
Specifying Interacting Components with

Coordinated Concurrent Scenarios

Prakash Chandrasekaran and Madhavan Mukund

Chennai Mathematical Institute

Chennai, India

{prakash,madhavan}@cmi.ac.in

Abstract—We introduce a visual notation for local specification
of concurrent components based on message sequence charts
(MSCs). Each component is a finite-state machine whose actions
are MSCs that specify its local view of the overall communication
in the system. These local MSCs are composed into coherent
global scenarios using a separately specified set of transactions.
Intuitively, each MSC represents a phase of interaction. We

introduce a mechanism to overlap phases that allows complex
interactions to be specified without obscuring the logical structure
of the constituent scenarios.
Our notation combines the global view available in models such

as high-level message sequence charts (HMSCs) with the local,
asynchronous structure captured by message-passing automata
(MPA). In fact, both HMSCs and MPAs can be captured as
special cases of our formalism.
In this paper we focus on the syntax and formal semantics

of our notation, with examples that illustrate why this approach
is more natural for capturing real-life specifications. We also
describe an approach to use automated tools to analyze systems
specified using our notation.

Keywords-Concurrent Systems, Visual Specification, Concur-
rent Scenarios

I. INTRODUCTION

Specifying concurrent components formally is still a chal-

lenge. Operational models such as message-passing automata

are difficult to work with because they lack a mechanism to

specify the overall behaviour of the components. The other

approach is to use visual notations based on Message Sequence

Charts (MSCs) [10]. These are very helpful for describing the

global interactions in the system but can only express limited

aspects of control flow and are hence difficult to execute and

implement.

In this paper, we present a specification language that we

call coordinated concurrent scenarios that bridges the gap

between these two extremes. We describe components locally,

but in terms of MSCs. We then provide a separate specifi-

cation of how these local MSCs combine globally to form

transactions. Our notation incorporates two useful features not

found in existing formal specifications. The first is the ability

to describe multiple activities interleaving asynchronously on

a single process—for example, a server that interacts with

multiple clients in parallel. The second is a mechanism to

deal with blocking, as happens when a service is waiting for

a resource to become available.

Our formalism is most closely related to netcharts [11], an

MSC-based notation that, in turn, is an asynchronous version

of the communicating transaction processes model [12]. The

main difference between our notation and netcharts is that our

specifications are completely local, whereas netchart specifi-

cations are global.

Our notation is quite expressive and can simulate both

message sequence graphs (MSGs) and MPAs. It follows that

verification problems for our notation are intractable, in gen-

eral. However, we can impose overall resource bounds and

translate our specifications into models that can be analyzed

by automated verification tools—UPPAAL, to be specific.

Before plunging into technical details, we motivate our

approach by examining different approaches to modelling the

alternating bit protocol. After this extended example, we intro-

duce the basic syntax and semantics of coordinated scenarios

in Section III. In the next two sections, we describe how to

extend our notation with facilities for describing asynchronous

execution and blocking. We provide the formal semantics

for our notation in Section VI. In Section VII we compare

our approach with MSGs, MPAs and netcharts. We address

the verification problem in Section VIII and conclude with a

brief discussion. Overall, our presentation is oriented towards

explaining the key features of our approach, with several

illustrative examples, rather than burying the reader in a lot of

formal details.

II. MOTIVATION

Before proceeding to formal definitions, we motivate our

approach in the context of a classical example, the alternating

bit protocol.

The alternating bit protocol (abp) is a mechanism to transfer

data from one process, the sender, to another, the receiver, over

a channel that may corrupt data. The protocol assumes that the

receiver can detect whether a data packet is corrupted—say

using a checksum. Other than the problem of data corruption

the channel is reliable—messages are never lost and are

received in fifo order.

In this protocol, the sender sends data packets tagged

alternately with 0 and 1. Whenever a packet tagged i is
received intact, the receiver sends an acknowledgment ai. The

sender retransmits the packet tagged i till ai is received. On

receiving ai, the sender sends the next packet tagged with

1−i and retransmits till an acknowledgment a1−i is received.

On receiving a1−i, the sender switches back to using tag i
for the next data packet, and so on. It is possible that the

S R

data_bad

S R

(data,0)

a0

S R

(data,1)

a1

Fig. 1. Basic interactions in the alternating bit protocol

sender receives “old” acknowledgments a1−i during the phase

when it is transmitting packets tagged with i. These “negative
acknowledgments” are ignored.

An analysis of the protocol suggests that there are three

types of interactions involved.

• The sender sends a packet that is deemed to be corrupted

by the receiver.

• A packet tagged 0 is received intact, generating an
acknowledgment a0.

• A packet tagged 1 is received intact, generating an
acknowledgment a1.

Scenario based specifications attempt to describe the overall

behaviour of a set of communicating processes in terms of

such basic interactions. A run of the system is represented by

a picture called a message sequence chart (MSC) indicating

the flow of messages between the components of the system.

For instance, the three basic interactions in the alternating bit

protocol can be represented as MSCs as shown in Figure 1.

