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8.1 INTRODUCTION
At a low level of abstraction, a protocol is often most easily understood as a state
machine. Design criteria can also easily be expressed in terms of desirable or undesir-
able protocol states and state transitions. In a way, the protocol state symbolizes the
assumptions that each process in the system makes about the others. It defines what
actions a process is allowed to take, which events it expects to happen, and how it will
respond to those events.

The formal model of a communicating finite state machine plays an important role in
three different areas of protocol design: formal validation, protocol synthesis, and
conformance testing. This chapter introduces the main concepts. First the basic finite
state machine model is discussed. There are several, equally valid, ways of extending
this basic model into a model for communicating finite state machines. We select one
of those models and formalize it in a definition of a generalized communicating finite
state machine. The model can readily be applied to represent PROMELA specifications
and to build an automated validator.

There exist many variations of the basic finite state machine model. Rather than list
them all, we conclude this chapter with a discussion of two of the more interesting
examples: the Petri Net and the FIFO Net.

8.2 INFORMAL DESCRIPTION
A finite state machine is usually specified in the form of a transition table, much like
the one shown in Table 8.1 below.
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Table 8.1 — Mealy1

_ ____________________________________ ___________________________________
Condition Effect_ ___________________________________

Current State In Out Next State_ ___________________________________
q0 – 1 q2
q1 – 0 q0
q2 0 0 q3
q2 1 0 q1
q3 0 0 q0
q3 1 0 q1_ ___________________________________ 


































For each control state of the machine the table specifies a set of transition rules.
There is one rule per row in the table, and usually more than one rule per state. The
example table contains transition rules for control states named q0, q1, q2, and q3.
Each transition rule has four parts, each part corresponding to one of the four columns
in the table. The first two are conditions that must be satisfied for the transition rule
to be executable. They specify

The control state in which the machine must be
A condition on the ‘‘environment’’ of the machine, such as the value of an
input signal

The last two columns of the table define the effect of the application of a transition
rule. They specify

How the ‘‘environment’’ of the machine is changed, e.g., how the value of an
output signal changes
The new state that the machine reaches if the transition rule is applied

In the traditional finite state machine model, the environment of the machine consists
of two finite and disjoint sets of signals: input signals and output signals. Each signal
has an arbitrary, but finite, range of possible values. The condition that must be satis-
fied for the transition rule to be executable is then phrased as a condition on the value
of each input signal, and the effect of the transition can be a change of the values of
the output signals. The machine in Table 8.1 illustrates that model. It has one input
signal, named In, and one output signal, named Out.

A dash in one of the first two columns is used as a shorthand to indicate a ‘‘don’t
care’’ condition (that always evaluates to the boolean value true). A transition rule,
then, with a dash in the first column applies to all states of the machine, and a transi-
tion rule with a dash in the second column applies to all possible values of the input
signal. Dashes in the last two columns can be used to indicate that the execution of a
transition rule does not change the environment. A dash in the third column means
__________________
1. This example first appeared in two seminal papers on finite state machines, published by George H. Mea-
ly [1955] and Edward F. Moore [1956].



164 FINITE STATE MACHINES CHAPTER 8

that the output signal does not change, and similarly, a dash in the fourth column
means that the control state remains unaffected.

In each particular state of the machine there can be zero or more transition rules that
are executable. If no transition rule is executable, the machine is said to be in an end-
state. If precisely one transition rule is executable, the machine makes a deterministic
move to a new control state. If more than one transition rule is executable a nondeter-
ministic choice is made to select a transition rule. A nondeterministic choice in this
context means that the selection criterion is undefined. Without further information
either option is to be considered equally likely. From here on, we will call machines
that can make such choices nondeterministic machines.2 Table 8.2 illustrates the con-
cept. Two transition rules are defined for control state q1. If the input signal is one,
only the first rule is executable. If the input signal is zero, however, both rules will be
executable and the machine will move either to state q0 or to state q3.

Table 8.2 — Non-Determinism
_ ____________________________________ ___________________________________
Current State In Out Next State_ ___________________________________

q1 – 0 q0
q1 0 0 q3_ ___________________________________ 















The behavior of the machine in Table 8.1 is more easily understood when represented
graphically in the form of a state transition diagram, as shown in Figure 8.1.

q0

q3

q1 q2

–/1

1/0

–/0

0/0

1/0 0/0

Figure 8.1 — State Transition Diagram
The control states are represented by circles, and the transition rules are specified as
directed edges. The edge labels are of the type c/e, where c specifies the transition
condition (e.g., the required set of input values) and e the corresponding effect (e.g., a
new assignment to the set of output values).
__________________
2. The nondeterministic formal automata (NFA) from automata theory are often defined differently. (See
for instance, Aho, Sethi and Ullman [1986, p. 114].) Unlike our nondeterministic machines, an NFA can be
in more than one state at the same time.
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TURING MACHINES
The above definition of a finite state machine is intuitively the simplest. There are
many variants of this basic model that differ in the way that the environment of the
machines is defined and thus in the definition of the conditions and the effects of the
transition rules. For truly finite state systems, of course, the environment must be fin-
ite state as well (e.g., it could be defined as another finite state machine). If this
requirement is dropped, we obtain the well-known Turing Machine model. It is used
extensively in theoretical computer science as the model of choice in, for instance, the
study of computational complexity. The Turing machine can be seen as a generaliza-
tion of the finite state machine model, although Turing’s work predates that of Mealy
and Moore by almost two decades.

The ‘‘environment’’ in the Turing machine model is a tape of infinite length. The
tape consists of a sequence of squares, where each square can store one of a finite set
of tape symbols. All tape squares are initially blank. The machine can read or write
one tape square at a time, and it can move the tape left or right, also by one square at a
time. Initially the tape is empty and the machine points to an arbitrary square. The
condition of a transition rule now consists of the control state of the finite state
machine and the tape symbol that can be read from the square that the machine
currently points to. The effect of a transition rule is the potential output of a new tape
symbol onto the current square, a possible left or right move, and a jump to a new
control state.

The tape is general enough to model a random access memory, be it an inefficient
one. Table 8.3 illustrates this type of finite state machine.

