
USING THE VALIDATOR 14
318 Introduction 14.1

318 An Optical Telegraph Protocol 14.2
320 Dekker´s Algorithm 14.3
322 A Larger Validation 14.4

325 Flow Control Validation 14.5
334 Session Layer Validation 14.6

347 Summary 14.7
347 Exercises

347 Bibliographic Notes

14.1 INTRODUCTION
It is time to put the tools we have developed in the last three chapters to use. First, to
get our feet wet, let us look at two simple examples. The first is a reconstruction of a
protocol used on the optical telegraphs in 1794 (see Chapter 1). The second is a
small, but very important, example from Chapter 5: Dekker’s algorithm for providing
two competing processes mutually exclusive access to a critical section in their code.

14.2 AN OPTICAL TELEGRAPH PROTOCOL
The details of the communications protocols used on the optical telegraphs built in the
late 18th century are hard to find. The best source is a booklet published by the
Swedish inventor of a shutter telegraph Edelcrantz [1796], which comes complete
with coding tables and elaborate, informal descriptions of the required coding and sig-
naling methods. All stations along a line, except the first and the last one, had to
monitor two neighboring stations for incoming traffic. Two telegraph operators were
therefore usually on duty. In the validation model we build for the optical telegraph
we will therefore also use two asynchronous processes, one to model the actions of
each operator.

To transfer a message, the sending operator had to set the telegraph on his station to a
special start signal, which had to be confirmed with an attention signal from the
receiving station. The start signal could then be removed, and the first message
transfered. Each message had to be reproduced faithfully by the receiver before the
sender could remove it from the telegraph. (Edelcrantz system also allowed for the
use of a special error signal, but we will not model that here.) The end of a message
was signaled with a special stop signal. After the stop signal was transfered, the
telegraph was released for other traffic, for instance to traffic flowing in the opposite
direction.

Clearly, an operator could not use the telegraph on his station for incoming or

318

319

outgoing traffic if his colleague was already using it. We model the state of the tele-
graphs with a boolean array busy[N], where N is the number of telegraph stations.
The validation model below puts three stations in a ring (it’s unlikely that they were
ever used that way), with two operators per station this gives a total of six processes.

1 #define true 1
2 #define false 0
3
4 bool busy[3];
5
6 chan up[3] = [1] of { byte };
7 chan down[3] = [1] of { byte };
8
9 mtype = { start, attention, data, stop }

10
11 proctype station(byte id; chan in, out)
12 { do
13 :: in?start ->
14 atomic { !busy[id] -> busy[id] = true };
15 out!attention;
16 do
17 :: in?data -> out!data
18 :: in?stop -> break
19 od;
20 out!stop;
21 busy[id] = false
22 :: atomic { !busy[id] -> busy[id] = true };
23 out!start;
24 in?attention;
25 do
26 :: out!data -> in?data
27 :: out!stop -> break
28 od;
29 in?stop;
30 busy[id] = false
31 od
32 }
33
34 init {
35 atomic {
36 run station(0, up[2], down[2]);
37 run station(1, up[0], down[0]);
38 run station(2, up[1], down[1]);
39
40 run station(0, down[0], up[0]);
41 run station(1, down[1], up[1]);
42 run station(2, down[2], up[2])
43 }
44 }

If we run a random simulation on this protocol we quickly find a problem.

320 USING THE VALIDATOR CHAPTER 14

$ spin -r -s optical
proc 6 (station) line 23, Send start -> queue 3 (out)
proc 5 (station) line 23, Send start -> queue 2 (out)
proc 4 (station) line 23, Send start -> queue 1 (out)
proc 3 (station) line 13, Recv start <- queue 2 (in)
proc 2 (station) line 13, Recv start <- queue 1 (in)
proc 1 (station) line 13, Recv start <- queue 3 (in)

#processes: 7
proc 6 (station) line 24 (state 19)
proc 5 (station) line 24 (state 19)
proc 4 (station) line 24 (state 19)
proc 3 (station) line 14 (state 4)
proc 2 (station) line 14 (state 4)
proc 1 (station) line 14 (state 4)
proc 0 (_init) line 44 (state 8)
7 processes created

The simulation gets stuck after all three stations simultaneously send out the start

message. The three messages are received, but then the deadlock trap closes. Three
operators are waiting for a confirmation of their start messages, the other three are
waiting for the telegraph to be released by their colleagues before they can sent the
required attention signal. In the deadlock state, three processes are at line 14 and
the other three at line 24 in the source of proctype station.