To describe all communication patterns consistent with a

protocol specification, we need a mechanism that can generate

an infinite family of scenarios. A standard way to do this is

to use message sequence graphs (MSGs). An MSG is a finite-

state automaton whose alphabet is a set of basic MSCs. A

run of the automaton generates an MSC by concatenating the

MSCs along the edges traversed by the run.

Every MSC generated by an MSG is finitely generated—it

can be decomposed into a sequence of basic MSCs drawn from

the set used to annotate the transitions of the MSG. Protocols

such as the abp permit complex interactions whose MSC

representation cannot be sliced in terms of a finite number of

basic interactions. Hence, such protocols cannot be accurately

modelled using MSGs.

One proposal to overcome this limitation of MSGs is to

permit edges to be labelled by “incomplete” MSCs with

dangling edges, corresponding to sends without matching

receives or vice versa. In this model, called compositional

MSGs [7], messages sent in one MSC can be received in a

later MSC. A run is valid if it generates, overall, an MSC

with no dangling edges. The main drawback of this relaxation

is that the resulting specification no longer reflects the basic

interactions that constitute the protocol.

In fact, one could argue that a compositional MSG is little

more than a message-passing automaton (MPA) or communi-

cating finite-state machine (CFSM). An MPA is a collection

of finite-state automata in which each local action corresponds

to sending a message on a channel, receiving a message

on a channel, or performing a local action. While MPAs

dbad! dbad!,(d, 0)!,a1?

dbad!dbad!,(d, 1)!,a0?

(d, 0)!

a0?

(d, 1)!

a1?

Server Client

dbad?

dbad?

dbad?

(d, 0)?

a0!

(d, 1)?a1!

Fig. 2. Message-passing automaton for the alternating bit protocol

S R

data_bad

S R

(data,0)

S R

(data,1)

S R

a0

S R

a1

Fig. 3. Basic interactions in the causal MSG for the alternating bit protocol

are a natural operational model for communicating systems,

they are not very readable as specifications. Analyzing the

behaviour represented by an MPA is difficult because of

the complex manner in which send and receive actions can

combine across components. In effect, basic interactions are

decoupled, resulting in a loss of structural information about

the system.

Figure 2 shows an MPA corresponding to the abp. Notice

how the three basic interactions from Figure 1 have been

broken up and scattered across the local actions of the two

components. If we construct the global state space of this

MPA, the resulting transition system can be interpreted as

a compositional MSG that suffers from the same lack of

transparency as the MPA.

Another proposal to get around the limitations of MSGs

without resorting to incomplete MSCs is to allow actions

on a process to commute. In a causal MSG, we have an

independence relation on the set of actions of each component,

in the style of Mazurkiewicz trace theory [5, 6]. Adjacent

independent actions can be reordered, which allows basic

interactions to interleave with each other, unlike in standard

MSGs. Though causal MSGs have increased expressiveness,

postulating independence at the level of local events again

forces us to break up basic interactions into smaller units, mak-

ing the specification more difficult to analyze. For instance,

in the causal MSG specification of the abp, the three basic

interactions of Figure 1 have to be decomposed into five “unit”

interactions as shown in Figure 3.

In our model, we describe each component p as an MSG
whose edges are p-local MSCs that only describe interac-
tions involving p. We separately specify how (sets of) local
MSCs across components combine to form global MSCs,

2

s0 s1

async(M0) async(M1)

Mbad Mbad

b1 → async(M1)

b0 → async(Mo)

Server Client

Mbad

M0

M1

S C

data_bad

Mbad

S C

bo = 0,
b1 = 1

(data,0)

a0

M0

S C

bo = 1,
b1 = 0

(data,1)

a1

M1

Fig. 4. The alternating bit protocol specified in our notation

or transactions. Thus, we have local specifications with a

coordination mechanism. To this, we add the ability to specify

when scenarios local to a process can be interleaved with each

other.

Figure 4 illustrates our notation for the alternating bit

protocol. The client and server are specified separately, as in an

MPA. Transitions are labelled by local MSCs that are restricted

to messages where the component is directly involved. The

MSCs used in the specification correspond to the three basic

interactions described in Figure 1. In this case, since there are

only two components, all these MSCs are already local MSCs

for both the client and the server.

The label async attached to M0 and M1 in the server

indicate that these MSCs can run in parallel. Thus, the

acknowledgment a0 from an earlier instance of M0 can arrive

after the data message (data, 0) of a later M0 has been sent.

Here, b0 and b1 are local variables of the server that are

set in M0 and M1. The server’s transitions between s0 and s1

have guards pertaining to these variables.

We independently describe how the local MSCs in the two

components may be combined into global transactions. Here

this is particularly simple—MSCs with the same name in the

two components form transactions. Thus M0 in the server

overlaps with M0 in the client, and so on.

III. COORDINATED SCENARIOS

We begin with a vanilla version of our notation, to highlight

the key aspects of the syntax and semantics. Later we add

features to increase the expressiveness.

A. Message sequence charts

We begin with a quick introduction to message sequence

charts (MSCs). An MSC visually describes a set of messages

exchanged by components in a system.

