DESIGN AND ANALYSIS
OF ALGORITHMS

Dijkstra’s algorithm: analysis

http://www.cmi.ac.in/~madhavan

Dijkstra’s algorithm

* Maintain two arrays

* Visited[], initially False for all |
* Distance[], initially « for all |

* For o, use sum of all edge weights + 1

* Set Distance[l] = 0

* Repeat, until all vertices are burnt
* Find j with minimum Distance
* Set Visited[j] = True

* Recompute Distance[k] for each neighbour k of j

Greedy algorithms

* Algorithm makes a sequence of choices

%

%

Next choice is based on “current best value”

* Never go back and change a choice

Dijkstra’s algorithm is greedy

* Select vertex with minimum expected burn time
Need to prove that greedy strategy is optimal
Most times, greedy approach fails

* Current best choice may not be globally optimal

Correctness

* Each new shortest path we discover extends an
earlier one

* By induction, assume we have identified shortest
paths to all vertices already burnt

Burnt vertices

® O

* Next vertex to burn is v, via X

* Cannot later find a shorter path fromy tow to v

Dijkstra’s algorithm

function ShortestPaths(s){ // assume source is s
for 1 — 1 fo.n
Visited[1] = False; Distance[1] = infinity

Distance[s] = 0

for 1T = 1L ton
Choose u such that Visited[u] == False
and Distance[u] 1s minimum
Visited[u] = True
for each edge (u,v) with Visited[v] == False
1f Distance[v] > Distance[u] + weight(u,v)
Distance[v] = Distance[u] + weight(u,Vv)

Complexity

* QOuter loop runs n times
* |n each iteration, we burn one vertex
* O(n) scan to find minimum burn time vertex

* Each time we burn a vertex v, we have to scan all its
neighbours to update burn times

* O(n) scan of adjacency matrix to find all neighbours

* Overall O(n?)

Complexity

* Does adjacency list help?
* Scan neighbours to update burn times
* O(m) across all iterations

* However, identifying minimum burn time vertex
still takes O(n) in each iteration

* Still O(n?)

Complexity

* Can maintain ExpectedBurnTime in a more
sophisticated data structure

* Different types of trees (heaps, red-black trees)
allow both of the following in O(log n) time

* find and delete minimum

* Insert or update a value

Complexity

* With such a tree
* Finding minimum burn time vertex takes O(log n)

* \With adjacency list, updating burn times take
O(log n) each, total O(m) edges

* Overall O(n log n + m log n) = O((n+m) log n)

L imitations

* \What if edge weights can be negative?
* Our correctness argument is no longer valid

Burnt vertices

* Next vertex to burn is v, via x

* Might find a shorter path later with negative weights
fromytowtov

Why negative weights®

* \\eights represent money

* Taxi driver earns money from airport to city,
travels empty to next pick-up point

* Some segments earn money, some lose money
* Chemistry
* Nodes are compounds, edges are reactions

* \Weights are energy absorbed/released by reaction

Handling negative edges

* Negative cycle: loop with a negative total weight

* Problem is not well defined with negative cycles

* Repeatedly traversing cycle pushes down cost
without a bound

* \With negative edges, but no negative cycles, other
algorithms exist (will see later)

* Bellman-Ford

* Floyd-Warshall all pairs shortest path