The deadlock problem is a curious variant of Dijkstra’s well-known dining philoso-
phers’ problem.

14.3 DEKKER´s ALGORITHM
To build a useful validation model, we extend Dekker’s algorithm with two boolean
variables, ain and bin, as follows:

1 #define true 1
2 #define false 0
3 #define Aturn false
4 #define Bturn true
5
6 bool x, y, t;
7 bool ain, bin;
8
9 proctype A()

10 { x = true;
11 t = Bturn;
12 (y == false || t == Aturn);
13 ain = true;
14 assert(bin == false); /* critical section */
15 ain = false;
16 x = false
17 }
18

SECTION 14.3 DEKKER´S ALGORITHM 321

19 proctype B()
20 { y = true;
21 t = Aturn;
22 (x == false || t == Bturn);
23 bin = true;
24 assert(ain == false); /* critical section */
25 bin = false;
26 y = false
27 }
28
29 init
30 { run A(); run B()
31 }

The variables ain and bin are set to true only when process A() or B(), respec-
tively, enters its critical section. A simple assert() statement can be used to verify
that both processes cannot be in their critical sections at the same time.

First, let us do a random simulation. The above validation model is stored in a file
named ‘‘dekker.’’ We try

$ spin dekker
3 processes created

No assertion violations are reported, but the run is not very informative. We try
again, this time printing out all statements.

$ spin -p dekker
proc 0 (_init) line 31 (state 2)
proc 1 (A) line 11 (state 2)
proc 0 (_init) line 31 (state 3)
proc 2 (B) line 21 (state 2)
proc 1 (A) line 12 (state 3)
proc 2 (B) line 22 (state 3)
proc 1 (A) line 13 (state 4)
proc 1 (A) line 14 (state 5)
proc 1 (A) line 15 (state 6)
proc 1 (A) line 16 (state 7)
proc 1 (A) line 17 (state 8)
proc 2 (B) line 23 (state 4)
proc 2 (B) line 24 (state 5)
proc 2 (B) line 25 (state 6)
proc 2 (B) line 26 (state 7)
proc 2 (B) line 27 (state 8)
proc 2 (B) terminates
proc 1 (A) terminates
proc 0 (_init) terminates
3 processes created

We can repeat this a few times to gain confidence that indeed the algorithm seems to
perform as advertised. But that is no proof. We can easily do an exhaustive search to
establish once and for all that the algorithm is correct. First we generate and compile
the analyzer.

322 USING THE VALIDATOR CHAPTER 14

$ spin -a dekker
$ cc -o pan pan.c

That is all there is to it; except for the exhaustive validation run itself of course.

$ pan
full state space search for:

assertion violations and invalid endstates
vector 16 byte, depth reached 19, errors: 0

81 states, stored
0 states, linked

36 states, matched total: 117
hash conflicts: 0 (resolved)
(max size 2ˆ18 states, stackframes: 3/0)

unreached in proctype _init:
reached all 3 states

unreached in proctype B:
reached all 8 states

unreached in proctype A:
reached all 8 states

The first two lines tell us what type of validation is being performed. Since no tem-
poral claims or progress states were defined, a basic search for assertion violations
and invalid end-states is performed. The next line says that the state vector for this
validation model took up 16 bytes of memory, the longest unique execution sequence
was 19 steps long, and, alas, there were no errors found. A total of 81 reachable sys-
tem states was logged. 36 times the symbolic executions performed by the validator
returned the system to a reachable state that was analyzed before. There were no hash
conflicts. If there had been any, since this is a full state space search, they would have
been resolved with a linked list in the hash table. All states in all processes, finally,
were found to be reachable and, implicitly, we proved that no execution sequence can
violate the correctness assertions: the validator tried them all. No doubt about it, the
algorithm enforces mutual exclusion.

