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6.1 INTRODUCTION
In Chapter 5 we developed a language for modeling behavior in distributed systems.
The language is deliberately defined at a high level of abstraction to allow us to focus
on design rather than on implementation issues. The programs that can be written in
this language are therefore called validation models. The details required to convert a
validation model into an implementation could presumably be filled in with relatively
little effort, perhaps even mechanically. But the primary purpose of PROMELA is vali-
dation, not implementation.

To validate a design, we need to be able to specify precisely what it means for a
design to be correct. A design can be proven correct only with respect to specific
correctness criteria. Three fairly standard criteria were listed in Chapter 2: the
absence of deadlocks, livelocks, and improper terminations. It is, for instance, never
enough to just ‘‘know’’ that a design is free of deadlocks.

A good design is provably free of deadlocks.

There are many protocol properties that one might be interested in proving for any
given design. But the problems we are dealing with are complex. It is not too hard to
show that the problem of verifying even the simplest protocol properties, such as
absence of deadlock, is PSPACE hard (see Bibliographic Notes), even for a finite
state model. In attempting to prove the correctness of a protocol, we have to be aware
of these complexity bounds. Since it is our goal to develop a validation methodology
that can be applied to protocols of arbitrary size, we need to develop methods for bat-
tling the complexity from two different sides:

We need a formalism for specifying correctness requirements that is not so
inherently complex that effective analysis for larger models becomes impossible.
We need a method for reducing the complexity of models that are beyond the
range of our validation methods.
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The second point, reduction, is discussed in Chapters 8 and 11 (see Section 8.9, Gen-
eralization of Machines, and Section 11.7, Complexity Management). The first point
will be addressed here. It says that the more expressive we make our notation for
specifying correctness requirements, the less useful it will be in practice. The set of
correctness criteria that can be expressed in PROMELA is therefore chosen carefully.
This set is deliberately not restricted to a single all-powerful mechanism. Several
independent levels of complexity are supported. The simplest, most frequently used
requirements, such as absence of deadlock, are expressed straightforwardly and
checked independently of other properties. They can be analyzed mechanically with
fast and frugal algorithms even for very large systems. Slightly more complicated
types of requirements, such as absence of livelocks, are expressed independently, and
carry an independent price-tag in computational expense when validated mechani-
cally. The most sophisticated requirements are inevitably also the most expensive to
check. In Chapter 11 we discuss the best known algorithms for the automated valida-
tion of each type of correctness requirement and quantify the size of systems that they
can validate.

In the next section we give an overview of the types of correctness criteria that can be
expressed for PROMELA models. Each of the sections that follow it elaborates one of
these properties in detail. It shows the PROMELA language structures that are needed
to express each property and gives some examples of its use.

6.2 REASONING ABOUT BEHAVIOR
We formalize correctness criteria as claims about the behavior of a PROMELA valida-
tion model. Two general types of claims are then that a given behavior is either

Inevitable or
Impossible

Since the number of possible behaviors of any given PROMELA model is finite, how-
ever, a claim of either type implicitly defines a complementary and equivalent claim
of the other type. It therefore suffices to support just one.

All correctness criteria that can be expressed in PROMELA define behaviors
that are claimed to be impossible.

To state that a given behavior is inevitable, for instance, we can state that all deviant
behaviors are impossible. Similarly, if a correctness assertion states that a condition
is invariantly true, the correctness claim states that it is impossible for the assertion to
be violated, independent of the system behavior.

Before we can continue, however, we will have to be more precise about the terms we
are using. What, for instance, is a behavior, and how can we make claims about it?

The behavior of a validation model is defined completely by the set of all the execu-
tion sequences it can perform, where an execution sequence is simply a finite, ordered
set of states. A state, in turn, is completely defined by the specification of all values
for local and global variables, all control flow points of running processes, and the
contents of all message channels. We say that a validation model can reach a given
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state by the execution of PROMELA statements, using the earlier defined semantics of
executability. A validation model can also be placed in a given state by an assign-
ment of the appropriate values to variables, control flow points and channels.