Table 8.3 — Busy Beaver3

_ _________________________________________ ________________________________________
Condition Effect_ ________________________________________

Current State In Out/Move Next State_ ________________________________________
q0 0 1/L q1
q0 1 1/R q2
q1 0 1/R q0
q1 1 1/L –
q2 0 1/R q1
q2 1 1/L q3
q3 – – –_ ________________________________________ 






































This machine has two output signals: one is used to overwrite the current square on
the tape with a new symbol, and one is used to move the tape left or right one square.
State q3 is an end state.
__________________
3. This table is Tibor Rado’s classic entry into the busy beaver game. The object of the game is to create an
N-state (here N = 3) finite state machine that, when started on an empty tape (i.e., with all squares zero)
reaches a known end state in a finite number of steps, leaving the longest possible sequence of ones on the
tape.
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It is fairly hard to define an extension of this variant of the model with a practical
method for modeling the controlled interaction of multiple finite state machines. The
obvious choice would be to let one machine read a tape that is written by another, but
this is not very realistic. Furthermore, the infinite number of potential states for the
environment means that many problems become computationally intractable. For the
study of protocol design problems, therefore, we must explore other variants of the
finite state machine.

COMMUNICATING FINITE STATE MACHINES
Consider what happens if we allow overlap of the sets of input and output signals of a
finite state machine of the type shown in Table 8.1. In all fairness, we cannot say
what will happen without first considering in more detail what a ‘‘signal’’ is.

We assume that signals have a finite range of possible values and can change value
only at precisely defined moments. The machine executes a two-step algorithm. In
the first step, the input signal values are inspected and an arbitrary executable transi-
tion rule is selected. In the second step, the machine changes its control state in
accordance with that rule and updates its output signals. These two steps are repeated
forever. If no transition rule is executable, the machine will continue cycling through
its two-step algorithm without changing state, until a change in the input signal
values, effected by another finite state machine, makes a transition possible. A signal,
then, has a state, much like a finite state machine. It can be interpreted as a variable
that can only be evaluated or assigned to at precisely defined moments.

The behavior of the machine from Table 8.1 is now fully defined, even if we assume a
feedback from the output to the input signal. In this case the machine will loop
through the following sequence of three states forever: q0, q2, q1. At each step, the
machine inspects the output value that was set in the previous transition. The
behavior of the machine is independent of the initial value of the input signal.

We can build elaborate systems of interacting machines in this way, connecting the
output signals of one machine to the input signals of another. The machines must
share a common ‘‘clock’’ for their two-step algorithm, but they are not otherwise syn-
chronized. If further synchronization is required, it must be realized with a subtle sys-
tem of handshaking on the signals connecting the machines. This problem, as we saw
in Chapter 5, has three noticeable features: it is a hard problem, it has been solved,
and, from the protocol designer’s point of view, it is irrelevant. Most systems provide
a designer with higher-level synchronization primitives to build a protocol. An exam-
ple of such synchronization primitives are the send and receive operations defined in
PROMELA.

ASYNCHRONOUS COUPLING
In protocol design, finite state machines are most useful if they can directly model the
phenomena in a distributed computer system. There are two different and equally
valid ways of doing this, based on an asynchronous or a synchronous communication
model. With the asynchronous model, the machines are coupled via bounded FIFO
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(first-in first-out) message queues. The signals of a machine are now abstract objects
called messages. The input signals are retrieved from input queues, and the output
signals are appended to output queues. All queues, and the sets of signals, are still
finite, so we have not given up the finiteness of our model.

Synchronization is achieved by defining both input and output signals to be condi-
tional on the state of the message queues. If an input queue is empty, no input signal
is available from that queue, and the transition rules that require one are unexecutable.
If an output queue is full, no output signal can be generated for that queue, and the
transition rules that produce one are similarly unexecutable.

From this point on we restrict the models we are considering to those with no more
than one synchronizing event per transition rule; that is, a single rule can specify an
input or an output, but not both. The reason for this restriction is twofold. First, it
simplifies the model. We do not have to consider the semantics of complicated com-
posites of synchronizing events that may be inconsistent (e.g., two outputs to the same
output queue that can accommodate only one of the two). Second, it models the real
behavior of a process in a distributed system more closely. Note that the execution of
a transition rule is an atomic event of the system. In most distributed systems a single
send or receive operation is guaranteed to be an atomic event. It is therefore appropri-
ate not to assume yet another level of interlocking in our basic system model.

Table 8.4 — Sender
_ __________________________________ _________________________________
State In Out Next State_ _________________________________

q0 – mesg0 q1
q1 ack1 – q0
q1 ack0 – q2
q2 – mesg1 q3
q3 ack0 – q2
q3 ack1 – q0_ _________________________________ 

































As an example of asynchronous coupling of finite state machines, Tables 8.4 and 8.5
give transition table models for a simple version of the alternating bit protocol (see
also Chapter 4, Figure 4.8). The possibility of a retransmission after a timeout is not
modeled in Table 8.4. We could do so with spontaneous transitions, by adding two
rules:

__________________________________________________________
State In Out Next State_____________________________

q1 – mesg0 –
q3 – mesg1 –_____________________________ 















The table can model the possibility of retransmissions in this way, though not their
probability. Fortunately, this is exactly the modeling power we need in a system that
must analyze protocols independently of any assumptions on the timing or speed of
individual processes (see also Chapter 11).
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Table 8.5 — Receiver
_ __________________________________ _________________________________
State In Out Next State_ _________________________________

q0 mesg1 – q1
q0 mesg0 – q2
q1 – ack1 q3
q2 – ack0 q0
q3 mesg0 – q4
q3 mesg1 – q5
q4 – ack0 q0
q5 – ack1 q3_ _________________________________ 







































The last received message can be accepted as correct in states q1 and q4. A state tran-
sition diagram for Tables 8.4 and 8.5 is given in Figure 8.2. The timeout option in the
sender would produce and extra self-loop on states q1 and q3.

q0

q1

q2

q3

q5

q4

!mesg0 ?ack1

?ack0

!mesg1 ?ack1

!mesg0

?ack0 !mesg1

Sender (Table 8.4)

q2

q0

q1

q3

q5

q4

!ack0 ?mesg0

?mesg1

!ack1 ?mesg0

!ack0

?mesg1 !ack1

Receiver (Table 8.5)

Figure 8.2 — State Transition Diagrams, Tables 8.4 and 8.5

We do not have parameter values in messages just yet. In the above model the value
of the alternating bit is therefore tagged onto the name of each message.