14.4 A LARGER VALIDATION
A validation of the design of the file transfer protocol from Chapter 7 is a larger job.
The complete design required us to address a large number of small problems, all of
which could be solved with some degree of confidence. But having solved these sub-
problems our job is not done. The logical consistency of the complete design is hard
to assess. All the small solutions together define the behavior of a larger composite
machine that can interact with its environment in an astounding number of ways.
After we complete the design, the composite machine will respond in one way or
another to all the possible sequences of events that the environment can offer: the
ones we had in mind when we made the initial design, and all the ones we never
thought of. A protocol designer quickly learns that the second class of sequences is
usually larger than the first. Our job here is to find out if, despite this, the design cri-
teria for the protocol are met.

SECTION 14.4 A LARGER VALIDATION 323

A full listing of the protocol model, as validated here, is given in Appendix F. If all
goes well, we can either prove or disprove, for instance, that this protocol is free from
deadlocks, can recover gracefully from user aborts, and reliably transmits data in the
presence of transmission errors.

The full protocol contains 12 asynchronous processes and 20 message channels. The
model is of a realistic complexity and provides a good test case for the applicability of
our tools. It is tempting to begin by trying to perform an exhaustive validation of the
complete model. A straight exhaustive validation of the model, however, runs una-
voidably into the traps discussed in Chapter 11; there cannot ever be enough memory
or enough time to complete it. An arbitrarily placed memory limit of 16 Mbytes, for
instance, is exhausted quickly and produces the following result. The maximum
search depth was guessed.

$ spin -a pftp # the full model, as listed in App. F
$ cc -DMEMCNT=24 -o pan pan.c # set memory bound at 2ˆ24 bytes
$ pan -m15000 # max search depth 15,000 steps
pan: out of memory
full statespace search for:

assertion violations and invalid endstates
search was not completed
vector 256 byte, depth reached 7047, errors: 0

57316 states, stored
44880 states, linked
76300 states, matched total: 178496

hash conflicts: 10319 (resolved)
(max size 2ˆ18 states, stackframes: 0/1009)

memory used: 16777241

The exhaustive search deteriorated into an uncontrolled partial search when it
exhausted the 16 Mbytes of available memory. As argued in Chapter 11, a bit state
space technique can achieve better coverage in these cases, even within stricter
memory bounds. For instance, with a memory arena 8 times smaller than before, a bit
state space analysis reaches approximately 40 times more states:

$ cc -DMEMCNT=21 -DBITSTATE -o pan pan.c # 8 times less memory
$ pan -w22 -m15000 # 2ˆ22 = 4 Mbit = 0.5 Mbyte state space
bit state space search for:

assertion violations and invalid endstates
vector 256 byte, depth reached 14,999, errors: 0
2136023 states, stored
1987936 states, linked
3499761 states, matched total: 7623720

hash factor: 1.963603 (best coverage if >100)
(max size 2ˆ22 states, stackframes: 0/2365)

memory used: 1507425 # state space + 15,000 slot stack
unreached in proctype _init:

reached all 13 states

324 USING THE VALIDATOR CHAPTER 14

unreached in proctype data_link:
line 20 (state 14)
reached: 13 of 14 states

unreached in proctype fc:
...
reached: 61 of 73 states

unreached in proctype fserver:
line 29 (state 30)
reached: 29 of 30 states

unreached in proctype session:
...
reached: 96 of 99 states

unreached in proctype present:
...
reached: 32 of 34 states

unreached in proctype userprc:
reached all 17 states

The analyzer inspected 7.6 million composite system states, of which more than 2
million were distinct. The state descriptions were 256 bytes long. There are, how-
ever, a number of indications that the analysis was incomplete.

The hash factor is too low. The hash factor must be over a hundred, before we can
be confident of sufficient coverage (Chapter 13).
The depth limit of 15,000 steps was too small (note the depth-reached of 14,999
steps). The search would have to be repeated with a larger depth limit to avoid
truncation.
The list of unreached code, abbreviated above, shows that not all parts of the
model were exercised.

We can boost the coverage a little bit by picking a larger memory arena, but the
results are not encouraging:

$ cc -DMEMCNT=23 -DBITSTATE -o pan pan.c # use more memory
$ pan -w25 -m45000 # allow up to 32 million states
bit state space search for:

assertion violations and invalid endstates
vector 256 byte, depth reached 36569, errors: 0
18302437 states, stored
19482180 states, linked
33989843 states, matched total: 71774460
hash factor: 1.833331 (best coverage if >100)
(max size 2ˆ25 states, stackframes: 0/6167)

memory used: 6857209
...