Of course, not just any arbitrary collection of states is also a valid execution sequence.
A finite, ordered set of states is said to be valid for a given PROMELA model M if it
satisfies the following two criteria:

The first state of the sequence, i.e., the state with ordinal number 1, is the initial
system state of M, with all variables initialized to zero, all message channels
empty, with only the init process active, and set in its initial state.
If M is placed in the state with ordinal number i, there is at least one executable
statement that can bring it to the state with ordinal number i+ 1.

We will consider two special types of sequences, called terminating and cyclic
sequences.

An execution sequence is said to be terminating if no state occurs more than once
in the sequence, and the model M contains no executable statements when placed
in the last state of the sequence.
An execution sequence is said to be cyclic if all states except the last one are dis-
tinct, and the last state of the sequence is equal to one of the earlier states.

Cyclic sequences define potentially infinite executions. All terminating and cyclic
execution sequences that can be generated by executing a PROMELA model, together
define the system behavior of that model. The union of all states included in the sys-
tem behavior is called the set of reachable states of the model.

PROPERTIES OF STATES
Correctness claims for PROMELA models can be built up from simple propositions,
where a proposition is a boolean condition on the state of the system. The proposi-
tions can refer to all the elements of a system state: local and global variables,
control-flow points of arbitrary executing processes, and the contents of message
channels. Some of the notation for this was discussed in Chapter 5; the remaining
features will be introduced shortly.

The propositions implicitly define a labeling of states. In any given state a proposi-
tion is either true or false. Correctness criteria then can be expressed in terms of
states, e.g., by defining explicitly in which states a given proposition is required to
hold. Some of these requirements can be specified in PROMELA with, for instance,
assertion statements that are embedded in the model. This mechanism by itself, how-
ever, is not sufficient. If more than one proposition is used, we may want to express a
correctness requirement as a temporal ordering of propositions, i.e., by specifying the
order in which propositions are required to hold (with the truth of one proposition
either immediately or eventually following the truth of another). Alternatively, the
temporal ordering can define the order in which propositions should never hold. As
indicated above, these two alternatives for defining temporal orderings are comple-
mentary. Only the second alternative is supported in PROMELA. The formalism to
support this is a new language feature called a temporal claim.
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TEMPORAL CLAIMS
In the formalization of temporal claims we specify an ordering of propositions. It is
important to note that the semantics of these proposition orderings is different from
the semantics of statement orderings elsewhere in a PROMELA model. Within
proctype definitions, a sequential ordering of two statements implies that the second
statement is to be executed after the first one terminates. Since we are not allowed to
make any assumptions about the relative speeds of concurrently executing processes,
the only valid interpretation of the word after in the above sentence is eventually
after. Correctness claims, however, may have to be more specific. In a temporal
claim a sequential ordering of two propositions defines an immediate consequence.
We will show later how other types of temporal relations can also be specified with
this mechanism.

The types of correctness requirements we make can be different for terminating and
cyclic sequences, as are the algorithms we will ultimately need to check these claims.
An important requirement that applies to terminating sequences is, for instance,
absence of deadlock. Not all terminating sequences, however, correspond to
deadlocks. We will have to be able to express which properties the final state in a
sequence must have to make that sequence acceptable as a non-deadlocking terminat-
ing sequence. For cyclic sequences, finally, we should be able to express general con-
ditions such as the absence of livelock.

OVERVIEW
The remainder of this chapter is devoted to a more detailed discussion of the formali-
zation of correctness criteria in PROMELA. It will introduce the last few language con-
structs that specifically deal with validation:

The assert() statement, which can be used to express both local assertions
and global system invariants
Three types of labels that can be used to define a small class of frequently used
correctness claims for terminating and cyclic sequences
The formalization of general temporal claims
The notation that can be used in assertions and in temporal claims to refer to
the control-flow states and the local variables of arbitrary running processes

We begin by taking a closer look at the specification of the correctness properties of
states.

6.3 ASSERTIONS
Correctness criteria can often be expressed as boolean conditions that must be
satisfied whenever a process reaches a given state. The PROMELA statement

assert(condition)

is always executable and can be placed anywhere in a PROMELA model. The condi-
tion can be an arbitrary boolean expression. If the condition is true, the statement has
no effect. The validity of the statement is violated, however, if there is at least one
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execution sequence in which the condition is false when the assert statement
becomes executable.

