
DESIGN AND ANALYSIS  
OF ALGORITHMS
Network Flows

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 8, Module 4

http://www.cmi.ac.in/~madhavan

Oil network

Network of pipelines

Ship as much oil as
possible from s to t

No storage on the way

A flow of 7 is possible

Is this the maximum?

s b

a

c

d

e

t

3

3

1
10

2

1 1

4

5

5

2

Oil network

Network of pipelines

Ship as much oil as
possible from s to t

No storage on the way

A flow of 7 is possible

Is this the maximum?

s b

a

c

d

e

t

2

1

4

2

10

1

5

0

2

5

Oil network
Network: graph G = (V,E)

Special nodes: s (source), t (sink)

Each edge e has capacity ce

Flow: fe for each edge e

fe ≤ ce

At each node, except s and t,
sum of incoming flows equal
sum of outgoing flows

Total volume of flow is sum of
outgoing flow from s

s b

a

c

d

e

t

3

3

1
10

2

1 1

4

5

5

2

LP formulation
Variable fe for each edge e

fsa, fbd, fce, …

Capacity constraints per edge

fba ≤ 10, …

Conservation of flow at each
internal node

fad + fbd = fdc + fde + fdt, …

Objective: maximize volume

maximize fsa + fsb + fsc

s b

a

c

d

e

t

3

3

1
10

2

1 1

4

5

5

2

LP formulation

Simplex solves LP, provides
maximum flow, by exploring
vertices of feasible region

Moving from vertex to vertex
actually corresponds to a
more direct algorithm to find
the maximum flow

s b

a

c

d

e

t

3

3

1
10

2

1 1

4

5

5

2

Ford-Fulkerson algorithm
Start with zero flow

Choose a path from s to t that is
not saturated and augment the
flow as much as possible

Network on the right has max flow
2

What if one chooses a bad flow to
begin with?

s

d

e

t1

1

1

1

1

Ford-Fulkerson algorithm
Start with zero flow

Choose a path from s to t that is
not saturated and augment the
flow as much as possible

Network on the right has max flow
2

What if one chooses a bad flow to
begin with?

s

d

e

t1

1

1

1

1

Ford-Fulkerson algorithm

Add reverse edges to undo flow
from previous steps

Residual graph: for each edge e
with capacity ce and current flow fe

Reduce capacity to ce - fe

Add reverse edge with capacity
fe

s

d

e

t1

1

1

1

1

Ford-Fulkerson algorithm

Add reverse edges to undo flow
from previous steps

Residual graph: for each edge e
with capacity ce and current flow fe

Reduce capacity to ce - fe

Add reverse edge with capacity
fe

s

d

e

t

1

1

0

0

0

1

1

1

Ford-Fulkerson algorithm

s

d

e

t

1

1

Start with zero flow

Choose a path from s to t that is
not saturated and augment the
flow as much as possible

Build residual graph

Repeat previous two steps till there
is no feasible flow from s to t

1

1

1

Ford-Fulkerson algorithm

s

d

e

t

1

1

Start with zero flow

Choose a path from s to t that is
not saturated and augment the
flow as much as possible

Build residual graph

Repeat previous two steps till there
is no feasible flow from s to t

1

1

1

Ford-Fulkerson algorithm

s

d

e

t

1

1

0

0

0

1

1

1

Start with zero flow

Choose a path from s to t that is
not saturated and augment the
flow as much as possible

Build residual graph

Repeat previous two steps till there
is no feasible flow from s to t

Ford-Fulkerson algorithm

s

d

e

t

10

10

20

30

20

Ford-Fulkerson algorithm

s

d

e

t

10

10

20

30

Start with flow 20, s-d-e-t

20

Ford-Fulkerson algorithm

s

d

e

t

10

10

Start with flow 20, s-d-e-t

Build residual graph
0

10

0

20

20

20

Ford-Fulkerson algorithm

s

d

e

t

10

10

Start with flow 20, s-d-e-t

Build residual graph

Add flow 10, s-e-d-t
0

10

0

20

20

20

Ford-Fulkerson algorithm

s

d

e

t

Start with flow 20, s-d-e-t

Build residual graph

Add flow 10, s-e-d-t

Build residual graph

0

0

20

2010

10
0

0

10 20

Ford-Fulkerson algorithm

s

d

e

t

Start with flow 20, s-d-e-t

Build residual graph

Add flow 10, s-e-d-t

Build residual graph

No more feasible paths
from s to t

0

0

20

2010

10
0

0

10 20

Certificate of optimality
Edges {ad,bd,sc} disconnect
s and t — (s,t)-cut

Flow from s to t must go
through this cut

Cannot exceed cut
capacity = 7

In general, max flow cannot
exceed min cut capacity

s b

a

c

d

e

t

3

3

1
10

2

1 1

4

5

5

2

Max flow-min cut theorem
In fact, max flow is always
equal to min cut!

At max flow, no path from s to
t in residual graph

s can reach L, R can reach t

Any edge e from L to R
must be at full capacity

Any edge f from R to L must
be at zero capacity

s t

L R
e

f

Ford-Fulkerson algorithm
Choose augmenting paths wisely

If we keep going through the
middle edge, 200 iterations to find
the max flow

FF can take time proportional to
max capacity

Use BFS to find augmenting path
with fewest edges — iterations
bounded by |V|x|E|, regardless of
capacities

s

d

e

t1

100

100

100

100