This time, in less than half the memory arena of the first, ‘‘full search’’ we analyzed
over 300 times more states using the supertrace algorithm. Still, however, the indica-
tions are that the coverage is poor. If we want to do better, we have to take a different
approach. Rather than performing a single monolithic test of all layers at the same
time, we can break up the validation problem into smaller, more manageable pieces.
(See also the discussion of complexity management techniques such as reduction and

SECTION 14.5 FLOW CONTROL VALIDATION 325

generalization in Chapters 8 and 11.) In the design phase we already made an effort
to separate orthogonal issues, such as error control, flow control, and session control.
This effort can pay off now. The correctness of the flow control layer, for instance, is
completely independent of the correctness of the session control layer. We can there-
fore reduce the complexity of the validation substantially by validating protocol
modules separately.

Design by stepwise refinement and validation by stepwise abstraction are
complementary techniques.

Each separate validation can achieve a much better coverage than a monolithic valida-
tion of all layers put together.

Let’s look at the layers one by one. The correctness of the error control depends on
the accuracy of the checksumming method, which was discussed in Chapter 3. Vali-
dation of a checksum algorithm by exhaustive reachability analysis would be inap-
propriate; it is a mere computation. We look at the validation of the core protocol
layers: flow control, session control, and presentation. We base the validation on the
assumptions that were made earlier about the behavior of the three environment
processes: the user, the file server, and the data link.

14.5 FLOW CONTROL VALIDATION
The main correctness requirement for the flow control layer is that it cannot lose or
reorder messages, despite the fact that the lower protocol module does lose messages.
In Chapter 7 we expressed a correctness of the flow control layer, using a labeling of
messages with three colors, red, white, and blue. To perform the validation we use
the test sender and receiver process described in Chapter 7, extended with some extra
code. Before any data are transferred, the test sender must synchronize the two flow
control layer processes. The code is borrowed from the original session layer (see
Chapter 7 and Appendix F).

proctype test_sender(bit n)
{ byte par, toggle;

ses_to_flow[n]!sync,toggle;
do
:: flow_to_ses[n]?sync_ack,par ->

if
:: (par != toggle)
:: (par == toggle) -> break
fi

:: timeout ->
ses_to_flow[n]!sync,toggle

od;
toggle = 1 - toggle;
do
:: ses_to_flow[n]!white
:: ses_to_flow[n]!red -> break
od;

326 USING THE VALIDATOR CHAPTER 14

do
:: ses_to_flow[n]!white
:: ses_to_flow[n]!blue -> break
od;
do
:: ses_to_flow[n]!white
:: break
od

}
proctype test_receiver(bit n)
{

do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> break
:: flow_to_ses[n]?blue -> assert(0)
od;
do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> assert(0)
:: flow_to_ses[n]?blue -> break
od;

end: do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> assert(0)
:: flow_to_ses[n]?blue -> assert(0)
od

}

The last cycle in the receiver was labeled as an end-state. It is where we would expect
the receiver process to be in all valid end-states of the system. It is not wise to rely on
the system reaching a deadlock state when an incorrect message is received. The
receiver process blocks on unspecified receptions, but the other processes may con-
tinue, e.g., with retransmissions. For this reason, an explicit assertion violation is
forced in the above validation model.

This test sender and receiver model the upper protocol layer for the flow control layer
process. The lower protocol layer is the data link. It was modeled as follows:

proctype data_link()
{ byte type, seq;

end: do
:: flow_to_dll[0]?type,seq ->

if
:: dll_to_flow[1]!type,seq
:: skip /* lose */
fi

:: flow_to_dll[1]?type,seq ->
if
:: dll_to_flow[0]!type,seq
:: skip /* lose */
fi

SECTION 14.5 FLOW CONTROL VALIDATION 327

od
}

The only function of the data link model is to simulate the loss of messages. There is,
however, an equivalent and simpler way to model the same behavior. We can connect
the two flow control processes directly and modify them to randomly discard any
messages that arrive. This reduction allows us to remove two processes and two mes-
sage channels from the model by the addition of just one clause to the receiver part of
the flow control layer process (see Appendix F).