Formally, let P = {p, q, r, . . .} be a finite set of processes
that communicate via messages sent over reliable FIFO point-

to-point channels. We assume a finite set of message types

M. Each p ∈ P can perform three types of actions.

• p!q(m): p sends message m to q ∈ P .
• p?q(m): p receives message m from q ∈ P .
• Local actions, denoted {a, b, . . .}.

Let Σp denote the set of actions performed by p and
Σ =

⋃

p∈P Σp. By ∆p we denote the set of actions Σp ∪
{q!p(m), q?p(m) | m ∈ M, q ∈ P , q 6= p}. Thus, ∆p extends

Σp with send and receive actions on other processes that refer

to messages sent to or received from p.

Labelled posets A Σ-labelled poset is a structure M =
(E,≤, λ) where (E,≤) is a partially ordered set with a
labelling function λ : E → Σ. For e ∈ E, ↓e = {e′ | e′ ≤ e}
and for X ⊆ E, ↓X = ∪e∈X↓e. We call X ⊆ E a prefix of
M if X = ↓X .
For p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and

Ea = {e | λ(e) = a}, respectively. For p, q ∈ P , p 6= q,

we define the relation <pq as follows: e <pq e′
def
= ∃m ∈

M such that λ(e) = p!q(m), λ(e′) = q?p(m) and|↓e ∩
Ep!q(m)| = |↓e′ ∩ Eq?p(m)| The relation e <pq e′ says that
channels are FIFO with respect to each message—if e <pq e′,
the message m read by q at e′ is the one sent by p at e.
Finally, for each p ∈ P , we define the relation ≤pp= (Ep×

Ep) ∩ ≤, with <pp standing for the largest irreflexive subset

of ≤pp.

Definition 1 (MSC): An MSC over P is a finite Σ-labelled
poset M = (E,≤, λ) where:

1) Each relation ≤pp is a linear (total) order.

2) If p 6= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
3) If e <pq e′, then |↓e ∩

(
⋃

m∈M Ep!q(m)

)

| = |↓e′ ∩
(
⋃

m∈M Eq?p(m)

)

|.
4) The partial order ≤ is the reflexive, transitive closure of

⋃

p,q∈P <pq .

The second condition ensures that every message sent along

a channel is received. The third condition says that every

channel is FIFO across all messages.

In diagrams, the events of an MSC are presented in visual

order. The events of each process are arranged in a vertical

line and messages are displayed as horizontal or downward-

sloping directed edges.

We can sequentially compose MSCs M1 and M2 by

inserting all events in M2 after the events in M1. More

formally, let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2)
be a pair of MSCs such that E1 and E2 are disjoint. The

(asynchronous) concatenation of M1 and M2 yields the MSC

M1 ◦ M2 = (E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if
e ∈ Ei, i ∈ {1, 2}, and ≤ = (≤1 ∪ ≤2 ∪

⋃

p∈P E1
p × E2

p)∗.

B. Local MSCs and MSGs

For p ∈ P , a p-local MSC is an MSC in which every event
has a label from∆p. Thus, every message sent or received in a

p-local MSC involves process p. Given an arbitrary MSC M ,
the p-projection of M , M↓p, is obtained by erasing all events

whose labels are not in ∆p. Note thatM↓p is always a p-local
MSC. The partial order between events in M↓p is calculated

with respect to the events that are present in the projection.

This means that we can have events e, e′ in M↓p such that

3

e < e′ in M but e and e′ are unordered in M↓p because the

events that “witness” the causality e < e′ are dropped from
M↓p.

LetMp be a collection of p-local MSCs. A p-local message
sequence graph (MSG) over Mp is a finite-state automaton

Ap = (S, Sin,→, F) where S is the set of states with subsets
of initial and final states denoted by Sin and F , respectively,
and → ⊆ Q × Mp × Q is the transition relation.

C. Transactions

Let Ap = (S, Sin,→, F) be a p-local MSG over Mp. A p-
local transaction is a (possibly empty) sequenceM1◦M2◦· · ·◦
Mk of p-local MSCs fromMp. Let {Ap}p∈P be a collection of

p-local MSGs. A (global) transaction is a tuple T = {Tp}p∈P

of p-local transactions Tp such that there exists an MSC M
with M↓p = Tp for each p ∈ P . The situation M↓p = ∅
corresponds to a transaction where p does not participate, in
which case the p-local transaction Tp corresponds to the empty

sequence of p-local MSCs.
Overall, a transaction is always a self-contained MSC. The

intuition is that a transaction represents one global “phase”

of the interaction between the components. Locally, each

component may parse the transaction differently in terms of

sub-phases.

D. Semantics

Let {Ap = (Sp, S
p
in,→p, Fp)}p∈P be a collection of p-

local MSGs and let T be a set of global transactions. The
pair ({Ap}p∈P , T) defines an executable specification whose
informal semantics is as follows.