SYNCHRONOUS COUPLING
The second method for coupling machines is based on a synchronous model of com-
munication, like the one discussed briefly in Chapter 5. The transition conditions are
now the ‘‘selections’’ that the machine can make for communication. Again we allow
only one synchronizing event per transition rule. The machine can select either an
input or an output signal for which a transition rule is specified. To make a move, a
signal has to be selected by precisely two machines simultaneously, in one machine as
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an output and in the other as an input. If such a match on a signal occurs, both
machines make the corresponding transition simultaneously and change their selec-
tions in accordance with the new states they reach.

Tables 8.6 and 8.7 give an example of synchronously coupled finite state machines.
The machine in Table 8.6 can make just one input selection P in state q0 and one out-
put selection V in state q1.

Table 8.6 — User
_ ____________________________ ___________________________
State In Out Next State_ ___________________________

q0 P – q1
q1 – V q0_ ___________________________ 















The second machine is almost the same as the first, but has the inputs and outputs
swapped (Table 8.7).

Table 8.7 — Server
_ ____________________________ ___________________________
State In Out Next State_ ___________________________

q0 – P q1
q1 V – q0_ ___________________________ 















If we create two machines of type 8.6 and combine them with one machine of type
8.7, we can be certain that for all possible executions the first two machines cannot
both be in state q1 at the same time. Note that synchronous communication was
defined to be binary: exactly two machines must participate, one with a given input
selection and the other with the matching output selection. Typically, a parameter
value will be passed from sender to receiver in the synchronous handshake. The value
transfer, however, is not in the model just yet.

We can again consider the synchronous communication as a special case of asynchro-
nous communication with a queue capacity of zero slots (see also Chapters 5 and 11).
In the remainder of this chapter we therefore focus on the more general case of a fully
asynchronous coupling of finite state machines.

8.3 FORMAL DESCRIPTION
Let us now see if we can tidy up the informal definitions discussed so far. A com-
municating finite state machine can be defined as an abstract demon that accepts input
symbols, generates output symbols, and changes its inner state in accordance with
some predefined plan. For now, these symbols or ‘‘messages’’ are defined as abstract
objects without contents. We will consider the extensions required to include value
transfer in Section 8.8. The finite state machine demons communicate via bounded
FIFO queues that map the output of one machine upon the input of another. Let us
first formally define the concept of a queue.

A message queue is a triple (S, N, C), where:
S is a finite set called the queue vocabulary,
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N is an integer that defines the number of slots in the queue, and
C is the queue contents, an ordered set of elements from S.

The elements of S and C are called messages. They are uniquely named, but other-
wise undefined abstract objects. If more than one queue is defined we require that the
queue vocabularies be disjoint. Let M be the set of all messages queues, a superscript
1≤m≤M is used to identify a single queue, and an index 1≤n≤N is used to identify
a slot within the queue. Cn

m, then, is the n-th message in the m-th queue. A system
vocabulary V can be defined as the conjunction of all queue vocabularies, plus a null
element that we indicate with the symbol ε. Given the set of queues M, numbered
from 1 to M, the system vocabulary V is defined as

V =
m = 1
∪
M

S m ∪ ε

Now, let us define a communicating finite state machine.

A communicating finite state machine is a tuple (Q, q 0, M, T), where
Q is a finite, non-empty set of states,
q 0 is an element of Q, the initial state,
M is a set of message queues, as defined above, and
T is a state transition relation.

Relation T takes two arguments, T(q ,a), where q is the current state and a is an
action. So far, we allow just three types of actions: inputs, outputs, and a null action
ε. The executability of the first two types of actions is conditional on the state of the
message queues. If executed, they both change the state of precisely one message
queue. Beyond this, it is immaterial, at least for our current purposes, what the pre-
cise definition of an input or an output action is.

The transition relation T defines a set of zero or more possible successor states in set
Q for current state q. This set will contain precisely one state, unless nondeterminism
is modeled, as in Table 8.2. When T(q ,a) is not explicitly defined, we assume
T(q ,a) = ∅.

T(q ,ε) specifies spontaneous transitions. A sufficient condition for these transitions
to be executable is that the machine be in state q.

8.4 EXECUTION OF MACHINES
Consider a system of P finite state machines, with overlapping sets of message
queues. The union of the sets of all message queues is again called M. This system of
communicating finite state machines is executed by applying the following rules,
assuming asynchronous coupling only. The elements of finite state machine i are
referred to with a superscript i.

ALGORITHM 8.1 — FSM EXECUTION

1. Set all machines in their initial state, and initialize all message queues to empty:

∀(i) , 1≤ i≤P → q i = q0
i
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∀(i) , 1≤ i≤M → C i = ∅

2. Select an arbitrary machine i and an arbitrary transition rule T i with

T i (q , ia) ≠ ∅ and a is executable

and execute it.
3. If no executable transition rules remain, the algorithm terminates.

Action a can be an input, an output, or it can be the null action ε. Let 1≤d(a) ≤M
be destination queue of an action a, and let m(a) be the message that is sent or
received, m(a) ∈S d(a) . Further, let N i represent the number of slots in message
queue i. In an asynchronous system, for instance, the following three rules can be
used to determine if a is executable.

a = ε (1)

or

a is an input and m(a) = C1
d(a) (2)

or

a is an output and C d(a) < N d(a) (3)

Algorithm 8.1 does not necessarily terminate.

8.5 MINIMIZATION OF MACHINES
Consider the finite state machine shown in Table 8.8, with the corresponding state
transition diagram in Figure 8.3.