#if LOSS
:: err_to_flow[N]?type,m /* lose any message */

#endif

We have used a preprocessor directive LOSS to enable or disable the possibility of
message loss in validations. (The message is received, but not responded to.) In the
flow control layer validation model listed in Appendix F there is one other preproces-
sor directive, named DUPS. It can be used to model the possibility of duplicate mes-
sages by triggering premature retransmissions, i.e., the retransmission of messages
that are not really lost. Another step in our effort to reduce the complexity of the vali-
dation can be to group code into atomic statements wherever we can safely do so, and
to combine the test sender and receiver into a single upper level tester. (See incre-
mental composition, discussed in Chapters 8 and 11.) The complete code for the
upper tester then looks as follows:

1 proctype upper()
2 { byte s_state, r_state;
3 byte type, toggle;
4
5 ses_to_flow[0]!sync,toggle;
6 do
7 :: flow_to_ses[0]?sync_ack,type ->
8 if
9 :: (type != toggle)

10 :: (type == toggle) -> break
11 fi
12 :: timeout ->
13 ses_to_flow[0]!sync,toggle
14 od;
15 toggle = 1 - toggle;
16
17 do
18 /* sender */
19 :: ses_to_flow[0]!white,0
20 :: atomic {
21 (s_state == 0 && len (ses_to_flow[0]) < QSZ) ->
22 ses_to_flow[0]!red,0 ->
23 s_state = 1
24 }

328 USING THE VALIDATOR CHAPTER 14

25 :: atomic {
26 (s_state == 1 && len (ses_to_flow[0]) < QSZ) ->
27 ses_to_flow[0]!blue,0 ->
28 s_state = 2
29 }
30 /* receiver */
31 :: flow_to_ses[1]?white,0
32 :: atomic {
33 (r_state == 0 && flow_to_ses[1]?[red]) ->
34 flow_to_ses[1]?red,0 ->
35 r_state = 1
36 }
37 :: atomic {
38 (r_state == 0 && flow_to_ses[1]?[blue]) ->
39 assert(0)
40 }
41 :: atomic {
42 (r_state == 1 && flow_to_ses[1]?[blue]) ->
43 flow_to_ses[1]?blue,0;
44 break
45 }
46 :: atomic {
47 (r_state == 1 && flow_to_ses[1]?[red]) ->
48 assert(0)
49 }
50 od;
51 end:
52 do
53 :: flow_to_ses[1]?white,0
54 :: flow_to_ses[1]?red,0 -> assert(0)
55 :: flow_to_ses[1]?blue,0 -> assert(0)
56 od
57 }

The structure of the test system we have described is shown in Figure 14.1.

Upper

Tester

Flow Control Flow Control

Figure 14.1 — Validation of the Flow Control Layer
The circle represents the upper level model that was added specifically for this valida-
tion. The two boxes are the flow control layer processes being validated. By the con-
struction of the upper tester we know that if there is any error in the flow control
layer, the upper tester module will trip on a false assertion.

SECTION 14.5 FLOW CONTROL VALIDATION 329

IDEAL CHANNELS
In a first validation run we check that in the absence of errors, data are transferred
correctly and the temporal claim cannot be violated. The startup script looks as fol-
lows:

1 /*
2 * PROMELA Validation Model
3 * FLOW CONTROL LAYER VALIDATION
4 */
5
6 #define LOSS 0 /* message loss */
7 #define DUPS 0 /* duplicate msgs */
8 #define QSZ 2 /* queue size */
9

10 mtype = {
11 red, white, blue,
12 abort, accept, ack, sync_ack, close, connect,
13 create, data, eof, open, reject, sync, transfer,
14 FATAL, NON_FATAL, COMPLETE
15 }
16
17 chan ses_to_flow[2] = [QSZ] of { byte, byte };
18 chan flow_to_ses[2] = [QSZ] of { byte, byte };
19 chan dll_to_flow[2] = [QSZ] of { byte, byte };
20 chan flow_to_dll[2];
21
22 #include "flow_cl"
23 #include "upper_tester"
24
25 init
26 {
27 atomic {
28 flow_to_dll[0] = dll_to_flow[1];
29 flow_to_dll[1] = dll_to_flow[0];
30 run fc(0); run fc(1);
31 run upper()
32 }
33 }

The include files contain the model definitions we have just discussed. The flow con-
trol layer processes are directly linked with the first two assignments in the initial pro-
cess, and they are started in the two subsequent run statements. The following num-
bered listing of the flow control layer, as tested, is useful for cross referencing the
unreachable code.