Each component Ap begins in an initial state. Whenever a

component p makes a transition of the form s
M
−→ s′, it either

• initiates a fresh instance of a global transaction T =
{Tp}p∈P where M is the first p-local MSC in Tp, or

• continues an existing instance of a global transaction T =
{Tp}p∈P where M forms part of Tp.

As usual, within an MSC, a send event is always enabled

and a receive event is enabled if the corresponding send event

has already occurred.

When all components of an active global transaction have

been completed, the transaction has been discharged and is

removed from the list of pending transactions. A run of the

system is one in which each component begins in an initial

state and ends in a final state so that all transactions have been

discharged.

An important feature is that components are not required

to execute transactions in the same global sequence. This

permits transactions to interleave with each other. For ex-

ample, consider the specification in Figure 5. In the figure,

Mi = Mp
i = M q

i for i ∈ {1, 2}. The set of transactions is
T = {M1 = (Mp

1 , M q
1), M2 = (Mp

2 , M q
2)}. A run of the

system consists of k1 copies of M1 and k2 copies of M2.

However, p initially executes k1 copies of M
p
1 while q begins

by executing k2 copies of Mp
2 , resulting in an MSC Mk1,k2

×

in which the messages from the two transactions cross each

other.

Mp
1

Mp
1 Mp

2

Ap

M q
1

M q
2 M q

1

Aq

M1p q

M2p q

M3,4
×p q

Fig. 5. Crossing Transactions

To formally describe the semantics, we define a configura-

tion to be a triple ({sp}, τ, α) where

• sp ∈ Sp is the current local state of each p ∈ P .
• τ is a transaction table. Each entry in τ consists of a
(uniquely) labelled copy (t, ℓt) of a transaction from T ,
together with a pair (Mt, ϕt) where Mt is the (global)

MSC corresponding to t and ϕt is a “colouring” function

used to mark events in Mt that have already occurred.

It will turn out that more than one copy of a transaction

t can be active at a time. The label ℓt is used to

disambiguate between multiple active copies of the same

transaction, while ϕt measures how far each copy has

progressed.

• α : P → τ is a partial function indicating which
transaction each process is currently executing.

Initially, the system is in a configuration ({s0
p}p∈P , τ0, α0)

where s0
p ∈ Sp

in is an initial state for each p, τ0 is the empty

table and α0(p) is undefined for each p.
A component Ap can make two types of moves.

• If Ap is currently in the middle of an MSC M that

forms part of an active transaction, it can execute the

minimum enabled p-event e ∈ M . The configuration is
then updated as follows. Let α(p) = (t, ℓt, Mt, ϕt) ∈ τ .
The colour ϕt(e) of e ∈ Mt is updated to indicate that it

has occurred. If there are no more pending events in Mt,

the entry (t, ℓt, Mt, ϕt) is removed from τ and α(p) is
set to undefined for all p such that α(p) = (t, ℓt, Mt, ϕt).

• Otherwise, Ap makes a transition s
M
−→ s′. In this

case, the local state of Ap in the configuration changes

from s to s′. At this point, Ap is allowed to initiate a

new transaction, continue the current transaction α(p) or
switch to a different transaction already present in τ .
In the first case, a new entry (t′, ℓt′ , Mt′ , ϕt′) is added to
τ with ϕt′(e) initialized to show that no events in Mt′

have occurred. Also, α(p) is set to (t′, ℓt′ , Mt′ , ϕt′). In
the second case, there is no change in α(p). In the third
case, α(p) is made to point to a different transaction in
τ .

A final configuration is a configuration of the form

({sf
p}p∈P , τ0, α0) where sf

p ∈ Fp is a final state for each p,
and, as before, τ0 is the empty table and α0(p) is undefined
for each p. In other words, in a final configuration, all pending

4

Mlogin

Mdata

Mlogout

Mlogin

Mdata

Mlogout

Server Client

S C S C S C

login

id

req,id

data

logout,id

ack

Mlogin Mdata Mlogout

Fig. 6. A simple client-server

transactions have been completed.

A run ρ is a sequence of moves that starts in an initial
configuration and ends in a final configuration. Each run

defines an MSC Mρ that is built up incrementally along the

run, as described above.

Notice that the semantics permits a process to switch trans-

actions at MSC boundaries without completing the currently

active transaction. Figure 6 indicates why this is useful. In this

primitive client-server system, there are three basic MSCs,

corresponding to the client logging in, servicing of a data

request and the client logging out. It is useful to make

Mlogin◦Mlogout a single transaction to indicate that they form

a logical unit. However, this transaction must be interrupted

by Mdata for the system to achieve anything useful. Later, we

will revisit this example in a more realistic setting that further

clarifies the need for splitting transactions in this manner.

IV. ADDING LOCAL CONCURRENCY

In the client-server example shown in Figure 6, a more

natural specification would allow the server to explicitly

interleave Mlogin ◦ Mlogout with Mdata. To permit this, we

permit an MSC M labelling a transition in a p-local MSGs to
be tagged async, indicating that M is spawned as a separate

asynchronous thread.

