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Oil network

Network of pipelines


Ship as much oil as 
possible from s to t


No storage on the way


A flow of 7 is possible


Is this the maximum?
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Oil network
Network: graph G = (V,E)


Special nodes: s (source), t (sink)


Each edge e has capacity ce


Flow: fe for each edge e


fe ≤ ce


At each node, except s and t, 
sum of incoming flows equal 
sum of outgoing flows


Total volume of flow is sum of 
outgoing flow from s
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LP formulation
Variable fe for each edge e


fsa, fbd, fce, …


Capacity constraints per edge

fba ≤ 10, …


Conservation of flow at each 
internal node


fad + fbd = fdc + fde + fdt, …


Objective: maximize volume

maximize fsa + fsb + fsc
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LP formulation

Simplex solves LP, provides 
maximum flow, by exploring 
vertices of feasible region


Moving from vertex to vertex 
actually corresponds to a 
more direct algorithm to find 
the maximum flow 
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Ford-Fulkerson algorithm
Start with zero flow


Choose a path from s to t that is 
not saturated and augment the 
flow as much as possible


Network on the right has max flow 
2


What if one chooses a bad flow to 
begin with?
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Ford-Fulkerson algorithm
Start with zero flow


Choose a path from s to t that is 
not saturated and augment the 
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Ford-Fulkerson algorithm

Add reverse edges to undo flow 
from previous steps


Residual graph: for each edge e 
with capacity ce and current flow fe


Reduce capacity to ce - fe


Add reverse edge with capacity 
fe
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Ford-Fulkerson algorithm

Add reverse edges to undo flow 
from previous steps


Residual graph: for each edge e 
with capacity ce and current flow fe


Reduce capacity to ce - fe


Add reverse edge with capacity 
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Ford-Fulkerson algorithm

s

d

e

t

1

1

Start with zero flow


Choose a path from s to t that is 
not saturated and augment the 
flow as much as possible


Build residual graph


Repeat previous two steps till there 
is no feasible flow from s to t
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Ford-Fulkerson algorithm
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Ford-Fulkerson algorithm
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Ford-Fulkerson algorithm

s

d

e

t

10

10

20

30

20



Ford-Fulkerson algorithm
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Ford-Fulkerson algorithm
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Ford-Fulkerson algorithm
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Ford-Fulkerson algorithm
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Ford-Fulkerson algorithm
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Start with flow 20, s-d-e-t

Build residual graph

Add flow 10, s-e-d-t

Build residual graph

No more feasible paths 
from s to t
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Certificate of optimality
Edges {ad,bd,sc} disconnect 
s and t — (s,t)-cut


Flow from s to t must go 
through this cut


Cannot exceed cut 
capacity = 7


In general, max flow cannot 
exceed min cut capacity
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Max flow-min cut theorem
In fact, max flow is always 
equal to min cut!


At max flow, no path from s to 
t in residual graph


s can reach L, R can reach t


Any edge e from L to R 
must be at full capacity


Any edge f from R to L must 
be at zero capacity
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Ford-Fulkerson algorithm
Choose augmenting paths wisely


If we keep going through the 
middle edge, 200 iterations to find 
the max flow


FF can take time proportional to 
max capacity


Use BFS to find augmenting path 
with fewest edges — iterations 
bounded by |V|x|E|, regardless of 
capacities
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