330 USING THE VALIDATOR CHAPTER 14

1 /*
2 * Flow Control Layer Validation Model
3 */
4
5 #define true 1
6 #define false 0
7
8 #define M 4 /* range sequence numbers */
9 #define W 2 /* window size: M/2 */

10
11 proctype fc(bit n)
12 { bool busy[M]; /* outstanding messages */
13 byte q; /* seq# oldest unacked msg */
14 byte m; /* seq# last msg received */
15 byte s; /* seq# next msg to send */
16 byte window; /* nr of outstanding msgs */
17 byte type; /* msg type */
18 bit received[M]; /* receiver housekeeping */
19 bit x; /* scratch variable */
20 byte p; /* seq# of last msg acked */
21 byte I_buf[M], O_buf[M]; /* message buffers */
22
23 /* sender part */
24 end: do
25 :: atomic {
26 (window < W && len(ses_to_flow[n]) > 0
27 && len(flow_to_dll[n]) < QSZ) ->
28 ses_to_flow[n]?type,x;
29 window = window + 1;
30 busy[s] = true;
31 O_buf[s] = type;
32 flow_to_dll[n]!type,s;
33 if
34 :: (type != sync) ->
35 s = (s+1)%M
36 :: (type == sync) ->
37 window = 0;
38 s = M;
39 do
40 :: (s > 0) ->
41 s = s-1;
42 busy[s] = false
43 :: (s == 0) ->
44 break
45 od
46 fi
47 }
48 :: atomic {
49 (window > 0 && busy[q] == false) ->
50 window = window - 1;
51 q = (q+1)%M
52 }
53 #if DUPS
54 :: atomic {

SECTION 14.5 FLOW CONTROL VALIDATION 331

55 (len(flow_to_dll[n]) < QSZ
56 && window > 0 && busy[q] == true) ->
57 flow_to_dll[n]! O_buf[q],q
58 }
59 #endif
60 :: atomic {
61 (timeout && len(flow_to_dll[n]) < QSZ
62 && window > 0 && busy[q] == true) ->
63 flow_to_dll[n]! O_buf[q],q
64 }
65
66 /* receiver part */
67 #if LOSS
68 :: dll_to_flow[n]?type,m /* lose any message */
69 #endif
70 :: dll_to_flow[n]?type,m ->
71 if
72 :: atomic {
73 (type == ack) ->
74 busy[m] = false
75 }
76 :: atomic {
77 (type == sync) ->
78 flow_to_dll[n]!sync_ack,m;
79 m = 0;
80 do
81 :: (m < M) ->
82 received[m] = 0;
83 m = m+1
84 :: (m == M) ->
85 break
86 od
87 }
88 :: (type == sync_ack) ->
89 flow_to_ses[n]!sync_ack,m
90 :: (type != ack && type != sync && type != sync_ack)->
91 if
92 :: atomic {
93 (received[m] == true) ->
94 x = ((0<p-m && p-m<=W)
95 || (0<p-m+M && p-m+M<=W)) };
96 if
97 :: (x) -> flow_to_dll[n]!ack,m
98 :: (!x) /* else skip */
99 fi

100 :: atomic {
101 (received[m] == false) ->
102 I_buf[m] = type;
103 received[m] = true;
104 received[(m-W+M)%M] = false
105 }
106 fi
107 fi
108 :: (received[p] == true && len(flow_to_ses[n])<QSZ
109 && len(flow_to_dll[n])<QSZ) ->

332 USING THE VALIDATOR CHAPTER 14

110 flow_to_ses[n]!I_buf[p],0;
111 flow_to_dll[n]!ack,p;
112 p = (p+1)%M
113 od
114 }

Not knowing anything about the complexity of the model that we have constructed for
the validation, the best approach is to run a quick supertrace (bit state space) analysis
and check the hash factor and the number of reachable states. By multiplying the
number of states stored with the number of bytes required per state we can then get an
estimate of the amount of memory that would be required for an exhaustive search.
For instance, a supertrace analysis of the flow control layer validation model from
Figure 14.1 is performed as follows, using a memory arena of roughly 4.5 Mbytes:

$ spin -a pftp.flow
$ cc -DMEMCNT=23 -DBITSTATE -o pan pan.c
$ pan -w25
bit statespace search for:

assertion violations and invalid endstates
vector 128 byte, depth reached 3781, errors: 0

90843 states, stored
317124 states, linked
182422 states, matched total: 590389

hash factor: 369.363216 (best coverage if >100)
(max size 2ˆ25 states, stackframes: 0/418)

memory used: 4463832
...

