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7.1 INTRODUCTION
So far, our discussion of protocol design has covered specification and structuring
methods, design principles, and solutions to a set of standard protocol problems. It is
time to see how we can apply all this to a real design problem. As an example, in this
chapter we undertake the design of a protocol for the transfer of files between two
asynchronous machines.

Our purpose in this chapter is to use a disciplined method to specify the five essential
elements of the protocol (Chapter 2, Section 2.2). For the protocol procedure rules
our aim is to construct a high level prototype with explicit correctness criteria. Later,
we will then be able to show convincingly that the design criteria are either satisfied
or violated, using automated tools.

We will try to do this by applying the rules of design that are listed in Chapter 2, Sec-
tion 2.8. Most important among those for validation purposes is Rule 7:

Before implementing a design, build a high level prototype and verify that the
design criteria are met.

Our prototype is a validation model, as defined in Chapters 5 and 6. A verification
that the design criteria are met is done in Chapter 14, with the tools that are developed
in Chapters 11 to 13.

We make two crucial assumptions about the design process.
Protocol design is an iterative process. The design is not likely to be correct the
first time it is written down, and very likely it will not be quite correct the second
or third time around either.
Worse, each time a design phase is completed, we, the designers, will be con-
vinced that it is error-free. A manual walk-through of the code can reveal the big-
gest blunders, but cannot be expected also to reveal the subtle ones. Almost by
definition, we will overlook the unexpected cases that can cause errors.
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The construction of a formal validation model (a prototype) and a fast and unbiased
automated correctness checker is therefore indispensable for all but the simplest
designs. Chapters 11 and 13 discuss how a correctness checker for PROMELA models
can be constructed. In Chapter 14 the validation tool is applied to the design of this
chapter, either to verify that it meets the specifications or to reveal where it is flawed.
Our concern in this chapter is design and correctness. In the discussion that follows it
is important to keep in mind that we are building a validation model, not an imple-
mentation. The model is an abstraction, and as such it is a design tool in itself.

A full listing of the protocol developed here can be found in Appendix F. The valida-
tion of the design with a tool called SPIN is discussed in Chapter 14.

A FILE TRANSFER PROTOCOL
The file transfer protocol we develop can be classified in a number of different ways.
It is a point-to-point protocol, that is, it has one sender and one receiver. Protocols
with more than one receiver are sometimes called multi-point or broadcast protocols.
The file transfer protocol provides an end-to-end service between two users on two
different machines, possibly communicating through many intermediate machines.1

The procedure rules for the protocol are developed as a sequence of validation models
that can be checked on their correctness properties either individually or in combina-
tion. The assumption throughout this part of the design is that adequate tools are
available for verifying the consistency of the intermediate validation models, and that
they can be refined and adjusted with the help of those tools.

First we will make sure that the problem is completely defined. We explicitly specify
the other four elements of the protocol: the service specification, the assumptions
about the environment (the transmission channel), the protocol vocabulary, and the
message format.

7.2 SERVICE SPECIFICATION
The protocol must implement a reliable end-to-end file transfer service. This service
includes connection establishment and termination, recovery from transmission errors,
and a flow control strategy to prevent the sender from overflowing the receiver. The
protocol must be able to transfer ASCII text files, one at a time, with the probability
of an undetected bit error being less than a modest 1 in 108 bits transmitted. We
require that the user be able to abort a file transfer in progress, and that the protocol be
able to recover from message loss.

__________________
1. Cf. the OSI hierarchy in Chapter 2, Section 2.6. Only layers 4 to 7 provide end-to-end service.



7.3 ASSUMPTIONS ABOUT THE CHANNEL
The protocol is to be designed for full-duplex transfer of messages over voice-grade,
switched telephone lines. Having a dedicated line, rather than a network connection,
we can safely ignore specific networking issues such as routing, congestion control,
queueing delays, etc., and focus on concurrency control. To make it interesting, we
assume that the transfers take place between New York and Los Angeles, a distance
of approximately 4500 km. Given that the propagation time of an electrical signal in
a cable is about 30,000 km/sec (Appendix A), the minimal time for a message to
travel from sender to receiver is then approximately 0.15 seconds.

The bandwidth and average signal-to-noise ratio of a voice-grade telephone line allow
us to transmit comfortably at a signaling speed of 1200 bps, using a standard modem
(cf. Chapter 3 and Appendix A). We assume that transmission is character-oriented,
using ASCII character encoding (Chapter 2, Section 2.5).

Most errors on telephone lines are caused by noise spikes, echoes and cross-talk. The
resulting bit errors are not uniformly distributed: they come in bursts. Therefore, to
describe the error characteristics, we must know some error distribution functions. In
Chapter 3 (page 45) we gave several methods for predicting the probability of error-
free intervals and burst durations. For the error-free intervals we are mostly interested
in the average duration, not in the precise error distributions, so we will assume a sim-
ple Poisson distribution

Pr(EFI = n) = f .e− f .n , n ≥ 0

where 1/ f gives us the average duration of the error-free interval. We will use
f = 8.10 − 6, which corresponds to an average error-free interval of 125 , 000 bit
transmissions (or about 100 seconds).

For the error bursts we are interested in a more accurate prediction of the probability
that a given burst lasts at least n bit transmissions. We use Mandelbrot’s function:

Pr(Burst≥n) = 
n ( 1 − a) − (n − 1 )( 1 − a)

 e− g(n − 1 ) , 0≤a < 1 , n ≥ 1

where a and g are parameters. The parameter values that we choose here will deter-
mine the type of error control method that will be needed. The precise values should
be derived from measurements on the telephone channels used. They are, however,
largely irrelevant to the discussion that follows. We will assume a = 0. 9 and
g = 0. 009, a choice that matches our intuition about the behavior of burst errors. The
average duration of a burst error that can be calculated for these parameter values is
roughly 12 bit transmission times (10 msec). Figure 7.1 shows how the probability of
a burst depends on its length, using the above prediction. The y-axis is logarithmic.

If we succeed in reducing the residual error rate to no more than 1 in 108 transmitted
bits, at 1200 bps this gives an expectation of no more than one undetected error for
every 23 hours of continuous operation.
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Figure 7.1 — Probability of Burst Errors
7.4 PROTOCOL VOCABULARY
Consider the protocol as a black box. To perform its function, the protocol has to
communicate with its environment. It exchanges messages with the remote system
via a data link, and with the local user and a local file server via internal message
channels.
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Figure 7.2 — Protocol Environment
Without going into the details of the protocol itself just yet, let us see what types of
messages are needed to build it.

The black box accepts two types of messages from the local user. The first message
type is used to initiate a file transfer. It can have a single parameter:

transfer(file_descriptor)

The second message type can be used by the user to interrupt a transfer in progress.
abort

The transfer message must trigger a message to the local file server to verify that
the file to be transferred really exists, and if so, what the size of the file is. We call
that message

open(file_descriptor)

If the file can be opened, its size is determined, and a connection is made with the
remote system. To communicate the connection request from the local to the remote
system we use the message



connect(size)

At the remote side, an incoming connect request again triggers a message to the file
server, this time to verify that a new file of the given size can be stored. The message
for that can be

create(size)

We need at least two more messages from the file server to indicate whether an open

or a create request can be accepted or must be rejected:
accept(size)

and
reject(status)

In response to an open request, the accept message returns the file size to the calling
process. If the request is rejected, an integer parameter can be used to carry informa-
tion about the reason. The message types accept and reject can also be used to
inform the local user about the success or failure of an outgoing file transfer. And
similarly, they can be used by the local system to inform a remote system whether an
incoming file transfer is accepted.
To transfer a file, four things have to happen in a specific order:

Establishment of a connection with the local file server
Establishment of a connection with the remote system
Transfer of data
Orderly termination of the connection

Each protocol phase has its own vocabulary of messages and its own rules for inter-
preting them. Each phase may again have to be sub-divided into still smaller steps.
The second phase, for instance, will consist of two steps: (1) an initialization of the
flow control protocol, and (2) a handshake with the remote system using the connect
and accept or reject message. The synchronization of the local and the remote
flow control layer protocols is necessary to guarantee that they agree on the initial
sequence numbers to be used. We can use the message

sync

and its acknowledgment
sync_ack

for this purpose.