Thus, every component Ap executes a sequential “syn-

chronous” thread in parallel with some “asynchronous” threads

spawned when traversing edges labelled async(M). The con-
trol flow is always dictated by the synchronous thread—

asynchronously spawned MSCs execute to completion in a

stateless manner. The most general possibility would be to

permit all secondary parallel threads to be interleaved in an

arbitrary manner with the main synchronous thread. However,

we restrict asynchronous threads to execute only at MSC

boundaries of the synchronous computation. This captures the

intuition that each MSC in the main computation constitutes

an “indivisible” phase of the overall communication pattern,

and hence should not be interrupted by external events. On

the other hand, there is no such restriction between asy-

chronous threads—if a process has spawned more than one

async(Mauth)

Mdata

Server

Mlogin

Mlogout

Mdata

Client

S C S C

S C S C

login

id

req,id

data

Mlogin Mdata

logout,id

ack

login

id

logout,id

ack

Mlogout Mauth

Fig. 7. A more realistic client-server

asynchronous thread, these can interleave with each other in

an arbitrary manner.

Before presenting the formal semantics, we illustrate this

extension of our syntax through an example. Consider the

enhanced client-server system in Figure 7. The client is as

before and executes in three phases. The server now has

a single transition with an MSC incorporating both login

and logout. This MSC is marked async so it can interleave

with the MSC corresponding to data transfer. However, since

interleaving is restricted to occur at MSC boundaries, the

logout message cannot interrupt Mdata.

In the formal semantics, we have to extend the definition

of a configuration to account for the fact that a process can

actively participate in more than one transaction in the trans-

action table, thanks to spawning asynchronous threads. Notice

that the main synchronous computation is always located in

a unique transaction. We continue to use α(p) to denote the
active synchronous transaction for process p and we add a map
β : P → 2τ to capture the set of asynchronous transactions

currently active for each process. Thus, a configuration is now

a tuple of the form ({sp}p∈P , τ, α, β) where each entry in the
transaction table τ is of the form (t, ℓt, Mt, ϕt), as before.
The rules for updating configurations when an event occurs

are similar to the earlier case and we omit the details. We

have to take care to allow events of asynchronous transactions

to occur only when the synchronous component is at an MSC

boundary. As before, a run ρ from an initial configuration to
a final configuration describes an MSC Mρ.

A. Local variables and guards

In Figure 7, we expect that the server will honour a

data transfer request only if the client is currently logged

in. To specify such requirements, we equip processes with

local variables that are assigned values through local ac-

tions. We then permit transitions to be annotated by boolean

guards that test the values assigned to these local variables—

as usual, a transition is enabled only if the accompanying

guard is true. Thus, the server can have a boolean variable

authenticated that is set to true when it receive a login

message and reset to false when it receives a logout message.

5

s0

async(Mclient)

async(Mprinter)

async(Mready)

Mspool

s0

s1

s2

Mlogin

Mlogout

Mprint

s0

s1

s2

Mon

Moff

Mwork

S C P

ready=0

job

work

data

ack

done

B1

B2

B3

Mspool = B1 ◦ await ready while true blocked B2 do B3

Mprint Mwork

S C S C
job

work

done

data

ack

ready

S C
login

logout

Mclient

S P

ready=1

ready=0

on

off

Mprinter

S C
login

Mlogin

S C
logout

Mlogout

S P

on

Mon

S P

off

Moff

S P
ready

ready=1

Mready

S C P

login

on

job

data

ack

done

job

work

ready

data

ack

done

logout

ready

off

A sample trace

Fig. 8. PrintServer

The transition labelled Mdata is then equipped with a guard

that checks if authenticated is true.

The alternating bit protocol example that we saw earlier

in Figure 4 makes use of async transitions and guards. The

server has two local variables b0 and b1 that control the bit

that is to be sent with the current data packet. When bi is

set, the sender uses bit i. Receiving an acknowledgment ai

resets bi to false and sets b1−1 to true. These variables are

then used to guard the transitions that switch the state of the

sender. Since channels are fifo, negative acknowledgments do

not create any spurious resets of these local variables—all

negative acknowledgments a1−i must arrive before the first

positive acknowledgment ai.

V. SPECIFYING BLOCKED THREADS

A common situation that arises when specifying the be-

haviour of concurrent components is to have one asynchronous

thread wait for a resource that is currently in use by another

component. In such a situation, the first thread blocks until the

resource becomes available. This kind of behaviour cannot

be captured naturally in conventional MSCs (or MPAs). To

overcome this limitation, we enhance our model to permit

edges in p-local MSGs to be annotated by simple MSC
programs rather than just p-local MSCs.