The search was of good quality (the hash factor is high) so the number of states
reached should be a good approximation of the true number of reachable states in the
full state space. A quick calculation shows that we would need 90843×128, or
roughly 12 Mbytes to store the complete state space. Having a machine with 64
Mbytes available, we can decide to repeat the analysis with an exhaustive check.

$ cc -DMEMCNT=24 -o pan pan.c # memory bound 2ˆ24
$ pan -w16 # hash table of 2ˆ16 slots
full state space search for:

assertion violations and invalid endstates
vector 128 byte, depth reached 5580, errors: 0

90845 states, stored
317134 states, linked
182425 states, matched total: 590404

hash conflicts: 154271 (resolved)
(max size 2ˆ16 states, stackframes: 0/418)

memory used: 12886356
unreached in proctype _init:

reached all 7 states

SECTION 14.5 FLOW CONTROL VALIDATION 333

unreached in proctype upper:
line 13 (state 9)
line 39 (state 29)
line 48 (state 36)
line 54 (state 43)
line 55 (state 45)
line 57 (state 49)
reached: 43 of 49 states

unreached in proctype fc:
line 63 (state 28)
line 93 (state 50)
line 96 (state 53)
line 95 (state 55)
line 113 (state 73)
reached: 68 of 73 states

The state space built held 90,845 reachable system states, with 317,134 linked states
(intermediate states in atomic sequences), and a longest unique execution sequence of
3781 steps. A total of 182,425 times a state was reached that was previously analyzed
in the depth first search. The earlier bit state space analysis had 99.997% coverage.

Next, let us consider the states that are reported to be unreachable. Four of the six
unreachable states in the upper tester correspond to the assertion violations that we
want to be unreachable: lines 39, 48, 54, and 55. Line 13 specifies the action to be
taken if a timeout occurs while the upper tester is waiting for a response to its initial
sync message. It is readily checked that indeed this code should also be unreachable:
if there is no message loss, the timeout should never occur. Line 57, finally, is the
normal stop state of the upper tester, at the end of its code. Since the code for the
upper tester is written as an infinite loop, we would also not expect that state to be
reachable.

Five states are reported to be unreachable in the flow control layer protocol. The
unreached code tells us that no timeout’s can occur (line 63). This is correct, in the
absence of message loss timeouts are redundant. It also confirms that, in the absence
of all errors, acknowledgments always arrive in the exact order in which the data mes-
sages are sent (lines 93-97). Line 113, finally, is the normal end-state of the flow con-
trol layer process. Since the process never terminates, it is also correctly labeled as
unreachable.

In examining the listings, remember that the line numbers are approximate, off-by-
one errors are sometimes hard to avoid. In case of doubt, the state numbers given in
parentheses can be used to look up the precise statement of the process in the file
pan.m.

In the absence of message loss in the underlying data link, then, the flow control layer
meets its correctness requirements. Since the assertions in the temporal claim cannot
be violated, no messages can ever be lost or reordered.

334 USING THE VALIDATOR CHAPTER 14

MESSAGE LOSS AND DUPLICATION ERRORS
In the next validation runs we check the working of the flow control layer in the pres-
ence of two different types of errors: message loss and duplicate messages. First we
check for message loss by giving the preprocessor directive LOSS a non-zero value. It
is just within the reach of a full state space analysis.

$ spin -a pftp.flow1
$ cc -o pan pan.c
$ pan -w20
full state space search for:

assertion violations and invalid endstates
vector 128 byte, depth reached 4421, errors: 0
396123 states, stored

1046768 states, linked
748273 states, matched total: 2191164

hash conflicts: 186761 (resolved)
(max size 2ˆ20 states, stackframes: 0/543)

unreached in proctype _init:
reached all 7 states

unreached in proctype upper:
line 39 (state 29)
line 48 (state 36)
line 54 (state 43)
line 55 (state 45)
line 57 (state 49)
reached: 44 of 49 states

unreached in proctype fc:
line 113 (state 74)
reached: 73 of 74 states

The timeout option in the upper tester has now been exercised, and all states of the
flow control layer process were reached. All remaining unreachable states in the
upper tester correspond to the error states that should be unreachable.