In the third protocol phase we need messages for retrieving the data from the file
server and transmitting them to the remote system. For example, we can use a mes-
sage

data(cnt, ptr)

to transfer cnt bytes of information, available in a data buffer that is identified by the
second parameter. This, of course, is not necessarily the way in which interactions
with the file server have to be implemented in a final design. For now, however, it
suffices that it accurately models the essentials of these interactions.

Another message,
eof

can be used by the file server to signify the end of a file. The correct completion of a



file transfer, with the eof message, can be confirmed by the remote system with a sin-
gle message

close

So far, the only assumption we have made about the file server is that it recognizes six
messages: open, create, accept, reject, data, and eof. To avoid synchroniza-
tion problems between the local system and the local file server, we assume that the
above six messages are exchanged by rendezvous communication (i.e., they are
equivalent to local procedure calls). This guarantees that, for instance, unused data

messages from or to the file server do not accumulate. After the successful comple-
tion of both a local open and a remote create request, the data messages are used
to transfer data from local file server to the remote file server, using the protocol to be
developed.

We need one extra message to implement a simple flow control discipline that ack-
nowledges correctly received data:

ack

The complete protocol vocabulary then consists of thirteen distinct message types.
Nine of these messages can be exchanged by the two remote machines: accept, ack,
close, connect, data, eof, reject, sync_ack, and sync. The other four, abort,
create, open, and transfer, are internal messages only.

7.5 MESSAGE FORMAT
It should now be decided what the right format for the above messages is. The mes-
sages minimally require a type field and an optional data field. To implement a flow
control discipline, the messages sent to the remote system must also carry sequence
numbers, and to implement error control they must carry a checksum field. Since the
transmission channel is byte oriented, we can format each message as a sequence of
bytes. Clearly, we would like these sequences to be as short as possible. Let us see
how we can calculate the minimal size required, knowing only what we know so far
about the protocol and the transmission channel to be used.

At the highest level, a message can be encoded into a series of bytes, indicating its
type and the value of its parameters. Before the message is sent, the flow control
appends a sequence number, and the error control appends a checksum field. At the
lowest level, just before the message is placed onto the transmission line, a line driver
appends the message delimiters, to enable the remote system to recognize where a
message starts and stops. The ASCII 8-bit patterns STX (start of text) and ETX (end of
text) can be used for this purpose. With byte stuffing (Chapter 2), misinterpretation
message delimiters that are part of the data itself can be avoided.

The remote receiver strips the STX and ETX characters and removes the stuffed charac-
ters. The remote error control strips and interprets the checksum, and the remote flow
control strips and interprets the sequence number. If all is well, the message finally
arrives at its peer as the original series of bytes again.

The best position of the various message fields in the byte sequence depends to some



extent on the encoding of the protocol routines at the lowest level (the physical layer)
in the hierarchy. Placing the checksum field at the end of a message has the advan-
tage that the sender can compute it on the fly while transmitting the body of the mes-
sage. There can also be a small difference in performance depending on where the
message-type field is placed. It can either be placed at the front of the message, in a
fixed place behind the STX symbol, or at the end, in a fixed place before the ETX sym-
bol. Since we have variable length messages, the position of the ETX symbol is less
predictable than that of the STX symbol. Placing the type field at the start of the mes-
sage can therefore make it easier to parse an incoming message.

We thus arrive at the message format shown in Figure 7.3, where the Data field is
absent in control messages.

STX
8

Message Type
h1

Sequence Number

h2
Data

8D
Checksum

t1
ETX

8

Figure 7.3 — Message Format
In Figure 7.3, a symbol representing the length of each field in bits is indicated in the
lower-righ corner. D bytes of information in the data field corresponds to a field width
of 8D bits. How are the numbers h1, h2, D, and t1 determined?

THE MESSAGE TYPE FIELD
This is the easiest of the four numbers to calculate. We have 13 different types of
message. Since 23 < 13 ≤ 24, 4 bits for the type field suffice.

h 1 = 4

THE SEQUENCE NUMBER FIELD
Now, let us derive an appropriate width for the sequence number field h 2. The mes-
sage propagation time is 0.15 seconds, long enough to transmit 180 bits. If a message
would be bounced back by the receiver without processing delays, the sender could
transmit 360 bits before receiving the return message. We would like to design the
protocol in such a way that the sender can completely saturate the channel whenever
the receiver consumes the data as fast as the sender produces data. We must therefore
make certain that the sender will not have to wait idly for acknowledgments when it
could be sending messages. This means that the sender should be able to be at least
360 bits ahead of the receiver under normal circumstances. The number of messages
that this corresponds to depends on the number of bytes in the data field and in the
header and trailer.

If we use a selective repeat continuous ARQ method (Chapter 4), the most flexible
flow control method we have discussed, the maximum number of outstanding mes-
sages with a sequence number field of h 2 bits is 2h 2 − 1. With a one-bit sequence
number only one message can be outstanding at a time, forcing the sender to remain



idle for at least 0.3 seconds, waiting for the acknowledgment on that message (twice
the message propagation time). With a two-bit sequence number, two messages may
be outstanding, meaning that the sender can transmit one message while awaiting the
acknowledgment for another. If that message is at least 360 bits long, no time is lost.
Below we will see that it is indeed advantageous to use a data field longer than 360
bits. So, we have

h 2 ≥ 2

Assuming again that the receiver is at least as fast as the sender, we could organize the
flow control as follows. All messages within the current window are sent before the
acknowledgment for the oldest outstanding message is checked. If no acknowledg-
ment is received by that time, the oldest message is retransmitted. If an acknowledg-
ment is received, the window slides up one notch and a new message can be transmit-
ted. The sender is never idle, and the channel is saturated.

Note carefully that if the receiver is slower than the sender it is prudent not to try to
saturate the channel: the receiver needs time to catch up with the sender. For this case
we can include a timer. If no acknowledgment for the oldest outstanding frame is
received by the time the sender checks for one, the sender now waits at least an addi-
tional timeout period for the acknowledgment to arrive. The appropriate value for the
timeout count can be estimated, or it can be adjusted dynamically with a rate control
method. We shall restrict ourselves to the optimal case, with a fully saturated chan-
nel.

THE DATA FIELD
The length of the data field is expressed in the byte count D and is variable per data
message. It is not to our advantage to make a message too long, since the expectation
that a message contains bit errors trivially increases with its length. On the other
hand, if we make the messages too small, the overhead2 of the header and trailer
becomes too large. The average duration of an error-free interval was estimated at
approximately 125 , 000 bit transmissions, so we certainly should not make a message
longer than that. Somewhere between these 125 Kbits and the 360 bits we derived
earlier there must be an optimal length for the data field. We can approximate this
optimum as follows.

OPTIMAL DATA SIZE
Let t be the length of the data message overhead in bits (header plus trailer) and d the
length of the data field, also in bits: d = 8D. Further, let a be the length of an ack

control message, p d the probability of a data message being distorted or lost, and p a

the probability of the same error for an acknowledgment.

