
DESIGN AND ANALYSIS  
OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE 
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015 
Week 1, Module 5

http://www.cmi.ac.in/~madhavan


Analysis of algorithms

Measuring efficiency of an algorithm


Time: How long the algorithm takes (running 
time)


Space: Memory requirement



Time and space

Time depends on processing speed


Impossible to change for given hardware


Space is a function of available memory


Easier to reconfigure, augment


Typically, we will focus on time, not space



Measuring running time
Analysis independent of underlying hardware


Don’t use actual time


Measure in terms of “basic operations”


Typical basic operations


Compare two values


Assign a value to a variable


Other operations may be basic, depending on context


Exchange values of a pair of variables



Input size
Running time depends on input size


Larger arrays will take longer to sort


Measure time efficiency as function of input size


Input size n


Running time t(n)


Different inputs of size n may each take a different 
amount of time


Typically t(n) is worst case estimate



Example 1: Sorting

Sorting an array with n elements


Naïve algorithms : time proportional to n2


Best algorithms : time proportional to n log n


How important is this distinction?


Typical CPUs process up to 108 operations per 
second


Useful for approximate calculations



Example 1: Sorting …
Telephone directory for mobile phone users in India


India has about 1 billion = 109 phones


Naïve n2 algorithm requires 1018 operations

108 operations per second ⟹ 1010 seconds

2778000 hours

115700 days

300 years!


Smart n log n algorithm takes only about 3 x 1010 
operations


About 300 seconds, or 5 minutes



Example 2: Video game

Several objects on screen


Basic step: find closest pair of objects


Given n objects, naïve algorithm is again n2


For each pair of objects, compute their distance


Report minimum distance over all such pairs


There is a clever algorithm that takes time n log n



Example 2: Video game …
High resolution monitor has 2500 x 1500 pixels


3.75 million points


Suppose we have 500,000 = 5 x 105 objects


Naïve algorithm takes 25 x 1010 steps = 2500 seconds


2500 seconds = 42 minutes response time is 
unacceptable!


Smart n log n algorithm takes a fraction of a second



Orders of magnitude
When comparing t(n) across problems, focus on 
orders of magnitude


Ignore constants


f(n) = n3 eventually grows faster than g(n) = 5000 n2 


For small values of n, f(n) is smaller than g(n)


At n = 5000, f(n) overtakes g(n)


What happens in the limit, as n increases : 
asymptotic complexity



Typical functions

We are interested in orders of magnitude


Is t(n) proportional to log n, …, n2 , n3 , …, 2n?


Logarithmic, polynomial, exponential …



Input log n n n log n n2 n3 2n n!
10 3.3 10 33 100 1000 1000 106

100 6.6 100 66 104 106 1030 10157

1000 10 1000 104 106 109

104 13 104 105 108 1012

105 17 105 106 1010

106 20 106 107

107 23 107 108

108 27 108 109

109 30 109 1010

1010 33 1010

Typical functions t(n)…