Consider the following example from Chapter 5.

byte state = 1;

proctype A() { (state == 1) -> state = state + 1 }

proctype B() { (state == 1) -> state = state – 1 }

init { run A(); run B() }

We could try to claim that when a process of type A() completes the value of variable
state must be 2, and when a process of type B() completes it must be 0. This could
be expressed as follows.

byte state = 1;

proctype A()
{ (state == 1) -> state = state + 1;

assert(state == 2)
}
proctype B()
{ (state == 1) -> state = state – 1;

assert(state == 0)
}
init { run A(); run B() }

The claims are, of course, false, and an automated validator would demonstrate that
quickly.

6.4 SYSTEM INVARIANTS
A more general application of the assert statement is to formalize system invariants,
i.e., boolean conditions that, if true in the initial system state, remain true in all reach-
able system states, independently of the execution sequence that leads to each specific
state. To express this in PROMELA, it suffices to place the system invariant by itself in
a separate, monitor process.

proctype monitor() { assert(invariant) }

Once an instance of the process type monitor has been started (the name is imma-
terial), with a regular run statement, it executes independently of the rest of the sys-
tem. It can decide to evaluate the assertion at any time; its assert statement is exe-
cutable precisely once for every state of the system.

For a simple application of this type of correctness claim, consider the dijkstra

semaphore validation model, introduced in Chapter 5.
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#define p 0
#define v 1

chan sema[0] of { bit };

proctype dijkstra()
{ do

:: sema!p -> sema?v
od

}
proctype user()
{ sema?p;

/* critical section */
sema!v
/* non-critical section */

}
init
{ atomic {

run dijkstra();
run user(); run user(); run user()

}
}

The semaphore guarantees mutually exclusive access of user processes to their critical
sections. We can modify the user processes as follows, to count the number of
processes in the critical section in a global variable count.

byte count;

proctype user()
{ sema?p;

count = count+1;
skip; /* critical section */
count = count-1;
sema!v;
skip /* non-critical section */

}

The following system invariant can now be used to verify the correct operation of the
semaphore:

proctype monitor() { assert(count == 0 || count == 1) }

An instantiation of the monitor must be included in the initial process, to allow it to
perform the correctness check.

init
{ atomic {

run dijkstra(); run monitor();
run user(); run user(); run user()

}
}
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6.5 DEADLOCKS
In a finite state system, all execution sequences either terminate after a finite number
of state transitions, or they cycle back to a previously visited state. Not all terminat-
ing sequences, however, are necessarily deadlocks. In order to define what a deadlock
in a PROMELA model is, we must be able to distinguish the expected, or proper, end-
states from the unexpected ones. The unexpected end-states will include not just
deadlock states, but also many error states that are the result of a logical incomplete-
ness of the protocol specification. The classic example of the latter is the unspecified
reception.

The final state in a terminating execution sequence must minimally satisfy the follow-
ing two criteria to be considered a proper end-state:

Every process that was instantiated has terminated
All message channels are empty

But not all processes necessarily terminate. It can be perfectly valid, for instance, for
server processes to stay alive after user processes terminate. We must be able, there-
fore, to identify individual process states in proctype definitions as proper end-
states. In PROMELA this can be done with end-state labels. In the semaphore example
from Chapter 5, for instance, we can write

proctype dijkstra()
{
end: do

:: sema!p -> sema?v
od

}

to define that any process of type dijkstra is considered to be in a proper end-state
when it is in the state labeled end.

If there is more than one proper end-state within a single proctype definition, all
label-names must still be unique. An end-state label is defined to be any label-name
that has a three-character prefix end. So it is valid to use variations such as enddne,
end0, end_war. We can now revise the first criterion from the definition of a proper
end-state:

Every process that was instantiated has either terminated or has reached a state
marked as a proper end-state

Any final state in a terminating execution sequence that does not satisfy the two cri-
teria for proper end-states is automatically classified as an improper end-state. An
implicit correctness claim that is made about all validation models will be that the
behaviors they define do not include any improper end-states.