Let us first consider the case where p d = p a = 0. The transmission of one message
requires one data message and one acknowledgment message, a total of d + t + a bits.
__________________
2. See also ‘‘code rates’’ defined in Chapter 3, Section 3.5.



The overhead is t + a, and the protocol efficiency is

E =
d + t + a

d_______

So in the absence of errors, it is best to chose d as large as possible.

Now consider the case where p d and p a are non-zero. The probability that neither the
data message nor its acknowledgment is hit by a transmission error is
( 1 − p d ) ( 1 − p a ). Therefore, the probability that the message must be retransmitted is

p r = 1 − ( 1 − p d ) ( 1 − p a )

The probability that it takes i subsequent transmissions to get the data message across,
i − 1 retransmissions and one successful transmission, is

p i = ( 1 − p r ) pr
i − 1

The expected number of transmissions per message R is then given by

R =
i = 1
Σ
∞

ip i

=
i = 1
Σ
∞

i( 1 − p r ) pr
i − 1

= ( 1 − p r )
i = 1
Σ
∞

ipr
i − 1

= ( 1 − p r )
j = 0
Σ
∞

i = j
Σ
∞

pr
i

= ( 1 − p r )
j = 0
Σ
∞

1 − p r

pr
j

_ _____

=
1 − p r

1_ _____

The relative efficiency E, in the presence of errors, is then

E =
R(d + t + a)

d__________

The optimal value for d can be found by setting the derivative of E with respect to d to
zero: δE /δd = 0. Alternatively, we can simply fill in the known or approximate
values for R, t, and a, and plot E as a function of d.

With the values we derived earlier, and counting 8 bits each for the STX and ETX mes-
sage delimiter, we have

a = h 1 + h 2 + t 1 + 16

= 4 + 2 + 16 + 16 = 38



and trivially

t = a = 38

We earlier assumed that an error-free interval would last an average of 125 Kbits.
This corresponds to ( 125.103 )/(d + t) messages or ( 125.103 )/ a acknowledgments.
A first-order approximation can then be obtained by taking

p d = (d + 38 )/( 125.103 )

and

p a = 38/( 125.103 ) = 3. 04 10 − 4

We now have

R =
1 − p r

1_ _____

=
( 1 − p d ) ( 1 − p a )

1_ _____________

Substituting in the last expression for E gives:

E =
d + t + a

d .( 1 − p d ) ( 1 − p a )_ _______________

=
d + 76

d .( 1 − (d + 38 )/( 125.103 ) ) ( 1 − 38/( 125.103 ) )_ ______________________________________

In Figure 7.4 the protocol efficiency E is plotted as a function of the length of the
message data field d.

2500 3000 3500

0.9506

0.9508

0.951

0.9512

E

d

Figure 7.4 — Protocol Efficiency versus Data Size in Bits
There is clearly an optimum value for d. The maximum efficiency of 95.13% is
achieved for a data size of 3004 bits, or 376 bytes. So we have now derived the third
value D for Figure 7.3.



In reality, of course, the probability of lost and distorted data should be derived from
the error distribution functions. We should have solved the more difficult equations

p d =
i = 0
Σ

d + 38

Pr(EFI = i) p a =
i = 0
Σ
38

Pr(EFI = i)

To see how large the mistake is we made, we set d = 3004 and calculate

p d =
i = 0
Σ

3004 + 38

Pr(EFI = i) = 240. 42 10 − 4

and

p a =
i = 0
Σ
38

Pr(EFI = i) = 3. 039 10 − 4

The earlier approximations give for the same value of d

p d = ( 3004 + 38 )/( 125.103 ) = 243. 36 10 − 4

and

p a = 38/( 125.103 ) = 3. 04 10 − 4

Our first estimate is within 1.2 percent of the recalculated values. Since we have no
reason to trust the predictive value of the error distribution function with that degree
of accuracy, we settle for the first estimate.

THE CHECKSUM FIELD
All that remains is to derive the value for t 1, the width of the checksum field. The
channel has deletion and distortion errors, but is not expected to produce insertions or
message reorderings. The error rate is low enough that we do not need an error
correcting code. For a reasonable message length, well below 125 Kbits, most mes-
sages get through without transmission errors. We must, however, be able to correct
for the characteristic errors of the channel: burst errors. This makes a cyclic redun-
dancy check a good choice. The average duration of a burst error was assumed to be
10 msec, affecting a sequence of 12 bits. The degree of the generator polynomial
therefore at least has to be larger than 12 to catch these errors.

The target residual bit error rate is 10 − 8. To be able to check if we can comply with
this requirement by choosing the 16-bit CRC-CCITT checksum polynomial, we have
to look at the distribution of burst-error durations. We know that the CRC-CCITT
checksum catches all single and double bit errors, all odd numbers of bit errors, all
burst errors up to 16 bits long, 99.997% of burst errors of 17 bits, and 99.998% of all
burst errors longer than 17 bits.

We assumed that burst errors occur on the average once every 100 seconds. A burst
of roughly 12 bits long then corresponds to a long-term average bit error rate of 10 − 4.
Of the bursts longer than 16 bits, two or three out of every 105 bursts will go
undetected. If every burst was longer than 16 bits, this would mean that two or three



burst errors per 100 × 105 seconds would get through, corresponding to a long-term
average bit error rate of roughly 10 − 6 (there are more than ten bits in every burst).
We can therefore only realize a target residual bit-error rate of 10 − 8 if burst errors
longer than 16 bits occur less than once out of every 102 bursts, or fewer than once
every 10,000 seconds. Using the probability distribution function, we find (cf. Figure
7.1):

Pr(Burst≥17 ) = 0. 009 . e − 0. 009.17 = 0. 007

The result is within range of the target. We can choose the 16-bit checksum, and have
our last value:

t 1 = 16

For the control messages it seems like overkill to include even a 16-bit checksum for
a message that carries only two small numbers. Note, however, that a burst error can
wipe out the complete message, so with the same redundancy an error correcting code
could not perform better.

As an aside, the message format, with all the field widths we have now derived, can
be defined in C as follows.

struct {
unsigned type : 4;
unsigned seqno : 2;
unsigned char data[376];
unsigned char checksum[2];

} message;

We used bit-fields for the fields in the message header and unsigned characters (8 bits
wide) for the data field and the checksum. The message delimiters STX and ETX were
omitted. This is, however, not necessarily the way in which a C compiler would
arrange for the bits to be stored in memory. Some padding may occur to align bit-
fields with word or byte boundaries.

EFFECTS OF ROUNDING
In Figure 7.4 we see that the protocol efficiency is not very sensitive to variations in
the data size near the optimum. We are also stuck with the peculiar values for h 1 and
h 2 that we calculated earlier. Multiples of 8 bits would be more convenient for the
receiver to process. Let us see how badly the efficiency would be affected if we used
the nearest multiple of 8 for all field widths, as shown in Table 7.1.

Table 7.1 — Rounding
_ ____________________ ___________________
Symbol Old New_ ___________________
h1 4 8
h2 2 8
t1 16 16_ ___________________ 














The recalculated values for E as a function of d for these new values are indicated by



the lower curve in Figure 7.5. The effect of adding 10 bits of overhead is a reduction
of E by less than one percent, which should be considered insignificant compared to
the errors introduced by earlier approximations. The new optimum is reached for a
data length of 3370 bits, or about 422 bytes (46 bytes more than before).
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Figure 7.5 — Degradation of Protocol Efficiency by Rounding

After rounding, the message format can be written without bit-fields

struct {
unsigned char type;
unsigned char seqno;
unsigned char data[422];
unsigned char checksum[2];

} message;

7.6 PROCEDURE RULES
We are now ready to start with the description of the procedure rules. In this part of
the design, few things can be calculated or measured. Yet the rules have to be com-
plete and consistent. Before committing ourselves directly to an implementation, we
would like to be able to design and debug the rules in an intermediate form, for
instance as a validation model. PROMELA was designed for precisely this purpose.
We first look at some of the abstractions we have to make in the modeling of the mes-
sages. Then we look at the layering of the protocol and derive a rough global struc-
ture. Finally, from the highest layer down to the lowest we refine each layer and com-
bine them into the final design. The correctness requirements for each layer are for-
malized using the notation developed in Chapter 6.