A. p-local MSC programs

For p ∈ P , p-local MSC programs are built up from simple
p-local MSCs using three new constructs, atomic, if and

await . LetM represent a basic p-local MSC and C a boolean

assertion about the values of p’s local variables. The set of p-
local MSC programs is then given by the following grammar

P ::= M | M ◦ P | atomic P
| if C P | await C while C blocked M do P

Informally, atomic P asserts that P is to be executed

atomically—that is, p cannot interleave any other events till
P is completed. As expected, if C P is interpreted as

“perform P if condition C holds”. Finally, await C1 while C2

blocked M do P means that the process waits for C1 to be

become true. If it is blocked because C1 is false, the MSC M
is executed once. The block is removed either by C1 becoming

true or C2 becoming false. The first case is the normal one

and the process goes on to execute P . If C2 becomes true

before C1, the await is aborted without executing P .
Once again, to illustrate this extended notation, we work

through an example. Figure 8 shows a print server that

connects a client to a printer. The client behaviour is simple—

it logs in to the server, sends a sequence of print requests and

logs out. On the other side, the server switches on the printer,

sends a sequence of print jobs and then switches off the printer.

Since the printer’s buffer is limited, the server has to wait for

a ready signal from the printer before sending the next job.

The interesting interaction is the server’s MSC program

Mspool that combines with the client’s MSC Mprint and the

printer’s MSC Mwork to form a global transaction. In Mspool

the server checks if the printer is ready. If not, it blocks

and sends the client a message work indicating that this

is working. (In Mprint, the message work is shown with a

6

dotted line. This is a syntactic sugar to indicate an optional

message—that is, this MSC represents a nondeterministic

choice between two MSCs, one in which the optional message

is present and another in which it is absent.) In this example,

there is no secondary condition that causes the await to abort.

Once the printer is ready, the current job is sent for printing.

Formally, in this example the global transactions are as

follows, specified in the sequence (Server,Client,Printer).

{ (Mclient, Mlogin ◦ Mlogout, Mǫ), (Mprinter , Mǫ,
Moff ◦ Mon), (Mspool ◦ Mready, Mprint, Mwork) }

We have used Mǫ to indicate the empty MSC, signifying

that a component does not play an active role in the given

transaction.

B. Formal Semantics of MSC Programs

We provide a formal semantics for MSC programs by

translating each program into combinations of basic MSCs

whose execution is controlled by the MSC program. We

translate the await instruction into a sequence of if and

waitfor statements, as below.

(await C1 =⇒ (if [C2 ∧ ¬C1] atomic (bi);

while C2 waitfor [¬C2 ∨ C1] ;

blocked bi if [C1] P1;

do P1; P2) P2;)

The translated program has now three ’primitive’-

programming constructs, namely if , atomic and waitfor . We

define the run-time semantics of these primitives in the next

section.

C. Relaxing Global Behaviour on await

When defining the global behaviour of a system defined

in terms of MSC programs, we make one relaxation to our

rule that asynchronous MSCs can only be interleaved at MSC

boundaries of the synchronous thread. We now permit asyn-

chronous MSCs to interleave at points where the transaction

involving the synchronous thread is blocked. Without this

relaxation, a blocked MSC could never get unblocked. In

the print server example, when an instance of the transaction

(Mspool ◦Mready, Mprint, Mwork) blocks because the printer
is not ready, it means that Mready from the previous instance

of this transaction has not completed.Mspool is a synchronous

transaction for the server, but the previous (asynchronous)

Mready is allowed to complete when the currently active

Mspool is blocked so that the server can proceed.

VI. FORMAL SEMANTICS

In this section we define the full formal semantics for

coordinated concurrent scenarios.

Let (S , τ, α, β) be a configuration with S = {sp}p∈P . Each

component Ap can either make a state transition or execute

an MSC-action e, as described in Figure 9. A process can
execute event MSC-action e if e is enabled. At MSC program
boundaries, a process can make a state transition and either

start a new transaction, or continue an existing transaction.

For our semantics, we assume the colouring function ϕ
colours an event 0 if it is not completed and 1 otherwise.
We also record whether a component is executing an atomic

MSC program through a new labelling function atomic.
Given a transaction (t, ℓt, Mt, ϕt), we say that a p-event

e ∈ Mt is enabled if all of the following hold:

• e is a minimal event such that ϕt(e) = 0,
• 6 ∃(t′, ℓ′t, M

′
t, ϕt′), such that atomic(t′, ℓ′t, p) = 1,

• e = p!q(m) or e = p?q(m) ∨ ϕt(q!p(m)) = 1.

The run-time semantics for the MSC program primitives

add an additional constraint, that for a p-event e ∈ Mt to be

enabled the basic MSC bi containing e should be executed
by the MSC program. Given a transaction (t, ℓt, Mt, ϕt), the
execution of the MSC program is given by the following

semantics for the primitives.

if [C] P1;P2

when C =⇒ P1;P2

when ¬C =⇒ P2

atomic P1 ; P2 =⇒ atomic(t, ℓt, p) = 1; P1;

atomic(t, ℓt, p) = 0; P2

waitfor [C]; P1

when C =⇒ P1

when ¬C =⇒ waitfor [C]; P1 [blocked]

(basic MSC) bi =⇒ execute bi

We call a run of the system accepting if it ends in a

final configuration (S , τ, α, β). Recall that in such a final
configuration,

• all asychronous MSCs have completed execution—that

is, β(p) is undefined for all p, and
• all transactions have been discharged—that is, τ = ∅.