Refer to Chapter 14 and Appendix F for some examples of the use of end-state labels
in a real validation.
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6.6 BAD CYCLES
Two properties of cyclic sequences can be expressed in PROMELA, corresponding to
two standard types of correctness requirements. Both properties are based on the
explicit marking of states in a validation model. The first property specifies that

There are no infinite behaviors of only unmarked states
that is, the system cannot infinitely cycle through unmarked states. The marked states
are called progress-states, and the execution sequences that violate the above correct-
ness claim are called non-progress cycles. The second property is the opposite of the
first. It is used to specify that

There are no infinite behaviors that include marked states
Execution sequences that violate this claim are called livelocks. We discuss each type
of correctness claim in more detail below.

NON-PROGRESS CYCLES
To claim the absence of non-progress cycles, we must be able to define the system
states within the PROMELA model that denote progress. These progress states are
defined much like end-state labels.

A progress-state label marks a state that must be executed for the protocol to make
progress. An example can be the incrementing of a sequence number, or the delivery
of data to a receiver. In the semaphore example we can label the successful passing of
a semaphore test as ‘‘progress.’’ Simply by marking it as a progress state we can
express the correctness criterion that the passing of the semaphore guard cannot be
postponed infinitely long, e.g., by an infinite execution cycle that does not pass the
progress state.

proctype dijkstra()
{
end: do

:: sema!p ->
progress: sema?v

od
}

An automated validator can readily confirm that indeed this claim cannot be violated.
If more than one state carries a progress-state label, variations with a common prefix
are again valid: progress0, progressisslow, and so on.

LIVELOCKS
Suppose we wanted to express the opposite of a progress condition, e.g., we want to
formalize that something cannot happen infinitely often. We can express properties
like this with the third, and last, class of special PROMELA labels. In addition to the
end-state, and progress-state labels introduced earlier, we now define acceptance-state
labels. An acceptance-state label is any label starting with the character sequence
‘‘accept.’’ It marks a state that may not be part of a sequence of states that can be
repeated infinitely often.

For example, if we replace the progress-state label in proctype dijkstra() with an
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acceptance-state label

proctype dijkstra()
{
end: do

:: sema!p ->
accept: sema?v

od
}

we claim that it is impossible to cycle through a series of p and v operations. We
know, of course, that this claim is false. We can either prove that it is false manually,
or we can use an automated validator to provide a counter-example.

Again, all variations, such as acceptor, acceptable, and accept_yo, are allowed.
In principle, we could make the best use of an acceptance state if we could use it to
express complete behaviors that are required to be impossible, rather than only the
absence of a designated state in all cycles. We will do precisely that by using the
labels to define the acceptance states of special claim automata that model error
behaviors. (This also explains the choice of the term ‘‘accept.’’) These automata
express general temporal claims.

6.7 TEMPORAL CLAIMS
Up to this point we have talked about the specification of correctness criteria with
assertions and with three special types of labels that can be used to mark end states,
progress states, and acceptance states. Powerful types of correctness criteria can
already be expressed with these tools, yet so far our only option is to add them to
proctype definitions. Suppose that, within this framework, we want to express the
temporal claim ‘‘every state in which property P is true is followed by a state in
which property Q is true.’’ We noted before that two different interpretations of the
term ‘‘followed by’’ are possible, depending on whether the two states must immedi-
ately or eventually follow each other. It is basic to the semantics of PROMELA that no
assumptions whatsoever can be made about the relative timing of process executions.
This means that, so far, the only legitimate interpretation of the above term is that two
steps ‘‘eventually’’ follow each other (including ‘‘immediately’’ as a special case).
That, however, leaves us with the problem to express the other types of properties.
For this we need a different type of validation primitive.

Temporal claims define temporal orderings of properties of states. To express the
requirement that ‘‘every state in which property P is true is followed by a state in
which property Q is true,’’ we could write

P -> Q

But, it’s not quite that simple. There are two snags.
Since all our correctness criteria are based on properties that are claimed to be
impossible, the temporal claims we use must also express orderings of properties
that are impossible.
The temporal claims are defined on complete execution sequences (terminating or
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cyclic). Even if a prefix of the sequence is irrelevant, it must still be represented
as a trivially-true sequence of propositions.

The requirement above should be expressed, therefore, as

never { do :: skip :: break od -> P -> !Q }

that is, independent of the initial sequence of events, it is impossible for a state in
which property P is true to be followed by a state in which property Q is false. The
claim is matched, and the corresponding correctness property thereby violated, if and
when the claim body terminates.