ABSTRACTION
The precise encoding for the messages, derived in the previous sections, contains too
much information for the problem we are now facing. Manipulating messages at this
level of detail would needlessly complicate the design, description, and validation of
the procedure rules. To derive the procedure rules we build a model of the



communication system in which we consider only the semantics of the protocol, not
its precise syntax. To the model, for instance, the contents of transferred files are
irrelevant. The variable length Data field from Figure 7.3, therefore, need not be
represented, nor (as we will argue below) the checksum field. We use a message tem-
plate of just two fields in the validation model.

fld1,fld2

The first field represents the generic message type, e.g., data, and the second field
carries a parameter, such as a sequence number. Both fields can be of PROMELA type
byte.

What we are designing from this point on is a validation model, not an implementa-
tion. If we do our job right though, it should be simple to remove the abstractions
from the model, refine it where necessary, and derive an implementation.

LAYERS
To structure the design, we divide it into several layers. The user interacts with a
presentation layer protocol. Below that we place a session control layer, and below
that a data link layer that enforces a general flow control discipline. The data link is
the physical data line, equipped with modems, for encoding binary data into analog
signals, and providing error detection on every message transmitted using CRC-
CCITT checksumming. The data link we work with from this point on, therefore, can
lose but not distort messages.

User
Process

Present-
ation

Session
Flow

Control
Error-protected

Data Link

File Server

Figure 7.6 — Protocol Hierarchy

Each layer in this hierarchy is managed by one or more PROMELA processes, as indi-
cated with the protocol ‘‘pipeline’’ in Figure 7.6.

PROTOCOL ENVIRONMENT
Our first job in building a validation model is to make explicit all relevant assump-
tions about the behavior of the environment, as illustrated in Figures 7.2 and 7.6. The
environment consists of three entities:

User process
File server
Data link

The minimal assumptions we must make about the behavior of each of these three is
formalized in PROMELA code.

First consider the user level protocol. There can be two user processes: one on each



end of the data link. The users can submit a transfer request at any time by passing a
file descriptor to the presentation layer of the protocol. At any time after the transfer
request, the originating user may also decide to abort a transfer. We assume that the
user then waits for a response from the lower protocol layers, signaling either the suc-
cessful or unsuccessful completion of the transfer. We can model these assumptions
with the following PROMELA process.

proctype userprc(bit n)
{ use_to_pres[n]!transfer;

if
:: pres_to_use[n]?accept -> goto Done
:: pres_to_use[n]?reject -> goto Done
:: use_to_pres[n]!abort -> goto Aborted
fi;

Aborted:
if
:: pres_to_use[n]?accept -> goto Done
:: pres_to_use[n]?reject -> goto Done
fi;

Done:
skip

}

The binary argument n identifies the user and the channels that it accesses. The mes-
sage transfer would ordinarily carry a parameter that points to the file to be
transferred (e.g., a file-descriptor). To a validation, however, the value of that param-
eter is irrelevant, and it is therefore not present in the model. Clearly, the correctness
of the file transfer protocol should not depend on the particular file-descriptors used.

The message channels we use in the model can be defined globally. Every arrow in
Figure 7.6 corresponds to two such channels, one for each side of the protocol. Using
a simple naming scheme to indicate which layers each channel connects, we can
define the following types of channels. There are two users, and QSZ is a queue size
of at least one (cf. Figure 7.6).

chan use_to_pres[2] = [QSZ] of { byte };
chan pres_to_use[2] = [QSZ] of { byte };
chan pres_to_ses[2] = [QSZ] of { byte };
chan ses_to_pres[2] = [QSZ] of { byte, byte };
chan ses_to_flow[2] = [QSZ] of { byte, byte };
chan flow_to_ses[2] = [QSZ] of { byte, byte };
chan dll_to_flow[2] = [QSZ] of { byte, byte };
chan flow_to_dll[2] = [QSZ] of { byte, byte };

The channels for the synchronous communication between the session layer protocol
and the file server are defined with zero buffer capacity, as follows:

chan ses_to_fsrv[2] = [0] of { byte };
chan fsrv_to_ses[2] = [0] of { byte };

This brings the total to ten different types of message channels, with one copy being
instantiated for each side of the connection. The channels used for the higher protocol
layers can be defined with a simpler message format than the lower layers. The



sequence number field, for instance, is used only by the flow control layer.

Next we must formalize our assumptions about the behavior of the file server. Again,
no design decisions are made yet. The aim is merely to make explicit what must
minimally be assumed about the external behavior of the file server process. An
incoming file transfer begins with a create message. The file server responds with
either a reject or an accept message. As far as the validation model is concerned,
either choice is equally likely, so it can be modeled as a nondeterministic one. If the
request is accepted, zero or more data messages follow, and the file server falls back
into its initial state upon the reception of the final eof or, in case of an abort, the
close message. In first approximation, disregarding what we said earlier about
abstraction, we may try to describe this behavior in a PROMELA validation model as
follows.

proctype fserver(bit n)
{ int fd, size, ptr, cnt;

do
:: ses_to_fsrv[n]?create(size) -> /* incoming */

if /* nondeterministic choice */
:: fsrv_to_ses[n]!reject
:: fsrv_to_ses[n]!accept ->

do
:: ses_to_fsrv[n]?data(cnt,ptr)
:: ses_to_fsrv[n]?eof -> break

/* abort */ :: ses_to_fsrv[n]?close -> break
od

fi
:: ses_to_fsrv[n]?open(fd) -> /* outgoing */

...
od

}

But we are on the wrong track with this model. Notice that local variables and mes-
sage parameters fd, size, cnt, and ptr really provide unwanted detail in the model.
We are designing the procedure rules for the interaction of the file server with the ses-
sion layer protocol. We want to specify how these two modules interact, i.e., the
types of messages that they will exchange and the inherent expectations about the
order in which the different types of messages will arrive and will be sent. Important
to specify at this level of abstraction is when data can be passed, not which data will
be passed. The size and contents of data transferred are therefore still irrelevant at
this level of modeling (cf. Chapter 14 about the formal generalization of models).

A better way to model the relevant behavior of the file server for incoming data is

proctype fserver(bit n)
{ do

:: ses_to_fsrv[n]?create -> /* incoming */



if
:: fsrv_to_ses[n]!reject
:: fsrv_to_ses[n]!accept ->

do
:: ses_to_fsrv[n]?data
:: ses_to_fsrv[n]?eof -> break
:: ses_to_fsrv[n]?close -> break
od

fi
:: ses_to_fsrv[n]?open -> /* outgoing */

...
od

}

The model for outgoing data is similar. After the server receives an open message, it
may respond with either an accept or a reject message. If the request is accepted,
a series of data messages is transferred, followed by a single eof message. The file
transfer can be aborted again by a close message from the session layer to the file
server.