Table 8.8 — Receiver-II
_ _________________________________________ ________________________________________

Condition Effect_ ________________________________________
Current State In Out Next State_ ________________________________________

q0 mesg1 – q1
q0 mesg0 – q2
q1 – ack1 q0
q2 – ack0 q0_ ________________________________________ 


























Though this machine has three states fewer than the machine from Table 8.5, it cer-
tainly looks like it behaves no differently. Two machines are said to be equivalent if
they can generate the same sequence of output symbols when offered the same
sequence of input symbols. The keyword here is can. The machines we study can
make nondeterministic choices between transition rules if more than one is executable
at the same time. This nondeterminism means that even two equal machines can
behave differently when offered the same input symbols. The rule for equivalence is
that the machines must have equivalent choices to be in equivalent states.
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q1 q0 q2

?mesg1

!ack1

?mesg0

!ack0

Figure 8.3 — State Transition Diagram for Table 8.8

States within a single machine are said to be equivalent if the machine can be started
in any one of these states and generate the same set of possible sequences of outputs
when offered any given test sequence of inputs. The definition of an appropriate
equivalence relation for states, however, has to be chosen with some care. Consider
the following PROMELA process.

proctype A()
{ if

:: q?a -> q?b
:: q?a -> q?c
fi

}

Under the standard notion of language equivalence that is often defined for deter-
ministic finite state machines, this would be equivalent to

proctype B()
{ q?a;

if
:: q?b
:: q?c
fi

}

since the set of all input sequences (the language) accepted by both machines is the
same. It contains two sequences, of two messages each:

{ q?a;q?b , q?a;q?c }

The behavior of the two processes, however, is very different. The input sequence
q?a;q?b, for instance, is always accepted by process B but may lead to an unspecified
reception in process A. For nondeterministic communicating finite state machines,
therefore processes A and B are not equivalent. The definitions given below will sup-
port that notion.

In the following discussion of equivalence, state minimization, and machine composi-
tion, we will focus exclusively on the set of control states Q and the set of transitions
T of the finite state machines. Specifically, the internal ‘‘state’’ of the message
queues in set M is considered to be part of the environment of a machine and not con-
tributing to the state of the machine itself. That this is a safe assumption needs some
motivation. Consider, as an extreme case, a communicating finite state machine that
accesses a private message queue to store internal state information. It can do so by
appending messages with state information in the queue and by retrieving that infor-
mation later. The message queue is internal and artificially increases the number of
states of the machine.
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When we consider the message queue to be part of the environment of a machine in
the definitions that follow, we ignore the fact that the information that is retrieved
from such a private queue is always fixed (i.e., it can only have been placed in the
queue by the same machine in a previous state). If we say that two states of this
machine are equivalent if they respond to the same input messages in the same way,
we do in fact place a stronger requirement on the states than strictly necessary. We
require, for instance, that the two states would respond similarly to messages that
could never be in a private queue for the given state. To suppress state information
that could be implicit in the messages queue contents therefore does not relax the
equivalence requirements. As we will see, it does lead to simpler algorithms.

Using this approach, the set of control states of a communicating finite state machine
can be minimized, without changing the external behavior of the machine, by replac-
ing every set of equivalent states with a single state. More formally, we can say that
this equivalence relation defines a partitioning of the states into a finite set of disjoint
equivalence classes. The smallest machine equivalent to the given one will have as
many states as the original machine has equivalence classes.

We can now define a procedure for the minimization of an arbitrary finite state
machine with Q states.

ALGORITHM 8.2 — FSM MINIMIZATION

1. Define an array E of Q × Q boolean values. Initially, every element E[i , j] of
the array is set to the truth value of the following condition, for all actions a:

T(i ,a) ≠ ∅ ⇔ T( j ,a) ≠ ∅

Two states are not equivalent unless the corresponding state transition relations are
defined for the same actions.
2. If the machine considered contains only deterministic choices, T defines a unique
successor state for all true entries of array E. Change the value of all those entries
E[i , j] to the value of

∀(a) , E[T(i ,a) ,T( j ,a) ]

It means that states are not equivalent unless their successors are also equivalent.
When T(i ,a) and T( j ,a) can have more than one element, the relation is more
complicated. The value of E[i , j] is now set to false if either of the following two
conditions is false for any action a.

∀(p) , p∈T(i ,a) → ∃(q) ,q∈T( j ,a) and E[p ,q]
∀(q) , q∈T( j ,a) → ∃(p) ,p∈T(i ,a) and E[q ,p]

This means that states i and j are not equivalent unless for every possible successor
state p of state i there is at least one equivalent successor state q of state j, and vice
versa.
3. Repeat step 2 until the number of false entries in array E can no longer be increased.

The procedure always terminates since the number of entries of the array is finite and
each entry can only be changed once, from true to false, in step 2. When the
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procedure terminates, the entries of the array define a partitioning of the Q states
into equivalence classes. State i, 1≤i≤Q, is equivalent with all states j, 1≤ j≤Q,
with E[i , j] = true.

Table 8.9 — Equivalence
_ __________________________________ _________________________________

q0 q1 q2 q3 q4 q5_ _________________________________
q0 1 0 0 1 0 0
q1 0 1 0 0 0 1
q2 0 0 1 0 1 0
q3 1 0 0 1 0 0
q4 0 0 1 0 1 0
q5 0 1 0 0 0 1_ _________________________________ 











If we apply this procedure to the finite state machine in Table 8.5, we obtain the stable
array of values for E shown in Table 8.9 after a single application of the first two
steps. A one in the table represents the boolean value true. From the table we see that
state pairs (q0, q3), (q1, q5), and (q2, q4) are equivalent. We can therefore reduce
Table 8.5 to the three-state finite state machine that was shown in Table 8.8. It is
necessarily the smallest machine that can realize the behavior of Table 8.5.

The procedure above can be optimized by noting, for instance, that array E is sym-
metric: for all values of i and j we must have E(i , j) = E( j ,i). Trivially, every state is
equivalent with itself.

8.6 THE CONFORMANCE TESTING PROBLEM
The procedure for testing equivalence of states can also be applied to determine the
equivalence of two machines. The problem is then to determine that every state in
one machine has an equivalent in the other machine, and vice versa. Of course, the
machines need not be equal to be equivalent.

