NPTEL MOOC,JAN-FEB 2015
Week 1, Module 5

DESIGN AND ANALYSIS
OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

http://www.cmi.ac.in/~madhavan

Analysis of algorithms

* Measuring efficiency of an algorithm

* Time: How long the algorithm takes (running
time)

* Space: Memory requirement

Time and space

* Time depends on processing speed

* |[mpossible to change for given hardware
* Space Is a function of available memory

* Easier to reconfigure, augment

* [ypically, we will focus on time, not space

Measuring running time

* Analysis independent of underlying hardware
* Don’t use actual time
* Measure in terms of “basic operations”
* [ypical basic operations
* Compare two values
* Assign a value to a variable
* Other operations may be basic, depending on context

* Exchange values of a pair of variables

INput size

* Running time depends on input size
* Larger arrays will take longer to sort

* Measure time efficiency as function of input size
* [nput size n
* Running time t(n)

* Different inputs of size n may each take a different
amount of time

* Typically t(n) is worst case estimate

Example 1: Sorting

* Sorting an array with n elements

* Naive algorithms : time proportional to n?

* Best algorithms : time proportional to n log n
* How important is this distinction?

* Typical CPUs process up to 10° operations per
second

* Useful for approximate calculations

Example 1: Sorting ...

* Jelephone directory for mobile phone users in India
* India has about 1 billion = 10° phones

* Naive n? algorithm requires 108 operations

* 108 operations per second = 10'° seconds
* 2778000 hours
* 115700 days

* 300 years!

* Smart n log n algorithm takes only about 3 x 101°
operations

* About 300 seconds, or 5 minutes

Example 2: Video game

* Several objects on screen

* Basic step: find closest pair of objects

* Given n objects, naive algorithm is again n?
* For each pair of objects, compute their distance
* Report minimum distance over all such pairs

* There Is a clever algorithm that takes time n log n

Example 2: Video game ...

* High resolution monitor has 2500 x 1500 pixels
* 3.75 million points
* Suppose we have 500,000 = 5 x 10° objects
* Naive algorithm takes 25 x 10'° steps = 2500 seconds

* 2500 seconds = 42 minutes response time is
unacceptable!

* Smart n log n algorithm takes a fraction of a second

Orders of magnitude

* \When comparing t(n) across problems, focus on
orders of magnitude

* |gnore constants

* f(n) = n® eventually grows faster than g(n) = 5000 n?
* For small values of n, f(n) is smaller than g(n)
* At n = 5000, f(n) overtakes g(n)

* \What happens in the limit, as n increases :
asymptotic complexity

lypical functions

* \\e are interested in orders of magnitude
* |s t(n) proportionaltologn, ..., n?,n3, ..., 2"?

* Logarithmic, polynomial, exponential ...

Typical functions t(n)...

logn n nlogn n? ns on 2
93 10 33 100 1000 1000 106
6.6 100 66 10% 106 1030 10157
10 1000 104 10° 10°
13 104 105 108 1012

V4 109 106 1010
20 5 06 107
23 10/ 08
27 108 09
30 5 09 1010

33 LT