:: ses_to_fsrv[n]?open -> /* outgoing */
if
:: fsrv_to_ses[n]!reject
:: fsrv_to_ses[n]!accept ->

do
:: fsrv_to_ses[n]!data
:: fsrv_to_ses[n]!eof -> break
:: ses_to_fsrv[n]?close -> break
od

fi

The last piece of the environment is the data link. Again, we must make explicit all
our assumptions about its behavior, in so far as it relates to the protocol we are
designing.

The data link is assumed to be protected with an error detection protocol. The details
of the checksum calculation can be found in Chapter 3, Section 3.7, but for this part of
the design problem these details are irrelevant. The checksum calculation is a compu-
tation, and not an interaction pattern. It would be folly to try to model it in detail in
PROMELA as if it were a procedure rule.

All we are interested in here is the external behavior of the data link. The data link,
then, can arbitrarily omit messages from the sequences that it passes, using some hid-
den oracle to decide the fate of each message. The choice can be modeled as a non-
deterministic one.

proctype data_link()
{ byte type, seq;



do
:: flow_to_dll[0]?type,seq ->

if
:: dll_to_flow[1]!type,seq
:: skip /* lose */
fi

:: flow_to_dll[1]?type,seq ->
if
:: dll_to_flow[0]!type,seq
:: skip /* lose */
fi

od
}

We have now completed the formalization of all assumptions about the environment
in which the protocol must be used. We are now ready to design the three core proto-
col layers: the presentation, the session layer, and the flow control layer.

7.6.1 PRESENTATION LAYER
The presentation layer provides the interface to the user. Its job is to take care of the
details of the file transfer, providing, for instance, for the resubmission of the request
for file transfer when a non-fatal error occurs. We can anticipate five different reasons
for an outgoing file transfer request to fail.

1. The local system is busy serving an incoming file transfer.
2. The local file server rejects the request, for instance because the file to be

transferred does not exist.
3. The remote file server rejects the request, for instance because it cannot allo-

cate sufficient space.
4. There is a collision between an incoming and an outgoing file transfer request.
5. The file transfer was aborted by the user.

Two of these five possible causes of a failure are transient (1 and 4) and may disap-
pear if the transfer request is repeated. The presentation layer can further try to pro-
tect itself against repeated abort requests from the user processes by filtering out any
duplicates.

To get started on a design for the presentation layer we can draw a tentative state
diagram. The presentation layer, then, can be given two main states: an IDLE state
and a busy, or TRANSFER state. The process moves from IDLE to TRANSFER upon the
reception of the user’s transfer request. It returns to the IDLE state upon the suc-
cessful completion of the transfer or the detection of a fatal error. This initial outline
is shown in Figure 7.7.
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Figure 7.7 — Partial State Transition Diagram: Presentation Layer

Using Figure 7.7 as a guideline we can fill in the relevant details in a validation model
as follows.

#define FATAL 1 /* failure types */
#define NON_FATAL 2 /* repeatable */
#define COMPLETE 3 /* success */

proctype present(bit n)
{ byte status, uabort;

IDLE:
do
:: use_to_pres[n]?transfer ->

uabort = 0;
goto TRANSFER

:: use_to_pres[n]?abort ->
skip /* ignore */

od;
TRANSFER:

pres_to_ses[n]!transfer;
do
:: use_to_pres[n]?abort ->

if
:: (!uabort) ->

uabort = 1;
pres_to_ses[n]!abort

:: (uabort) ->
skip

fi
:: ses_to_pres[n]?accept ->

goto DONE;
:: ses_to_pres[n]?reject(status) ->

if
:: (status == FATAL || uabort) ->

goto FAIL
:: (status == NON_FATAL && !uabort) ->

goto TRANSFER
fi

od;
DONE:

pres_to_use[n]!accept;
goto IDLE;



FAIL:
pres_to_use[n]!reject;
goto IDLE

}

The file transfer request is repeated until it succeeds or until it triggers a fatal error.
The main assumption that the presentation layer makes about the session layer proto-
col is that it will eventually respond to a transfer request with either an accept or a
reject message. It also assumes that the session layer can accept an abort message
at any time.
Correctness Requirements: As a correctness requirement for the presentation
layer we will identify its valid end-states. There is one valid end-state only, the IDLE
state. By adding the prefix ‘‘end,’’ i.e. replacing the name IDLE with endIDLE, we
can specify the requirement that the presentation layer must be in the given state when
a protocol transfer terminates. Provided that our assumptions about the session layer
and the user layer are true, it is not too hard to show that this requirement is satisfied.
The presentation layer can be blocked only in a small number of unexecutable state-
ments. The assumptions about the user and session layers guarantee that none of
those statements can remain unexecutable forever. But an informal argument, such as
the one above, is not a proof. In Chapter 14 we use an automated prover to show that
the assumptions we have made and the conclusions we have drawn from them are not
just convincing but also correct.

7.6.2 SESSION LAYER
Earlier we decided that the protocol would have four phases:

Initialization of the file server
Connection establishment
Data transfer
Call completion

The messages in the protocol vocabulary that we looked at earlier are, of course, not
unrelated; they imply a certain ordering. A transfer request should precede a connec-
tion confirmation, just as connection establishment should precede data transfer. We
can make some of these implied relations explicit with the outline shown in Figure
7.8.
The transitions are labeled with numbers that refer to some, though not all, of the
messages that are exchanged. Incoming messages are prefixed with a question mark,
outgoing messages with an exclamation point. The dashed arrows indicate the
expected sequence of events for a successful outgoing file transfer; the dotted lines
indicate a normal incoming file transfer. Writing down the state transition diagram
has forced us to make some further design choices. In the call establishment phase,
for instance, a connection request may come from the remote system directly after the
processing of a local connection request has started. In Figure 7.8 we have chosen to
reject both requests when such a call collision occurs. The call completion phase is
entered when a file has been successfully transferred, and the eof message has been
sent. Alternatively, the transfer can be interrupted when the user sends the abort
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Figure 7.8 — Partial State Transition Diagram: Session Layer
1: transfer, 2: connect, 3: accept, 4: reject, 5: closed, 6: eof

message. In the following paragraphs we consider each protocol phase separately and
fill in the details.

CALL ESTABLISHMENT PHASE
The session layer sits between the presentation and the flow control layer. After the
local transfer message from the presentation layer arrives, the session layer must
perform a number of crucial tasks. It must try to open the file for reading on the local
system, it must create a file for writing on the remote system, and in between it must
establish a connection with the remote system. Any of these three tasks may fail. The
local file server takes care of all file access.

This leads to the following descriptions for the call establishment phase. First, there
are only two messages that can trigger a file transfer: the local transfer message
and the remote connect message. Everything else should be ignored by the session
protocol. Instead of explicitly specifying all non-valid messages, we can make the
session layer receive a message of arbitrary type and check only for a match with the
expected message, which in state IDLE is either a transfer message coming from
the upper protocol layer or a connect message from the lower layer.

proctype session(bit n)
{ bit toggle;

byte type, status;

IDLE:



do
:: pres_to_ses[n]?type ->

if
:: (type == transfer) ->

goto DATA_OUT
:: (type != transfer)

/* ignore */
fi

:: flow_to_ses[n]?type ->
if
:: (type == connect) ->

goto DATA_IN
:: (type != connect)

/* ignore */
fi

od;
DATA_OUT:

...
DATA_IN:

...
}

It seems best to separate the data transfer phases for incoming and outgoing files. The
easier case is the preparation for an incoming file. There is only one interaction with
the local file server.

DATA_IN: /* prepare local file server */
ses_to_fsrv[n]!create;
do
:: fsrv_to_ses[n]?reject ->

ses_to_flow[n]!reject;
goto IDLE

:: fsrv_to_ses[n]?accept ->
ses_to_flow[n]!accept;
break

od;
... incoming data transfer ...
... close connection etc. ...