A variant of this problem is of great practical importance. Suppose we have a formal
protocol specification, in finite state machine form, and an implementation of that
specification. The two machines must be equivalent, that is the implementation, seen
as a black box, should respond to input signals exactly as the reference machine
would. We cannot, however, know anything with certainty about the
implementation’s true internal structure. We can try to establish equivalence by sys-
tematically probing the implementation with trial input sequences and by comparing
the responses with those of the reference machine. The problem is now to find just
the right set of test sequences to establish the equivalence or non-equivalence of the
two machines. This problem is known in finite state machine theory as the fault
detection or conformance testing problem. Chapter 10 reviews the methods that have
been developed for solving this problem.

Carrying this one step further, we may also want to determine the internal structure of
an unknown finite state machine, just by probing it with a known set of input signals
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and by observing its responses. This problem is known as the state verification prob-
lem. Without any further knowledge about the machine, that problem is alas unsolv-
able. Note, for instance, that in Figure 8.1 state q3 cannot be distinguished from state
q2 by any test sequence that starts with an input symbol one. Similarly, state q1 can-
not be distinguished from state q3 by any sequence starting with a zero. Since every
test sequence has to start with either a one or a zero there can be no single test
sequence that can tell us reliably in which state this machine is.

8.7 COMBINING MACHINES
By collapsing two separate finite state machines into a single machine the complexity
of formal validations based on finite state machine models may be reduced. The algo-
rithm below is referred to in Chapter 11 in the discussion of an incremental protocol
validation method, and in Chapter 14 in the discussion of methods for stepwise
abstraction.

The problem is to find a tuple (Q, q 0, M, T) for the combined machine, given two
machines (Q 1, q0

1, M 1, T 1) and (Q 2, q0
2, M 2, T 2).

ALGORITHM 8.3 — FSM COMPOSITION

1. Define the product set of the two sets of states of the two state machines. If the first
machine has Q 1 states and the second machine has Q 2 states the product set
contains Q 1 × Q 2 states. We initially name the states of the new machine by
concatenating the state names of the original machines in a fixed order. This defines
set Q of the combined machine. The initial state q 0 of the new machine is the
combination q0

1 q0
2 of the initial states of the two original machines.

2. The set of message queues M of the combined machine is the union of the sets of
queues of the separate machines, M 1 ∪ M 2. The two original sets need not be
disjoint. The vocabulary V of the new machine is the combined vocabulary of M 1 and
M 2, and the set of actions a is the union of all actions that the individual machines can
perform.
3. For each state q 1 q 2 in Q, define transition relation T for each action a as the
nondeterministic choice of the corresponding relations of M 1 and M 2 separately, when
placed in the individual states q 1 and q 2. This can be written:

∀(q 1 q 2 ) ∀(a) , → T(q 1 q 2 ,a) = T 1 (q 1 ,a) ∪T 2 (q 2 ,a)

The combined machine can now be minimized using Algorithm 8.2. Algorithm 8.3
can be readily adapted to combine more than two machines.

The greatest value of the composition technique from the last section is that it allows
us to simplify complex behaviors. In protocol validations, for instance, we could cer-
tainly take advantage of a method that allows us to collapse two machines into one.
One method would be to compose two machines using Algorithm 8.3, remove all
their internal interactions, i.e., the original interface between the two machines, and
minimize the resulting machine.

There are two pieces missing from our finite state machine framework to allow us to
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apply compositions and reductions in this way. First, the finite state machine model
we have developed so far cannot easily represent PROMELA models. In the next sec-
tion we show how the basic finite state machine model can be extended sufficiently to
model PROMELA models elegantly. The second piece that is missing from our frame-
work is a method for removing internal actions from a machine without disturbing its
external behavior. We discuss such methods in Section 8.9.

8.8 EXTENDED FINITE STATE MACHINES
The finite state machine models we have considered so far still fall short in two
important aspects: the ability to model the manipulation of variables conveniently and
the ability to model the transfer of arbitrary values. These machines where defined to
work with abstract objects that can be appended to and retrieved from queues and they
are only synchronized on the access to these queues.

We make three changes to this basic finite state machine model. First, we introduce
an extra primitive that is defined much like a queue: the variable. Variables have
symbolic names and they hold abstract objects. The abstract objects, in this case, are
integer values. The main difference from a real queue is that a variable can hold only
one value at a time, selected from a finite range of possible values. Any number of
values can be appended to a variable, but only the last value that was appended can be
retrieved.

The second change is that we will now use the queues specifically to transfer integer
values, rather than undefined abstract objects. Third, and last, we introduce a range of
arithmetic and logical operators to manipulate the contents of variables.

Table 8.10 — Finite State Variable
_ ____________________________________ ___________________________________
Current State In Out Next State_ ___________________________________

q0 s0 – –
q0 s1 – q1
q0 s2 – q2
q0 rv – r0
r0 – 0 q0_ ___________________________________
q1 s0 – q0
q1 s1 – –
q1 s2 – q2
q1 rv – r1
r1 – 1 q1_ ___________________________________
q2 s0 – q0
q2 s1 – q1
q2 s2 – –
q2 rv – r2
r2 – 2 q2_ ___________________________________ 
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The extension with variables, provided that they have a finite range of possible values,
does not increase the computational power of finite state machines with bounded
FIFO queues. A variable with a finite range can be simulated trivially by a finite state
machine. Consider the six-state machine shown in Table 8.10, that models a variable
with the range of values from zero to two. The machine accepts four different input
messages. Three are used to set the pseudo variable to one of its three possible
values. The fourth message, rv, is used to test the current value of the pseudo vari-
able. The machine will respond to the message rv by returning one of the three possi-
ble values as an output message.

Thus, at the expense of a large number of states, we can model any finite variable
without extending the basic model, as a special purpose finite state machine. The
extension with explicit variables, therefore, is no more than a modeling convenience.

Recall that the transition rules of a finite state machine have two parts: a condition and
an effect. The conditions of the transition rules are now generalized to include
boolean expressions on the value of variables, and the effects (i.e. the actions) are
generalized to include assignment to variables.

An extended finite state machine can now be defined as a tuple (Q ,q 0 ,M ,A ,T), where
A is the set of variable names. Q, q 0, and M are as defined before. The state transi-
tion relation T is unchanged. We have simply defined two extra types of actions:
boolean conditions on and assignments to elements of set A. A single assignment can
change the value of only one variable. Expressions are built from variables and con-
stant values, with the usual arithmetic and relational operators.