VII. EXPRESSIVENESS

The main motivation for introducing coordinated concurrent

scenarios is to provide a notation that naturally captures the

kinds of specifications that arise when designing systems

with interacting components. In Section II, we have already

discussed an example that compares our notation with existing

formalisms. It turns out that our approach is flexible enough to

directly encode both message sequence graphs and message-

passing automata.

A. Encoding message sequence graphs

MSGs are global versions of what we have called p-local
MSGs in which transitions can be labelled with arbitrary

MSCs. We start with an MSG G = (S, Sin,→, F). If |Sin| >
1, we create a dummy initial state sin and new transitions

sin
Mǫ−−→ s′ for each s′ ∈ Sin. We assume that the MSCs used

in G all have distinct names. We assign distinct labels to each
of the new empty MSCs Mǫ that we add out of the dummy

initial state. We create an isomorphic copy Gp = (Sp, S
p
in,→p

, Fp) for each p ∈ P . We convert each transition s
M
−→ s′

in G into a p-local transition s
M↓

p

−−−→ s′. We create a set of
transactions T = {{M↓p}p∈P | M appears in G}. It is not

7

Ap starts transaction (t, ℓt) with MSC M = (E,≤, λ)
Configuration (S , τ, α, β), where α(p) is undefined
(sync execution)

when sp → (s′p, Mp, sync), tp = Mp ◦ . . . =⇒ (S\{sp} ∪ {s′p}, τ
′, α′, β) where

τp = (t, ℓt, Mt, ϕt = {e → 0|e ∈ E}),
τ ′ = τ ∪ {τp}, α′ = α/[p → τp]

(async execution)

when sp → (s′p, Mp, async), tp = Mp ◦ . . . =⇒ (S\{sp} ∪ {s′p}, τ
′, α, β′) where

τp = (t, ℓt, Mt, ϕt = {e → 0|e ∈ E}), τ ′ = τ ∪ {τp}
β′(p) = β(p) ∪ {τp}, β′(p′) = β(p′),∀p′ 6= p

Ap continues transaction (t, ℓt) with msc M = (E,≤, λ)
Configuration (S , τ, α, β), where α(p) is undefined, τp = (t, ℓt, Mt, ϕt) ∈ τ
(sync execution)

when sp → (s′p, Mp, sync), =⇒ (S\{sp} ∪ {s′p}, τ
′, α′, β) where

tp = M1
p ◦ M i

p ◦ Mp ◦ . . . τ ′
p = (t, ℓt, Mt, ϕt ∪ {e → 0|e ∈ M}),

τ ′ = τ\{τp} ∪ {τ ′
p}, α

′ = α/[p → τ ′
p]

(async execution)

when sp → (s′p, Mp, async), =⇒ (S\{sp} ∪ {s′p}, τ
′, α, β′) where τ ′ = τ\{τp} ∪ {τ ′

p},
tp = M1

p ◦ M i
p ◦ Mp ◦ . . . τ ′

p = (t, ℓt, Mt, ϕt ∪ {e → 0|e ∈ M}),
β′(p) = β(p)\{τp} ∪ {τ ′

p}, β
′(p′) = β(p′),∀p′ 6= p

Ap completes sync MSC M in transaction (t, ℓt)

(S , τ, α, β), ∃τc ∈ τ , τc = (t, ℓt, Mt, ϕt), =⇒ (S , τ, α/[p → undefined], β)
ϕt(e) = 1∀e ∈ M , α(p) = τc

Ap completes async MSC M in transaction (t, ℓt)

(S , τ, α, β), ∃τc ∈ τ , τc = (t, ℓt, Mt, ϕt), =⇒ (S , τ, α, β′)
ϕt(e) = 1∀e ∈ M , τc ∈ β(p) β′(p) = β(p)\{τc}, β

′(p′) = β(p′),∀p′ 6= p

Ap completes transaction (t, ℓt)

(S , τ, α, β), τc = (t, ℓt, Mt, 1) ∈ τ =⇒ (S , τ\{τc}, α, β)

Ap executes e in (t, ℓt, Mt, ϕt)

(S , τ, α, β), τc = (t, ℓt, e ∈ Mt, ϕ) ∈ τ =⇒ (S , τ\{τc} ∪ {τ ′
c}, α, β), τ ′

c = (t, ℓt, Mt, ϕ/[e → 1])

Fig. 9. Complete Semantics

difficult to see that the system ({Gp}p∈P , T) has the same
global behaviour as G.

B. Encoding message passing automata

Encoding MPAs is even more direct. Recall that each

component p of an MPA is a finite-state automaton over the
alphabet Σp. Corresponding to each action p!q(m) we define
a p-local MSC M s

pqm consisting of a single message m from
p to q. Similarly, for each action p?q(m) we define a p-local
MSCM r

pqm consisting of a single message m from q to p. We
relabel the send and receive actions of p by the corresponding
MSCs to get a p-local MSG. We then define global transactions
of the form (M s

pqm, M r
qpm) for all combinations p, q ∈ P and

m ∈ M. These global transactions allow each send event in
one process to be paired up with an arbitrary matching receive

event in the other process. Again, it is not difficult to see

that the resulting coordinated concurrent scenario description

matches the behaviour of the original MPA.