An outgoing transfer is done in three steps, each of which can fail:
Handshake on a local open request with the file server
Initialization of the flow control layer
Handshake with the remote system on a connect request

The first step can be specified as follows.

DATA_OUT: /* 1. prepare local file */
ses_to_fsrv[n]!open;
if
:: fsrv_to_ses[n]?reject ->

ses_to_pres[n]!reject(FATAL);
goto IDLE



:: fsrv_to_ses[n]?accept ->
skip /* proceed */

fi;

The second step is harder. We must make sure that we cannot accidentally accept an
old sync_ack message from a previous initialization attempt. We use a one-bit
sequence number to solve that problem (see Exercise 7-12.)

/* 2. initialize flow control */
ses_to_flow[n]!sync,toggle;
do
:: flow_to_ses[n]?sync_ack,type ->

if
:: (type != toggle) /* ignore */
:: (type == toggle) -> break
fi

:: timeout -> /* failed */
ses_to_fsrv[n]!close;
ses_to_pres[n]!reject(FATAL);
goto IDLE

od;
toggle = 1 - toggle;

In the third and last step, we must consider the possibility of a call collision.

/* 3. prepare remote file */
ses_to_flow[n]!connect;
if
:: flow_to_ses[n]?accept ->

skip /* success */
:: flow_to_ses[n]?reject ->

ses_to_fsrv[n]!close;
ses_to_pres[n]!reject(FATAL);
goto IDLE

:: flow_to_ses[n]?connect ->
ses_to_fsrv[n]!close;
ses_to_pres[n]!reject(NON_FATAL);
goto IDLE

:: timeout -> /* got disconnected? */
ses_to_fsrv[n]!close;
ses_to_pres[n]!reject(FATAL);
goto IDLE

fi;
... outgoing data transfer...
... close connection etc. ...

When a call collision is detected both parties close their files and return to the initial
state, leaving it up to the presentation layers to make another attempt to transfer their
files. Prudence dictates that we include a timeout clause in every state where we
wait for events that can only be supplied by the remote system. In case all communi-
cation is lost, e.g., on carrier loss, it gives us a way back to the initial state.



DATA TRANSFER PHASES
The design of the data transfer phases is relatively straightforward. For outgoing
transfers we obtain data from the file server and transfer them to the flow control
layer. The only things that can complicate the design are the messages that can inter-
rupt the transfer: a timeout or an abort message from the user.

do /* outgoing data */
:: fsrv_to_ses[n]?data ->

ses_to_flow[n]!data
:: fsrv_to_ses[n]?eof ->

ses_to_flow[n]!eof;
status = COMPLETE;
break /* goto call termination */

:: pres_to_ses[n]?abort -> /* user aborts */
ses_to_fsrv[n]!close;
ses_to_flow[n]!close;
status = FATAL;
break /* goto call termination */

od;

For incoming file transfers, we obtain data messages from the flow control layer and
transfer them to the file server. Only the remote user can abort an incoming transfer.
When the remote user aborts, the local system receives a close message from the
remote system (see above). This leads to the following PROMELA model.

do /* incoming data */
:: flow_to_ses[n]?data ->

ses_to_fsrv[n]!data
:: flow_to_ses[n]?eof ->

ses_to_fsrv[n]!eof;
break

:: pres_to_ses[n]?transfer -> /* sorry, busy */
ses_to_pres[n]!reject(NON_FATAL)

:: flow_to_ses[n]?close -> /* remote user aborts */
ses_to_fsrv[n]!close;
break

:: timeout -> /* got disconnected? */
ses_to_fsrv[n]!close;
goto IDLE

od;

All the necessary character stuffing and byte encoding operations (Chapter 2, Section
2.5) are again irrelevant to the validation model. We can safely assume that they hap-
pen elsewhere, e.g., in the modem that connects us to the physical line.

CALL TERMINATION PHASE
We complete the high-level design of the data transfer phase by adding the processing
of call termination messages. The call termination phase can only be entered from the
data transfer phase, as shown above. First let us consider the normal termination of
an outgoing file transfer session.



/* close connection, outgoing transfer */
do
:: pres_to_ses[n]?abort /* too late, ignored */
:: flow_to_ses[n]?close ->

if
:: (status == COMPLETE) ->

ses_to_pres[n]!accept
:: (status != COMPLETE) ->

ses_to_pres[n]!reject(status)
fi;
break

:: timeout -> /* disconnected? */
ses_to_pres[n]!reject(FATAL);
break

od;
goto IDLE

The code for responding to the termination of an incoming file transfer is simpler:

/* close connection, incoming transfer */
ses_to_flow[n]!close; /* confirm it */
goto IDLE

Correctness Requirements: The main correctness requirement for the session
control layer protocol is that it satisfies the assumptions made by the presentation
layer protocol: it always responds to a transfer message, within a finite amount of
time, with either an accept or a reject message. Similarly, a remote connect

message should be followed by an accept or a reject message to the remote
presentation layer, within a finite amount of time. We can formalize both these
requirements in a temporal claim by defining behavior that is required to be absent. A
first attempt is shown below.

never {
do
:: !pres_to_ses[n]?[transfer]
&& !flow_to_ses[n]?[connect]
:: pres_to_ses[n]?[transfer] ->

goto accept0
:: flow_to_ses[n]?[connect] ->

goto accept1
od;

accept0:
do
:: !ses_to_pres[n]?[accept]
&& !ses_to_pres[n]?[reject]
od;

accept1:
do
:: !ses_to_pres[1-n]?[accept]
&& !ses_to_pres[1-n]?[reject]
od

}

where n is either zero or one. An automated validation of the session layer protocol



based on this claim is discussed in Chapter 14. We can also identify the IDLE state in
the session layer as a valid end-state, again by simply replacing the name with
endIDLE.

To complete the design, we now provide the data link layer, which comes in two
parts: one layer implementing a flow control discipline and one providing error con-
trol.

7.6.3 FLOW CONTROL LAYER
We can model a full sliding window protocol, as discussed in Chapter 4, by directly
encoding Figures 4.11 and 4.12. To make things interesting, we will restrict ourselves
to an encoding with a single process instead of five. In this case we cannot get away
with an abstraction for parameters such as the window size and the range of sequence
numbers used, without losing essential information about the operation of this proto-
col layer. All data in PROMELA is initialized to zero by default. We discuss the model
step by step.

#define true 1 /* for convenience */
#define false 0

#define M 4 /* range sequence numbers */
#define W 2 /* window size: M/2 */

As we saw in Chapter 4, and will prove in Chapter 11, the maximum number of out-
standing messages in a protocol of this type is equal to half the range of the sequence
numbers.

proctype fc(bit n)
{ bool busy[M]; /* outstanding messages */

byte q; /* seq# oldest unacked msg */
byte m; /* seq# last msg received */
byte s; /* seq# next msg to send */
byte window; /* nr of outstanding msgs */
byte type; /* msg type */
bit received[M]; /* receiver housekeeping */
bit x; /* scratch variable */
byte p; /* seq# of last msg acked */
byte I_buf[M], O_buf[M]; /* message buffers */

The fc model contains code for independent sender and receiver actions in full-
duplex communications. Some of the housekeeping, then, has to do with keeping
track of outgoing messages and some with incoming messages on the return channel.

Outgoing messages are stored in a message buffer O_buf, indexed by their sequence
number. Buffering the outgoing messages allows the protocol to retransmit old mes-
sages when they are not acknowledged. A boolean array busy is used to remember
which slots in the array of outgoing data are free and which are taken.

