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Oll network
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Network: graph G = (V,E)

Special nodes: s (source), t (sink)
Each edge e has capacity ce
Flow: fo for each edge e

* fo < Ce

* At each node, except s and t,
sum of incoming flows equal
sum of outgoing flows

Total volume of flow is sum of
outgoing flow from s




| P formulation

* Variable fe for each edge e

* fsa, fbd, fce,

* Capacity constraints per edge

2
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* Conservation of flow at each
Internal node

* fag + fod = fac + fge + fat, ...

* Objective: maximize volume

* maXimize fsa i fsb = fsc




| P formulation

* Simplex solves LP, provides
maximum flow, by exploring
vertices of feasible region

* Moving from vertex to vertex
actually corresponds to a
more direct algorithm to find
the maximum flow




-ord-rulkerson algorithm

* Start with zero flow

* Choose a path from s to t that is
not saturated and augment the
flow as much as possible

* Network on the right has max flow
2

* \What if one chooses a bad flow to
begin with?
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Start with zero flow

Choose a path from s to t that is (d)
not saturated and augment the / 1
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Build residual graph \@/

Repeat previous two steps till there
IS no feasible flow from s to t
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* Start with flow 20, s-d-e-t

* Build residual graph - ‘wm
0 f' 0
* Add flow 10, s-e-d-t g \G>
ol |20
* Build residual graph { N\ 0
10 20

* No more feasible paths
from s to t




Certificate of optimality

* Edges {ad,bd,sc} disconnect
sandt — (s,t)-cut

* Flow from s to t must go /
3

through this cut
* Cannot exceed cut :\3A
4\ .-

capacity = 7

* |n general, max flow cannot
exceed min cut capacity




Max flow-min cut theorem

* |n fact, max flow is always
equal to min cut!

* At max flow, no path from s to
t in residual graph

* scanreach L, R canreach t

* Any edge e from L to R
must be at full capacity

* Any edge f from R to L must
be at zero capacity




-ord-rulkerson algorithm

* Choose augmenting paths wisely

* |f we keep going through the
middle edge, 200 iterations to find @)

the max flow 1y 100
* FF can take time proportional to @ 1\G>
max capacity 1& @AO
* Use BFS to find augmenting path

with fewest edges — iterations
bounded by |V|x|E|, regardless of
capacities