In the spirit of the validation language PROMELA, we can define a condition to be exe-
cutable only if it evaluates to true, and let an assignment always be executable. Note
carefully that the extended model of communicating finite state machines is a finite
state model, and almost all results that apply to finite state machines also apply to this
model.

EXTENDED I/O
Input and output actions can now be generalized as well. We will define I/O actions
as finite, ordered sets of values. The values can be expressions on variables from A,
or simply constants. By definition the first value from such an ordered set defines the
destination queue for the I/O, within the range 1 ..M. The remaining values define a
data structure that is appended to, or retrieved from, the queue when the I/O action is
performed. The semantics of executability can again be defined as in PROMELA.

EXAMPLE
Consider the following PROMELA fragment, based on an example from Chapter 5.

proctype Euclid
{ pvar x, y;

In?x,y;
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do
:: (x > y) -> x = x – y
:: (x < y) -> y = y – x
:: (x == y) -> break
od;
Out!x

}

The process begins by receiving two values into variables x and y, and it completes
by returning the greatest common divisor of these two values to its output queue. The
matching extended finite state machine is shown in Table 8.11, where we combine all
conditions, assignments and I/O operations in a single column.

Table 8.11 — Extended Finite State Machine
_ _________________________________ ________________________________
Current State Action Next State_ ________________________________

q0 In?x,y q1
q1 x>y q2
q1 x<y q3
q1 x=y q4
q2 x=x-y q1
q3 y=y-x q1
q4 Out!x q5
q5 – –_ ________________________________ 


























Set A has two elements, x and y.

We now have a simple mapping from PROMELA models to extended finite state
machines. Algorithm 8.3, for instance, can now be used to express the combined
behavior of two PROMELA processes by a single process. We noted before that this
technique could be especially useful in combination with a hiding method that
removes internal actions from a machine without disturbing its external behavior. We
take a closer look at such methods in the next section.

8.9 GENERALIZATION OF MACHINES
Consider the following PROMELA model.

1 proctype generalize_me(chan ans; byte p)
2 { chan internal[1] of { byte };
3 int r, q;
4
5 internal!cookie;
6 r = p/2;
7 do
8 :: (r <= 0) -> break
9 :: (r > 0) ->

10 q = (r*r + p)/(2*r);
11 if
12 :: (q != r) -> skip



SECTION 8.9 GENERALIZATION OF MACHINES 179

13 :: (q == r) -> break
14 fi;
15 r = q
16 od;
17 internal?cookie;
18 if
19 :: (q < p/3) -> ans!small
20 :: (q >= p/3) -> ans!great
21 fi
22 }

A process of this type will start by sending a message cookie to a local message
channel. It will then perform some horrible computation, using only local variables,
read back the message from the channel internal, and send one of two possible
messages over an external message channel ans.

Now, for starters, nothing detectable will change in the external behavior of this pro-
cess if we remove lines 2, 5 and 17. The message channel is strictly local, and there is
no possible behavior for which any of the actions performed on the channel can be
unexecutable. Lines 5 and 17 are therefore equivalent to skip operations and can be
deleted from the model. Reductions, or prunings, of this type produce machines that
have a equivalent external behavior to the non-reduced machines. This is not true for
the next type of reduction we discuss: generalization.

The horrible computation performed by the process, between lines 6 and 16, does not
involve any global variables or message interactions. Once the initial value of vari-
able p is chosen, the resulting message sent to channel ans is fixed. If we are
interested in just the external behavior of processes of type generalize_me,
independently of the precise value of p, the model could be rewritten as

proctype generalized(chan ans; byte p)
{

if
:: ans!small
:: ans!great
fi

}

This specification merely says that within a finite time after a process of this type is
instantiated, it sends either a message of type small or a message of type great and
terminates. To justify the reduction we must of course show that the loop in the origi-
nal specification will always terminate. If this is not the case, or cannot be proven, the
correct reduction would be
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proctype generalized(chan ans; byte p)
{

if
:: (0)
:: ans!small
:: ans!great
fi

}

where the possibility of blocking is preserved explicitly.

We call a reduction of this type, where uninteresting but strictly local, behavior is
removed, a generalization. A process of type generalized can do everything that a
process of type generalize_me can do, but it can do more. The generalized process
can, for instance, for any given parameter p, return either of the two messages, while
the non-generalized processes will pick only one. The generalized processes is only
more general in the way it can produce output, not in the way it can accept input, or in
general in the way other processes can constrain its behavior via global objects.

The usefulness of generalizations in protocol validation can be explained as follows.
Consider two protocol modules A and B whose combined behavior is too complex to
be analyzed directly. We want to validate a correctness requirement for the processes
in module A. We can do this by simplifying the behavior in module B, for instance by
combining, pruning, generalizing, and minimizing machines. If the behavior in
module B is generalized as discussed above, the new module B will still be capable of
behaving precisely like the unmodified module B, but it can do more. If we can prove
the observance of a correctness requirement for module A in the presence of the gen-
eralized module B, which may be easier, the result will necessarily also hold for the
original, more complex, module B, because the original behavior is a subset of the
new behavior.

Two things should be noted. First, if we are interested in proving a property of
module A we simplify its environment, which in this case is module B. We do not
change module A itself. Second, it is important that the modified behavior of module
B does not, by virtue of the modifications, allow module A to pass its test. This is
guaranteed by the fact that the generalized module B continues to adhere to all con-
straints that can be imposed by A, via global objects, such as message channels and
variables. The validation, then, gives us the best of both worlds. It performs a
stronger test, since it validates properties for more general conditions than defined in
the original protocol, yet it is easier to perform, since a generalized process can be
smaller than its original.

A general method for the reduction of an arbitrary PROMELA proctype definition can
be described as follows.

Identify selection and repetition structures in which all the guards are conditions
on local variables only, and in which the union of all guards is true.
Replace each of the guards identified in the first step with the PROMELA statement
skip.
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Replace all assignments to local variables that are no longer part of any condition,
with skip.
Remove all redundant declarations and minimize or simplify the new proctype

body, for instance, by combining equal clauses in selection and repetition struc-
tures, and by removing redundant skip statements.