The main body of the flow control layer is a single do loop that checks for outgoing
messages from the session layer, adds sequence numbers, forwards the messages to
the error control layer, and keeps track of their acknowledgment. In separate clauses



it checks for incoming messages from the error control layer, strips sequence
numbers, and forwards the remainders to the session layer. Sending of messages can
be modeled as follows. A message is only sent if it is available, i.e., if the message
channel ses_to_flow is non-empty, and if the lower protocol layer is free to accept
it, i.e., if the message channel flow_to_dll is non-full.

do
:: (window < W && len(ses_to_flow[n]) > 0

&& len(flow_to_dll[n]) < QSZ) ->
ses_to_flow[n]?type;
window = window+1;
busy[s] = true;
O_buf[s] = type;
flow_to_dll[n]!type,s;

There is a little extra dance to be done if the message sent is a message of type sync,
which is used by the session layer to reset the flow control layer protocol. In that
case, all busy flags are cleared, and the sequence number returns to zero.

if
:: (type != sync) ->

s = (s+1)%M
:: (type == sync) ->

window = 0;
s = M;
do
:: (s > 0) ->

s = s-1;
busy[s] = false

:: (s == 0) ->
break

od
fi

When an ack message arrives, its sequence number m points to the message that is
being acknowledged. The status of that message, kept in array busy[m], is reset to
zero, meaning that the slot has become free. In the receiver code discussed below this
is included as follows:

:: dll_to_flow[n]?type,m ->
if
:: (type == ack) ->

busy[m] = false
...

If the message that was acknowledged is the oldest outstanding message, the window
can slide up one or more notches and make room for more messages to be transmitted.
This is modeled with two independent conditional clauses in the outer execution loop.
The advancement of the window is guarded with a timeout clause to protect against
lost messages.



:: (window > 0 && busy[q] == false) ->
window = window - 1;
q = (q+1)%M

:: (timeout && window > 0 && busy[q] == true) ->
flow_to_dll[n]!O_buf[q],q

All that remains is the modeling of the clauses for the receiver part of the flow control
layer. The messages are received in a generic clause

:: dll_to_flow[n]?type,m ->

followed by a switch on the message type. Incoming data are buffered to protect
against messages that are received out of order, e.g., as a result of message loss and
retransmission, and to allow the flow control layer to forward these messages to the
session layer in the right order. The boolean array received is used to keep track of
which messages have arrived and which are pending.

Let us first look at the processing of sync and sync_ack messages.

if
...
:: (type == sync) ->

m = 0;
do
:: (m < M) ->

received[m] = 0;
m = m+1

:: (m == M) ->
break

od;
flow_to_dll[n]!sync_ack,m

:: (type == sync_ack) ->
flow_to_ses[n]!sync_ack,m

The sync message is meant to initialize the flow control layer. In this case, the mes-
sage comes from the remote peer and should be acknowledged with an sync_ack

when the re-initialization is completed. If an sync_ack message arrives from the
remote peer, it is passed on to the session layer protocol. The sync_ack message
echos the session number of the sync message (cf. page 150, bottom).

All other messages are considered to be data messages:

:: (type != ack && type != sync && type != sync_ack)->
if
:: (received[m] == true) ->

x = ((0<p-m && p-m<=W)
|| (0<p-m+M && p-m+M<=W));
if /* ack was lost? */
:: (x) -> flow_to_dll[n]!ack,m
:: (!x) /* else skip */
fi



:: (received[m] == false) ->
I_buf[m] = type;
received[m] = true;
received[(m-W+M)%M] = false

fi

When a data message arrives, we must first check whether or not it was received
before (cf. page 79). If it was received before, we have received[m]==true, and
we must check to see if it has been acknowledged yet. Messages are only ack-
nowledged after they have been passed on to the session layer and have freed up the
buffer space that they held. A message that has not been received before is stored,
and the appropriate flag is set in array received.

The same clause is used to reset the received flag to false for the message that is one
full window size away from the last received message: only at this point in the proto-
col can we be certain that this message cannot be transmitted again. The acknowledg-
ment for that message must have been received or we could not have received the
current message.

If the current message was received before, a check on the sequence number tells us if
it was previously acknowledged or not. If it was, the fact that it was retransmitted
indicates that the acknowledgment was lost, and needs to be repeated. One more
clause remains: the one that encodes the accept process from Figure 4.12.

:: (received[p] == true && len(flow_to_ses[n])<QSZ
&& len(flow_to_dll[n])<QSZ) ->

flow_to_ses[n]!I_buf[p];
flow_to_dll[n]!ack,p;
p = (p+1)%M

od
}

The flow control layer is now complete. It takes some time to convince ourselves that
it really works. Though the protocol is only about a hundred lines of code, the
behavior it specifies can be complex, especially in the presence of transmission errors.
Correctness Requirements: The main correctness requirement for this protocol
layer is that it transfers messages without deletions and reorderings, despite the
behavior of the underlying transmission channel. To express, or check, this require-
ment we could label each message transferred by the sender, and check at the receiver
that no labels are lost and that the relative ordering of the labels is undisturbed. In a
way, such a label acts like just another sequence number.

Given a flow control protocol with a window size W and a range of sequence numbers
M, how many distinct labels would minimally be needed to check the correctness
requirement? The answer, due to Pierre Wolper (see Bibliographic Notes), is surpris-
ing. The number is independent of W and M: three different labels suffice for any pro-
tocol. Consider the following checking experiment. We transmit sequences of mes-
sages through the flow control layer, carrying just the label, and no other data. The
three different types of labels are arbitrarily called red, white, and blue. For con-
venience we call the corresponding messages red, white, and blue messages as



well. To construct a range of test sequences, one red and one blue message are
placed randomly in an infinite sequence of white messages. If the flow control pro-
tocol can ever lose a message, it will be able to lose the red or the blue message in at
least one of the test sequences. Similarly, if the protocol can ever reorder two mes-
sages, it will be able to change the order of the red and the blue message in at least
one sequence. The test sequences can be generated by a fake session layer protocol
module.

proctype test_sender(bit n)
{ do

:: ses_to_flow[n]!white
:: ses_to_flow[n]!red -> break
od;
do
:: ses_to_flow[n]!white
:: ses_to_flow[n]!blue -> break
od;
do
:: ses_to_flow[n]!white
:: break
od

}

The matching test model, which receives the test messages at the remote end of the
protocol, can be defined as follows.

proctype test_receiver(bit n)
{ do

:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> break
od;
do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?blue -> break
od;
do
:: flow_to_ses[n]?white
od

}

The correctness requirement can now be formalized with a temporal claim or even
more simply by adding some assertions to the receiver process.

proctype test_receiver(bit n)
{ do

:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> break
:: flow_to_ses[n]?blue -> assert(0) /* error */
od;



do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> assert(0) /* error */
:: flow_to_ses[n]?blue -> break
od;
do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> assert(0) /* error */
:: flow_to_ses[n]?blue -> assert(0) /* error */
od

}

This completes the design of the three main protocol layers. We have designed a pro-
tocol model that has sufficient detail to allow us to express and verify a set of formal
correctness requirements about the protocol. It is not an implementation. The issue,
however, need not come up until after the design itself has been validated (Chapter
14). Only then, the task of deriving an efficient implementation from the design will
become relevant. We only take a quick peek at some of the issues here.