The PROMELA notation for a temporal claim is

never { ... }

where the dots contain the details of the claim.

Temporal claims can be primed with progress-state or acceptance-state labels to catch
more types of errors than just a complete match of a terminating behavior. The
never claims can be expressed, for instance, as special finite state machines that
cycle through an acceptance state if the undesirable behavior is recognized.

Suppose we wanted to express the temporal property that condition1 can never
remain true infinitely long. To catch violations of this property, we must find a
representation in a temporal claim of all behaviors where condition1 may be false
initially, becomes true eventually, and remains true. It is expressed as follows

never {
do
:: skip
:: condition1 -> break
od;

accept: do
:: condition1
od

}

This (non-terminating) claim is matched, and the corresponding correctness property
violated, if and when the acceptance cycle is detected. The tricky part is to remember
the inclusion of the skip (a condition that is always true) in the first loop. Note that
sequences where the truth value of condition1 first changes from true to false a few
times are permitted by the claim.

The claim itself is simply a finite state machine, with a proposition defined in every
state. For every state transition elsewhere in the validation model, i.e., by the execu-
tion of a PROMELA statement, the claim machine must change its state and move from
one proposition to the next. To match a temporal claim, at every state in a sequence
of states the proposition at corresponding state in the claim machine must be true. If
we write erroneously, for instance
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never {
do
:: skip
:: condition1 -> break
od;

accept:
condition1

}

the claim contains just two state transitions after condition1 becomes true. This
claim is completely matched if there is at least one execution sequence in which
condition1 holds in two subsequent states.

The finite state machines specified in the claims above contain three states each: the
initial state, the state labeled accept and the normal end state. The first, correct, ver-
sion of the claim specifies that it would be an error (a livelock) if the machine can stay
in the second state infinitely long. The second version specified that it would be an
error if the third (terminal) state is reachable.

SPECIFYING TEMPORAL CLAIMS
The body of a temporal claim is defined just like PROMELA proctype bodies. This
means that all control flow structures, such as if-fi selections, do-od repetitions,
and goto jumps, are allowed. There is, however, one important difference:

Every statement inside a temporal claim is (interpreted as) a condition.
Specifically, this means that the statements inside temporal claims should be free of
side-effects. For reference, the PROMELA statements with side-effects are: assign-
ments, assertions, sends, receives, and printf statements.

Temporal claims are used to express system behaviors that are considered undesirable
or illegal. We say that a temporal claim is matched if the undesirable behavior can be
realized, and thus our correctness claim can be violated.

The most useful application of temporal claims is in combination with acceptance
labels. There are then two ways to match a temporal claim, depending on whether the
undesirable behavior defines terminating or cyclic execution sequences.

For a terminating execution sequence, a temporal claim is matched only when it
can terminate (reaches the closing curly brace) That is, the claim can be violated if
the closing curly brace of the PROMELA body of the claim is reachable.
For a cyclic execution sequence, the claim is matched only when an explicit
acceptance cycle exists. The acceptance labels within temporal claims are user
defined, there are no defaults. This means that in the absence of acceptance labels
no cyclic behavior can be matched by a temporal claim. It also means that to
check a cyclic temporal claim, acceptance labels should only occur within the
claim and not elsewhere in the PROMELA code.

Never claims, used in combination with acceptance-state labels, can express also the
absence of non-progress cycles. The claims are therefore more general than
progress-state labels. The expense (complexity) of finding non-progress cycles
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directly with progress-state labels, however, is smaller than the expense of the valida-
tion of a claim that specifies the same property.