C. Netcharts

Our notation is closest in spirit to netcharts, introduced in

[11]. A netchart is a global scenario specification with local

control flow. Unlike an MSG, all processes are not required

to traverse the specification in the same manner, although

all transactions have to eventually be completed, as in our

model. If we ignore features such as async and await , the key

difference is that our specifications are local whereas netcharts

are global. Thus, all processes share the same global control

flow graph in a netchart, whereas we describe each process

as an independent automaton. Moreover, we describe global

transactions as tuples of local transactions. Multiple local

transactions can share a name, allowing for many different

ways to instantiate a global transaction in terms of local

transactions. In a netchart, each of these combinations has to

be explicitly represented in the specification. To summarize,

at the vanilla level of our formalism, we can regard a netchart

as the result of blowing up our local presentation into a global

one. This is analogous to the difference between presenting a

8

product of automata in terms of local components as opposed

to directly describing the global state graph of the system.

VIII. FORMAL VERIFICATION

It is well known that most verification questions are un-

decidable for message sequence graphs and message-passing

automata. Since we can simulate these formalisms in our

model, we cannot expect tractable solutions to verification

questions in our framework either.

In MSGs and MPAs, many problems become decidable if

channels are bounded [8, 9]. This restriction makes the set of

global configurations of the system finite. In our framework,

there are two additional sources of infiniteness: the global

semantics permits a process to initiate fresh transactions before

earlier ones have completed, and async can generate an

unbounded number of parallel threads.

One approach to address the verification problem is to iden-

tify sufficient structural conditions that make specifications

tractable. However, such restrictions often limit the usefulness

of the notation in practice. Instead, we follow a pragmatic

approach and place upper bounds on the various resources—

channel capacity, number of active synchronous transactions,

and number of active asynchronous transactions. We then

translate our specifications into the language of an automated

verification tool. We have implemented a translator from a

textual representation of coordinated concurrent scenarios to

the verification tool UPPAAL [1]. More details are available in

[4].

IX. DISCUSSION

We have described a notation to specify concurrent compo-

nents in terms of their local views of the system and argued

that our approach is more natural than existing scenario based

approaches, with features to capture asynchronous interleaving

of scenarios as well as blocking. We can translate our models

into UPPAAL to verify properties of specifications, for which

we need to impose overall bounds on system resources.

A natural next step is to use these specifications to synthe-

size actual code for components such as device drivers. In this

context, there seem to promising connections to the CLARITY

paradigm [2] that provides a programming framework for con-

current code where programmers can express situations like

blocking and waiting without explicitly having to manipulate

low level queues.

REFERENCES

[1] G. Behrmann, A. Davida and K.G. Larsen: A Tutorial on Uppaal, Proc.
SFM 2004, LNCS 3185, Springer-Verlag (2004) 200–236.

[2] P. Chandrasekaran, C.L. Conway, J.M. Joy, S.K. Rajamani: Program-
ming asynchronous layers with CLARITY, Proc. ESEC/SIGSOFT FSE
2007, IEEE (2007) 65–74.

[3] P. Chandrasekaran and M. Mukund: Matching Scenarios with Timing
Constraints, Proc. FORMATS 2006, LNCS 4202, Springer-Verlag (2006)
98–112.

[4] P. Chandrasekaran and M. Mukund: Specifying Interacting Compo-
nents with Coordinated Concurrent Scenarios, Technical Report, Chen-
nai Mathematical Institute (2009). Available at http://www.cmi.ac.in/
∼madhavan/papers/pdf/ccs-techrep.pdf

[5] V. Diekert and G. Rozenberg (eds): The Book of Traces, World Scientific
(1995).

[6] T. Gazagnaire, B. Genest, L. Hélouët, P.S. Thiagarajan and S. Yang:
Causal Message Sequence Charts. Proc. CONCUR 2007, LNCS 4703,
Springer-Verlag (2007) 166–180.

[7] B. Genest, L. Hélouët and A Muscholl: High-Level Message Sequence
Charts and Projections, Proc. CONCUR 2003, LNCS 2761, Springer-
Verlag (2003) 308–322.

[8] B. Genest, D. Kuske and A. Muscholl: A Kleene Theorem for a Class of
Communicating Automata with Effective Algorithms. Proc DLT 2004,
LNCS 3340, Springer-Verlag (2004) 30–48.

[9] J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and
P.S. Thiagarajan: A Theory of Regular MSC Languages. Inf. Comp.,
202(1) (2005) 1–38.

[10] ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU,
Geneva (1999).

[11] M. Mukund, K. Narayan Kumar and P.S. Thiagarajan: Netcharts:
Bridging the gap between HMSCs and executable specifications, Proc.
CONCUR 2003, LNCS 2761, Springer-Verlag (2003) 293–307.

[12] A. Roychoudhury and P.S. Thiagarajan: Communicating transaction
processes. Proc. ACSD’03, IEEE Press (2003) 157–166.

9

