1; : : : ; �ki. For i 2 [1::k℄, let Li = fw��i j w 2 L(TS)g. Weknow that eah Li is a regular pre�x-losed language whih ontains the emptyword. Thus, we an onstrut the minimal deterministi �nite-state automatonAi = (Qi;!i; qiin; Fi) reognizing Li. Sine Li ontains the empty word, qiin 2 Fi.Consider the restrited transition relation !0i=!i \(Fi �� � Fi). It is easy toverify that the transition system TSi = (Fi;!0i; qiin) is a deterministi transitionsystem suh that L(TSi) = Li.Consider the produt TS =ki2[1::k℄ TSi. Lemma 6.3 tell us that L(TS) =fw j w��i 2 Li; i 2 [1::k℄g. From Lemma 6.4, it follows that L(TS) = L(TS).We laim that TS is bisimilar to TS. Consider the quotient TS=�TS . BothTS=�TS and TS are deterministi and L(TS=�TS ) = L(TS) = L(TS). Thus,by Lemma 6.5 (ii), it must be the ase that TS=�TS is bisimilar to TS. Bytransitivity, TS is also bisimilar to TS.Using standard automata theory, we an derive the following result fromTheorem 6.2.Corollary 6.8. Given a �nite-state transition system TS = (Q;!; qin) and adistributed alphabet e�, we an e�etively deide whether TS is bisimilar to adeterministi produt system over e�.
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