To get the full benefit of temporal claims, we must be able to refer to the control-flow
states and the variable values of running processes. As an example, consider the fol-
lowing version of the alternating bit protocol.
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1 /* alternating bit - version with message loss */
2
3 #define MAX 3
4
5 mtype = { msg0, msg1, ack0, ack1 };
6
7 chan sender =[1] of { byte };
8 chan receiver=[1] of { byte };
9

10 proctype Sender()
11 { byte any;
12 again:
13 do
14 :: receiver!msg1;
15 if
16 :: sender?ack1 -> break
17 :: sender?any /* lost */
18 :: timeout /* retransmit */
19 fi
20 od;
21 do
22 :: receiver!msg0;
23 if
24 :: sender?ack0 -> break
25 :: sender?any /* lost */
26 :: timeout /* retransmit */
27 fi
28 od;
29 goto again
30 }
31
32 proctype Receiver()
33 { byte any;
34 again:
35 do
36 :: receiver?msg1 -> sender!ack1; break
37 :: receiver?msg0 -> sender!ack0
38 :: receiver?any /* lost */
39 od;
40 P0:
41 do
42 :: receiver?msg0 -> sender!ack0; break
43 :: receiver?msg1 -> sender!ack1
44 :: receiver?any /* lost */
45 od;
46 P1:
47 goto again
48 }
49
50 init { atomic { run Sender(); run Receiver() } }

Processes Receiver and Sender communicate via message channels named
receiver and sender. Each channel can hold one message of type byte.

Message loss is modeled explicitly in the sender and the receiver processes with a
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clause that can steal an incoming message before it is processed (lines 15, 23, 36, and
42). We may want to express the claim ‘‘it is always true that when the sender
transmits a message, the receiver will eventually accept it.’’ Our first job is again to
find the corresponding undesirable property that can be expressed in a temporal claim.
To be able to specify this, however, we need to be able to refer to states inside the
sender and receiver processes. The required notation is used in the following formali-
zation of the claim.

never {
do
:: skip /* allow any time delay */
:: receiver?[msg0] -> goto accept0
:: receiver?[msg1] -> goto accept1
od;

accept0:
do
:: !Receiver[2]:P0
od;

accept1:
do
:: !Receiver[2]:P1
od

}

The claim above is a four-state machine: the inital state, the two states that were
labeled, and the normal end state. At least one of three conditions must be true in the
initial system state. The claim remains in this state as long as channel receiver is
empty. If it contains a message1 msg0 or msg1 it will change state to either accept0
or accept1, depending on the message that was matched. Once the transition to, for
instance, state accept0 has been made, the claim can only remain in that state if the
receiver process will never accept a message with the same sequence number, i.e., if
the receiver process never passes the state labeled P0.

There can be many instantiations of the process type Receiver so we need some way
of specifying exactly which particular instantiation we mean when we refer to the
state of a process. This is the only time that we need to be able to refer to the instan-
tiation number or the pid of a process. The pid of a process is the number that is
returned by the run operator, when a process is instantiated. The pids are assigned in
the order in which processes are started, but they may be recycled when processes die.
The initial process always has pid zero, and its number is never recycled. A pid can
usually easily be inferred from the program text. Since the receiver process is the
second process that is instantiated in this system, its pid is two. We can refer to the
receiver process unambiguously as Receiver[2]. The condition that the receiver is
currently in the state labeled P0 is expressed as Receiver[2]:P0. The condition is
false whenever the second process that was instantiated is in any state other than at
__________________
1. The notation for a side-effect free inspection of the contents of a message channel was introduced in
Chapter 5 on page 98.
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label P0 of process type Receiver.

The notation Receiver[2]:P0 is a special case of a more general construct which
allows temporal claims to refer to internal conditions of the asynchronous processes
defined within a PROMELA model. A reference to the current value of local variable
any in the receiver process, for instance, is written Receiver[2].any. It can be used
in arbitrary expressions, such as

assert(Receiver[2].any < 0)

In process references, a colon is used to refer to labels (i.e., control flow states) and a
period is used to refer to local variables. In the first case, the value returned is a
boolean. In the second case it is the integer value of the variable specified.

The example claim can be proven for the alternating bit protocol as specified, using
the default semantics of timeout. This means that the claim is matched provided that
the retransmission timers behave as intended: there will be no retransmission unless a
message was lost. To check also the rather perverse case where timeouts can fire at
any time, independently of message loss, we could add the macro definition

#define timeout skip

Now the temporal claim can be violated. Counter-examples are easily produced with
an automated validator, such as the one discussed in Chapters 11-14.

