DESIGN AND ANALYSIS
OF ALGORITHMS

Network Flows



http://www.cmi.ac.in/~madhavan

Oll network

* Network of pipelines

* Ship as much oil as
possible from s tot

* No storage on the way
* A flow of 7 Is possible

* |s this the maximum?




Oll network

* Network of pipelines

* Ship as much oil as
possible from s tot

* No storage on the way
* A flow of 7 Is possible

* |s this the maximum?




Oll network

*

*

*

Network: graph G = (V,E)

Special nodes: s (source), t (sink)
Each edge e has capacity ce
Flow: fo for each edge e

* fo < Ce

* At each node, except s and t,
sum of incoming flows equal
sum of outgoing flows

Total volume of flow is sum of
outgoing flow from s




| P formulation

* Variable fe for each edge e

* fsa, fbd, fce,

* Capacity constraints per edge

2
(8,

e in %’ .
OguO

* Conservation of flow at each
Internal node

* fag + fod = fac + fge + fat, ...

* Objective: maximize volume

* maXimize fsa i fsb = fsc




| P formulation

* Simplex solves LP, provides
maximum flow, by exploring
vertices of feasible region

* Moving from vertex to vertex
actually corresponds to a
more direct algorithm to find
the maximum flow




-ord-rulkerson algorithm

* Start with zero flow

* Choose a path from s to t that is
not saturated and augment the
flow as much as possible

* Network on the right has max flow
2

* \What if one chooses a bad flow to
begin with?




-ord-rulkerson algorithm

* Start with zero flow
* Choose a path from s to t that is
not saturated and augment the /@ 1
flow as much as possible @ \@>
1

* Network on the right has max flow x@/
2 v

* \What if one chooses a bad flow to
begin with?




-ord-rulkerson algorithm

* Add reverse edges to undo flow

from previous steps
* Residual graph: for each edge e /@ 1
with capacity ce and current flow fe (s) 4

* Reduce capacity to ce - fe \ é/

* Add reverse edge with capacity
fe




-ord-rulkerson algorithm

* Add reverse edges to undo flow
from previous steps
(4)

1
* Residual graph: for each edge e F/?‘ N@)

with capacity ce and current flow fe (s) 1

0
* Reduce capacity to ce - fe \\, y
1

* Add reverse edge with capacity
fe




-ord-rulkerson algorithm

*

*

Start with zero flow

Choose a path from s to t that is (d)
not saturated and augment the / 1
flow as much as possible @ 1

Build residual graph \@/

Repeat previous two steps till there
IS no feasible flow from s to t




-ord-rulkerson algorithm

*

*

Start with zero flow

Choose a path from s to t that is
not saturated and augment the J N@)

flow as much as possible @

Build residual graph \éD/'

Repeat previous two steps till there
IS no feasible flow from s to t




-ord-rulkerson algorithm

*

Start with zero flow

Choose a path from s to t that is
not saturated and augment the F N@)

flow as much as possible

Build residual graph 1 éL/'J

Repeat previous two steps till there
IS no feasible flow from s to t




-ord-rulkerson algorithm




-ord-rulkerson algorithm

* Start with flow 20, s-d-e-t




-ord-rulkerson algorithm

* Start with flow 20, s-d-e-t

* Build residual graph 20/@
0 f 10
PP
20




-ord-rulkerson algorithm

* Start with flow 20, s-d-e-t

* Build residual graph 20/@D
0 10
* Add flow 10, s-e-d-t g(




-ord-rulkerson algorithm

* Start with flow 20, s-d-e-t

* Build residual graph - ‘wm
0 f' 0
* Add flow 10, s-e-d-t g \G>
ol |20
* Build residual graph { N\ 0
10 20




-ord-rulkerson algorithm

* Start with flow 20, s-d-e-t

* Build residual graph - ‘wm
0 f' 0
* Add flow 10, s-e-d-t g \G>
ol |20
* Build residual graph { N\ 0
10 20

* No more feasible paths
from s to t




Certificate of optimality

* Edges {ad,bd,sc} disconnect
sandt — (s,t)-cut

* Flow from s to t must go /
3

through this cut
* Cannot exceed cut :\3A
4\ .-

capacity = 7

* |n general, max flow cannot
exceed min cut capacity




Max flow-min cut theorem

* |n fact, max flow is always
equal to min cut!

* At max flow, no path from s to
t in residual graph

* scanreach L, R canreach t

* Any edge e from L to R
must be at full capacity

* Any edge f from R to L must
be at zero capacity




-ord-rulkerson algorithm

* Choose augmenting paths wisely

* |f we keep going through the
middle edge, 200 iterations to find @)

the max flow 1y 100
* FF can take time proportional to @ 1\G>
max capacity 1& @AO
* Use BFS to find augmenting path

with fewest edges — iterations
bounded by |V|x|E|, regardless of
capacities