If we apply this method to the process type generalize_me, after pruning away the
interactions on channel internal, we can reduce it to

proctype generalized_2(chan ans; byte p)
{

do
:: break
:: skip
od;
if
:: ans!small
:: ans!great
fi

}

which is similar to and has the same external behavior as the (second) version we
derived earlier with a little more handwaving. Note that the loop in the above version
does not necessarily terminate.

A more substantial application of this generalization technique and the resulting
reduction in complexity is discussed in Chapter 14.

8.10 RESTRICTED MODELS
To conclude this chapter, we look at two other interesting variants of the basic finite
state machine model that have been applied to the study of protocol problems. Many
variations of the basic finite state machine model have been used for the analysis of
protocol systems, both restrictions and extensions. The restricted versions have the
advantage, at least in principle, of a gain in analytical power. The extended versions
have the advantage of a gain in modeling power. The most popular variants of the
finite state machine are formalized token nets, often derived from the Petri Net model.
Below we briefly review the Petri Net model and discuss one of the variations, the
FIFO Net.

PETRI NETS
A Petri Net is a collection of places, transitions, and directed edges. Every edge con-
nects a place to a transition or vice versa. Places are graphically represented by cir-
cles, transitions by bars, and edges by directed arcs. Informally, a place corresponds
to a condition and a transition corresponds to an event. The input places of transition
T are the places that are directly connected to T by one or more edges. The input
places correspond to conditions that must be fulfilled before the event corresponding
to T can occur. The output places of a transition similarly correspond to the effect of
the event on the conditions represented by the places.
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Each place that corresponds to a fulfilled condition is marked with one or more tokens
(sometimes called a stone). The occurrence of an event is represented in the Petri Net
as the firing of a transition. A transition is enabled if there is at least one token in
each of its input places. The effect of a firing is that one token is added to the mark-
ings of all output places of the firing transition, and one token is removed from the
markings of all its input places.

Two transitions are said to conflict if they share at least one input place. If the shared
place contains precisely one token, both transitions may be enabled to fire, but the
firing of one transition disables the other. By definition the firing of any combination
of two transitions is always mutually exclusive: only one transition can fire at a time.

By assigning zero or more tokens to each place in the net we obtain an initial mark-
ing. Each firing creates a new marking. A series of firings is called an execution
sequence. If for a given initial marking all possible execution sequences can be made
infinitely long, the initial marking, and trivially all subsequent markings, are said to
be live. If in a certain marking no transition is enabled to fire, the net is said to hang.
An initial making is said to be safe if no subsequent execution sequence can produce a
marking where any place has more than one token.

A number of properties has been proven about Petri Nets, but mostly about still
further simplified versions. Two examples of such variants are:

Petri Nets in which precisely one edge is directed to and from each place. Such
nets are called marked graphs. In a marked graph there can be no conflicting tran-
sitions.
Petri Nets in which all transitions have at most one input place and one output
place. These nets are called transition diagrams.

Figure 8.4 gives an example of a Petri Net modeling a deadlock problem. Initially,
the two top transitions t1 and t2 are enabled. After t1 fires, transition t3 becomes
enabled. If it fires, all is well. If in this marking, however, transition t2 fires, the net
will hang.

A token in a Petri Net symbolizes more than the fulfillment of a condition, as
described above. It also symbolizes a control flow point in the program, and it sym-
bolizes a privilege to proceed beyond a certain point. A token models a shared
resource that can be claimed by more than one transition. All these abstractions sym-
bolize the enforcement of partial orderings on the set of possible execution sequences
in the system modeled. Especially relevant to the protocol modeling problem is that
mixing these abstractions can make it more difficult than necessary to distinguish
computation from communication in a Petri Net model.

The complexity of a Petri Net representation rises rapidly with the size of the problem
being modeled. It is virtually impossible to draw a clear net for protocol systems that
include more than two or three processes. This makes the Petri Net models relatively
weak in modeling power compared to communicating finite state machines, without
offering an increase in analytical power. There are, for instance, no standard pro-
cedures, other than reachability analysis, to analyze a Petri Net for the presence of
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Figure 8.4 — Petri Net with hang state
hang states. Neither are there standard procedures for simplifying a large Petri Net
into one or more smaller, equivalent ones.

One final note on the modeling power of basic Petri Nets. We observed above that
the places in a Petri Net can be used to model conditions. It is fairly easy to model
logical and and or tests on places using multiple edges, but there is no general way to
model a logical not-operation (negation). With a logical not-operation it would be
possible to define that a transition can fire if a place holds no tokens.

Of course, there are many good applications of Petri Net theory. They have been
applied successfully to the study of a range of theoretical problems in parallel compu-
tation. For the above pragmatic reasons, however, we conclude that Petri Nets do not
give us an advantage in the study of protocol design and validation problems.

FIFO NETS
FIFO Nets are an interesting generalization of Petri Nets and a relatively recent addi-
tion to the range of tools proposed for studying distributed systems (see Bibliographic
Notes).

A FIFO Net, like a Petri Net, has places, edges, and transitions, but the places contain
symbols rather than tokens. The symbols are appended to and reclaimed from the
places by transition firings. They are stored by the places in FIFO queues. Both
incoming and outgoing edges of transitions are labeled with symbol names. A transi-
tion can only fire if the queue of each of its input places can deliver the symbol that
corresponds to the edge connecting the transition to that place. Upon firing the labels
on the outgoing edges specify which symbols are to be appended to the queues of the
corresponding output places.

The generalization of FIFO Nets is strong enough to make them equivalent in compu-
tational power to the finite state machines that we defined earlier. Alas, there are no
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better procedures to analyze FIFO Nets for interesting protocol errors, such as
deadlock. In some cases, procedures do exist for restricted versions of FIFO Nets, but
again the restrictions generally reduce the modeling power too severely to make them
of interest as a general tool for designing or analyzing protocol systems.