6.8 SUMMARY
In this chapter we have introduced all the remaining language features of the valida-
tion modeling language PROMELA. All are directly related to the specification of the
correctness requirements of a model. They are

Assertion statements
End-state, progress-state, and acceptance-state labels
The temporal claim never

The notation for referring to the control-flow states and local variable values of
running processes within assertions and temporal claims

The order in which we have introduced the tools for expressing correctness properties
corresponds roughly to an increasing level of sophistication in performing validations.

In the initial stages of a design, a user is unlikely to use more than assertions and
perhaps end-state labels. In the final stages of a design, when all initial flaws have
been corrected and a more precise qualitative assessment of the design can be made,
validations with explicit temporal claims may be developed. In many cases this level
of sophistication in a validation is never required and all the necessary properties can
be established without it.

It is almost impossible to manually verify correctness requirements such as the ones
we have discussed. The behavior of even very simple protocol systems is of a
staggering complexity that no designer can be expected to assess accurately. Tools
are needed not only to express the correctness requirements of a protocol design, but
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also to verify them reliably. In the next chapters we show how we can use a language
such as PROMELA for systematic protocol design and how automated systems can be
developed to support efficient validations of correctness claims.

EXERCISES

6-1. 6-1. The assertion used to verify mutual exclusion in the semaphore example was formalized
as a global system invariant. Find another place for the assertion to perform the same
check without an extra monitor process.

6-2. 6-2. Find the temporal claim never that expresses the same correctness requirement as the
‘‘ordinary’’ proctype definition

proctype monitor() { (invariant) -> assert(invariant) }

Explain the difference in semantics of the semicolon (or arrow).

6-3. 6-3. Consider Dekker’s algorithm from Chapter 5. Make a new PROMELA model, where the
processes repeatedly access their critical sections. Express the correctness requirement
that no two processes can be in their critical sections simultaneously, with

An assertion
A system invariant
End-state labels
A temporal claim never (combined with acceptance-state labels)

End-state labels can be used in this problem, for instance, by forcing the system into an
improper end-state when the exclusion is violated. You are allowed to introduce extra
global ‘‘state’’ variables, e.g., to count the number of processes inside the critical section.

6-4. 6-4. Repeat Exercise 6-3, but this time do not use any global variables in the assertions or in
the temporal claim. Define extra ‘‘ordinary’’ labels to define control flow points in the
program bodies that can be monitored in assertions and claims.

6-5. 6-5. For the model from Exercise 6-4, express the correctness requirement that no single pro-
cess can monopolize access to the critical section. Express the claim that within finite
time after access is attempted, access is granted. Use

Progress-state labels
Acceptance-state labels
A temporal claim never combined with acceptance-state labels

(Three different solutions.) Add variables and labels as needed.

6-6. 6-6. All ‘‘linear-time propositional temporal logic formulas’’ (see Bibliographic Notes) can
be expressed in PROMELA with acceptance-state labels and temporal claims. To illustrate
this, find PROMELA representations of the following requirements

Eventually, proposition p always remains true
p is always true until q becomes true
Eventually, p is always true until q becomes true

Can you discover a pattern in the modeling of these formulas into PROMELA temporal
claims? Could it be automated?

6-7. 6-7. Find a way translate arbitrary temporal claims back into temporal logic formulas.

6-8. 6-8. In temporal claims, consider if the following construction is equivalent to assert(0)

accept:do :: skip od
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BIBLIOGRAPHIC NOTES
The definition of terminating and cyclic execution sequences to reason about the
behavior of a distributed system is described in Owicki and Lamport [1982], Manna
and Wolper [1984], and Snepscheut [1985]. The formalization of correctness require-
ments in a notation that is based on temporal logic formulas was first explored in
Pnueli [1977]. It was soon also applied to the study of concurrent systems. Early
applications are the French validation system Cesar, Queille [1982], and Clarke’s
model checking system, Clarke [1982], Browne, Clarke, Dill, and Mishra [1986].
Formally, the temporal claims defined in this chapter describe nondeterministic B

. .
uchi

automata, a special class of the ∀-automata described in Manna and Pnueli [1987]. In
Wolper [1981] it was shown that B

. .
uchi automata have the expressive power of an

extended type of temporal logic formulas.

PSPACE hardness is a measure for the complexity of algorithms. Informally, a prob-
lem that is PSPACE hard is known to have no efficient solution. For a detailed dis-
cussion see Garey and Johnson [1979].