AN ASIDE ON IMPLEMENTATION
It is not relevant to the design of the validation model, but just out of curiosity we can
look at how we could implement the parsing of messages at the lowest level in the
protocol, just below the error control layer, or perhaps even combined with it. In C,
for instance, the bytes obtained from the line can be stored, without processing, in a
buffer raw that is large enough to hold one complete data message. We assume that
the line drivers take care of character stuffing and de-stuffing, so we have a pure mes-
sage delimited by STX and ETX control bytes.

If we use the protocol with the fields in the message header rounded to the nearest
multiple of eight (Table 7.1), the maximum buffer size required is 428 bytes (422 data
bytes plus 6 bytes overhead). The bytes are read into the buffer in a tight loop that
can be coded as follows. We use a union of a raw buffer, a data message, and a
non-data message. The code below assumes that the low-order byte of a 16-bit
number, such as the checksum, is sent before the high-order byte.

typedef struct DATA_MSG {
unsigned char type;
unsigned char seqno;
unsigned char tail[424]; /* includes checksum */

} DATA_MSG;

typedef struct NON_DATA_MSG {
unsigned char type;
unsigned char seqno;
unsigned char checksum[2];

} NON_DATA_MSG;



union {
unsigned char raw[426]; /* data+header+trailer */
DATA_MSG data;
NON_DATA_MSG non_data;

} in;

Assuming that protection against the accidental occurrence of the STX and ETX mes-
sage delimiters is provided by the sender by inserting (stuffing) a DLE (data link
escape) character before all data that matches one of the three special characters STX,
ETX, or DLE, we can write the byte scanning and de-stuffing routine as follows.

recv()
{ unsigned char c;

unsigned char *start = in.raw;
unsigned char *stop = start+428;
unsigned char *ptr = start;

scan:
for (;;) /* forever */
{ if ((c = line_in()) == STX) /* next byte */

ptr = start; /* reset ptr */
else if (c == ETX)

goto check; /* have msg */
else if (ptr < stop)
{ if (c == DLE) /* escape */

*ptr++ = line_in();
else

*ptr++ = c; /* store */
}

}
check:

...
}

When the ETX marker has been seen we must check for a valid message by calculating
the checksum, for instance by calling the CRC routine discussed in Chapter 3. If
indeed the low-order byte of the checksum is sent first, a recalculation of the check-
sum of all the raw data as received, including the checksum field, should come out
zero in the absence of transmission errors:

check:
if (cksum(in.raw, ptr-start) == 0)

/* good message, accept */
else

/* distorted message, ignore */
goto scan; /* resume scanning for messages */

When the checksum is nonzero, the buffer contents must be discarded; otherwise it
can be copied to a safe place and passed to the upper protocol layer.



7.7 SUMMARY
In this chapter we have discussed a protocol design, leading up to a hierarchy of vali-
dation models written in PROMELA. The function of each layer in this hierarchy is
largely independent of the functions performed by the other layers. Each layer adds
some functionality, and helps to transform the underlying physical channel into a vir-
tual one with a progressively more idealized behavior.

With the derivation of the validation models the design process is not complete. The
behavior of the model will have to be formally validated, perhaps revised, and finally
implemented. Finding unspecified receptions, unexecutable code segments, or
deadlocks is almost impossible to do by inspection alone. The normal, expected
sequences of events can be checked easily. The errors, however, usually hide in the
unexpected combinations of events: execution sequences that have a low probability
of occurring. In Chapter 14, we consider the validation of the models we have
derived.

If the implementation is not derived automatically from the validated model, we must
add another validation step to guarantee that the implementation and the model are
equivalent: conformance testing (see Chapter 8, Section 8.6, and Chapter 9).

EXERCISES

7-1. 7-1. Compare the protocol hierarchy derived in this chapter to the OSI reference model dis-
cussed in Chapter 2, Section 2.6. Which layers are missing?

7-2. 7-2. Describe precisely in which order framing (using STX and ETX symbols), byte stuffing,
and checksum calculations must be performed at the receiver and at the sender.

7-3. 7-3. Which layer would have to be modified to include a rate control method in this protocol?
Which layer would have to be modified to include a dynamic flow control method?
Describe a simple version of each method.

7-4. 7-4. Consider the possibility of recalculating the optimal data size D at run time and using the
information gained to make the protocol adapt to dynamically changing channel charac-
teristics.

7-5. 7-5. Complete the state transition diagram from Figure 7.8, adding transitions and states for
all messages in the protocol vocabulary.

7-6. 7-6. Redesign the protocol for a transmission rate of 2400 bps.

7-7. 7-7. Redesign the protocol for a channel with zero error rate and zero signal propagation
delay.

7-8. 7-8. (Doug McIlroy) Extend the protocol to allow for the file transfer to resume where it left
off after carrier loss. Consider the option to use a status parameter in the accept and
reject messages sent by the presentation layer to indicate how much of the file was suc-
cessfully transferred. Hint: there can be no acknowledgment for the last data received
and stored at the remote system at the moment of carrier loss.

7-9. 7-9. Is there a possibility that the two parties in the file transfer protocol can be caught in an
execution cycle, or livelock, where both continue to send messages, but neither party
succeeds in reaching the data transfer phase? If true, suggest a way to amend the proto-
col to avoid this problem.



7-10. 7-10. Redesign the file server process to allow for asynchronous communication with the ses-
sion layer.

7-11. 7-11. Try to merge the two data link layers into one layer, performing both flow control and
error control.

7-12. 7-12. Show that the one-bit toggle session number protects against the misinterpretation of
sync_ack messages. Hint: compare with the alternating bit protocol.

7-13. 7-13. Suppose that the channel assumptions are changed to include the possibility of data
reordering on the transmission channel. Does the one-bit connection set up method from
Exercise 7-12 still work? Hint: a standard solution to this generalized version of the
problem is known as the three-way handshake, see for instance, Stallings [1985, p. 490].

7-14. 7-14. Consider what would need to be changed in the implementation (see ‘‘An Aside on
Implementation’’) for transmissions in which the high-order byte of a 16-bit quantity is
sent before the low-order byte.

7-15. 7-15. Express the correctness requirement for the flow control layer in a temporal claim. Hint:
first express a requirement on the correct behavior; then reverse it to specify all invalid
behaviors. Use a do-loop labeled with an acceptance-state label as the specification of
the error state that is reached (and never exited) whenever the correct behavior is
violated.

7-16. 7-16. Check the ten design rules from Chapter 2 and verify how they were applied to this
design. Criticize the design where the rules were violated.

BIBLIOGRAPHIC NOTES
Software layering is a concept that is primarily due to E.W. Dijkstra (see Biblio-
graphic Notes, Chapter 2). More on the derivation of protocol parameters, such as the
optimal data length, can be found in Field [1976], Tanenbaum [1981, 1988], or
Arthurs, Chesson and Stuck [1983].

In spirit at least, the design borrows many ideas from the world of light-weight proto-
cols (see Chapter 2). The importance of a judicious placement of control information
in either the header or the trailer of a protocol, was first emphasized by Greg Chesson,
one of the initiators of light-weight protocol design.

In many standards all control information is by default placed in one single control
block that is placed at the header of each message. The term ‘‘trailer protocol’’ was
coined by Chesson in an effort to show that the opposite discipline, of placing all con-
trol information in the trailer and none, except perhaps a routing address, in the
header, could lead to more efficient encodings of both sender and receiver. For
instance, both the byte count and the checksum of a message can then be computed on
the fly by the sender. The receiver can similarly compute checksums on the fly (start-
ing at an STX control flag), and after spotting the matching ETX flag the receiver can
find the byte count close by. The checksum can be verified immediately.

The correctness criterion that we specified for the flow control layer was first dis-
cussed in Wolper [1986]. It is also discussed in Aggarwal, Courcoubetis, and Wolper
[1990].