8.11 SUMMARY
The formal model of a finite state machine was developed in the early 1950s for the
study of problems in computational complexity and, independently, for the study of
problems in the design of combinatorial and sequential circuits. There are almost as
many variants of the basic model of a finite state machine as there are applications.
For the study of protocol design problems we need a formalism in which we can
model the primitives of process interactions as succinctly as possible. With this in
mind we developed an extended finite state machine model that can directly model
message passing and the manipulation of variables. Its semantics are closely linked to
the semantics of PROMELA.

There are three main criteria for evaluating the adequacy of formal modeling tools:
Modeling power
Analytical power
Descriptive clarity

The main purpose of the modeling is to obtain a gain in analytical power. It should be
easier to analyze the model than it is to analyze the original system being modeled.
We have chosen the finite state machine as our basic model. There is a small set of
useful properties that can easily be established with a static analysis of finite state
machine models. More importantly, however, the manipulation of finite state
machines can be automated, and more sophisticated dynamic analysis tools can be
developed. We study such tools in Part IV of this book. The descriptive clarity of the
finite state machines is debatable. It can well be argued that they trade descriptive
clarity for analytical power. By using PROMELA as an intermediate form of an
extended finite state machine, however, we can circumvent this problem.

The Turing machine model falls short on all three criteria listed above when applied
to the study of protocol problems. In particular, the definition of the ‘‘environment’’
is hard to exploit in the modeling of communications. Perhaps even more impor-
tantly, many problems of interest, such as absence of deadlock, are intractable for
Turing machine models. The model is too powerful for our purpose.

Petri Nets have been used for the study of distributed systems since their inception in
the early 1960s. The Petri Net and the FIFO Net have an appealing conceptual sim-
plicity that is mostly based on the graphical representation of the mechanism of pro-
cess interaction. This advantage in descriptive clarity, however, is lost when the size
of the problem exceeds a modest limit. Beyond roughly fifty states per process, the
nets become inscrutable. Another, more subtle problem is to distinguish synchroniza-
tion aspects from the control flow aspects in a Petri Net model. Both are modeled
with the same tool: the token. It can be argued that descriptive clarity is traded here
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for conceptual simplicity. For the modeling of protocol systems this turns out to be
an unfortunate trade-off. Protocols of a realistic size typically have many times the
numbers of states beyond which a Petri Net becomes unusable. The restrictions of the
model imply a loss of modeling power that is not offset by a comparable gain in
analytical power.

EXERCISES

8-1. 8-1. Explain the difference between the dash introduced as a notational convenience in Sec-
tion 8.2 and the ε introduced in Section 8.3.

8-2. 8-2. Apply Algorithm 8.1 to Table 8.1.

8-3. 8-3. Define the rules for the executability of a in Algorithm 8.1, assuming a synchronous
instead of asynchronous coupling of machines.

8-4. 8-4. Change Algorithm 8.3 to combine any number of machines.

8-5. 8-5. Implement Algorithms 8.1 to 8.3 in your favorite programming language. Invent a syn-
tax for specifying a system of finite state machines. Specify Tables 8.4 and 8.5 in this
formalism and use your programs to minimize the corresponding machines, to combine
them into one single machine, and to simulate the execution of the resulting description.

8-6. 8-6. Model the behavior of Tables 8.6 and 8.7 in PROMELA.

8-7. 8-7. Do the run and chan operators in PROMELA make the systems modeled unbounded?

8-8. 8-8. Find an algorithm that detects which message queues from the definition of a communi-
cating finite state machine are only used internally, to store state information, and that
removes them from the specification by increasing the number of states.

8-9. 8-9. (S. Purushothaman) Are two machine states equivalent if one of the two states contains
an unexecutable transition that the other state lacks (cf. a receive from an always-empty
message queue) ?

8-10. 8-10. Derive a formal finite state machine description for the example processes A and B on
page 172 and show that they are not equivalent.

BIBLIOGRAPHIC NOTES
The theory of finite state machines has a long history and at least parts of it can be
found in many computer science text books, e.g., Aho, Hopcroft and Ullman [1974],
Aho, Sethi and Ullman [1986]. The original idea of the finite state machine is attri-
buted to McCulloch and Pitts [1943]. Most tightly connected to the theory that was
subsequently developed are the names of D.A. Huffman, G.H. Mealy, E.F. Moore and
A.M. Turing. The original paper on Turing machines is Turing [1936]. For a more
recent discussion see, for instance, Kain [1972]. Huffman’s early work on the con-
cept of finite state machines and state equivalence was published in Huffman [1954]
and reprinted in Moore [1964]. Edward Moore’s first paper on finite state machines is
Moore [1956]. In Moore’s model the output of a finite state machine depends only on
its current state, not on the transition that produced it. The early papers by Moore are
collected in Moore [1964]. George Mealy’s original paper, on the finite state machine
model can be found in Mealy [1955]. Mealy’s model is slightly more general than
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Moore’s. In his model the output of a finite state machine depends on the last transi-
tion that was executed, not necessarily on the current state.

For a more general introduction to the basic theory and its application to circuit
design, refer to, for instance, Harrison [1965], Hartmanis and Stearns [1966], Kain
[1972], Shannon and McCarthy [1956]. The ‘‘busy beaver problem’’ was introduced
in Rado [1962] and further studied in Lin and Rado [1965].

The formal model of a finite state machine has been applied to the study of communi-
cation protocols since the very first publications, e.g., Bartlett, Scantlebury and Wil-
kinson [1969]. It has long been the method of choice in almost all formal modeling
and validation techniques, cf. Bochmann and Sunshine [1980]. The model was first
applied to a protocol validation problem in Zafiropulo [1978]. A very readable intro-
duction the theory of communicating finite state machines can be found in Brand and
Zafiropulo [1983].

An excellent overview of various methods for deriving equivalence relations for con-
current processes, and the complexity of the corresponding algorithms, can be found
in Kanellakis and Smolka [1990]. The generalization of machines is closely related to
the concept of a ‘‘protocol projection’’ that was introduced in Lam and Shankar
[1984].

Petri’s model was first described in Petri [1962]. See also Agerwala [1975] for a dis-
cussion of the Petri Net’s modeling power and for some extensions. A discussion of
FIFO Nets can be found in Finkel and Rosier [1987]. There are, of course, many
other interesting analytical models for concurrent systems. An overview and assess-
ment can be found in, e.g., Holzmann [1979].