A next test is for duplicate messages. We enable this test with the preprocessor direc-
tive DUPS. This type of error dramatically increases the complexity of the model. A
validation is now solidly outside the range of exhaustive searches. Only a bit state
space search can still be performed with reasonable coverage.

$ spin -a pftp.flow2
$ cc -DMEMCNT=27 -DBITSTATE -o pan pan.c
$ pan -w29 -m100000
vector 128 byte, depth reached 56089, errors: 0
8241456 states, stored

22946550 states, linked
21143649 states, matched total: 52331655
hash factor: 65.142718 (best coverage if >100)
(max size 2ˆ29 states, stackframes: 0/7621)

memory used: 70073429
unreached in proctype _init:

reached all 7 states

SECTION 14.6 SESSION LAYER VALIDATION 335

unreached in proctype upper:
line 13 (state 9)
line 39 (state 29)
line 48 (state 36)
line 54 (state 43)
line 55 (state 45)
line 57 (state 49)
reached: 43 of 49 states

unreached in proctype fc:
line 63 (state 31)
line 113 (state 76)
reached: 74 of 76 states

Storing a full state space of 8,241,456 states of 128 bytes each would take a Gigabyte
of memory. The bit state space search above used 70 Mbytes and completed with a
hash factor of 65, thus with a reasonable guarantee of complete coverage (see Chapter
13). The longest unique execution sequence has now grown to 56,089 steps. All pro-
tocol states except those corresponding to errors and retransmission timeouts have
been exercised. The flow control layer passes also this test, that is, in the absence of
the other types of errors, the flow control layer seems able to cope successfully with
arbitrary amounts of duplication errors.

This validation test is, of course, a rather drastic one. Premature retransmission
timeouts can occur perhaps several times during a file transfer session, but very
unlikely hundreds of times or more. Many other variations of validation runs are pos-
sible. We could, for instance, reduce the complexity of the search by counting and
restricting the number of duplication errors per session. We can also test for combi-
nations of loss and duplication errors, and we could intersperse the sending of white,
red, and blue messages with flow control resynchronizations. We consider just one
variant of a validation run below.

VIOLATIONS OF THE WINDOW INVARIANT
To make sure that errors are properly caught in the validation runs, we can try to
tamper with the window size and replace the correct parameters:

#define M 4 /* range sequence numbers */
#define W 2 /* window size: M/2 */

in the flow control layer protocol, with, for instance

#define M 4 /* range sequence numbers */
#define W 3 /* window size: > M/2 */

In the presence of message loss this should reveal errors, because it violates the win-
dow protocol invariant we proved earlier. We first try a search without the possibility
of message loss:

336 USING THE VALIDATOR CHAPTER 14

$ spin -a pftp.flow3
$ cc -o pan pan.c
$ pan -m20000
full statespace search for:

assertion violations and invalid endstates
vector 128 byte, depth reached 10194, errors: 0
287445 states, stored

1181892 states, linked
664505 states, matched total: 2133842

hash conflicts: 487165 (resolved)
(max size 2ˆ18 states, stackframes: 0/1130)

There are more states than before, because there can be more messages outstanding at
the same time, but, as expected, no errors just yet. Next, we turn on message loss by
setting the compiler directive LOSS to 1.

$ spin -a pftp.flow4
$ cc -o pan pan.c
$ pan
assertion violated 0
pan: aborted (at depth 656)
pan: wrote pan.trail
full statespace search for:

assertion violations and invalid endstates
search was not completed
vector 128 byte, depth reached 1290, errors: 1

22469 states, stored
45816 states, linked
28041 states, matched total: 96326

hash conflicts: 3267 (resolved)
(max size 2ˆ18 states, stackframes: 0/199)
...

As expected, the tampering with the window protocol invariant introduces an error
that is discovered in the reachability analysis after only a few thousand states are
checked. It can be tracked down with a guided simulation, using the error trail pro-
duced by the analyzer.

14.6 SESSION LAYER VALIDATION
Having convinced ourselves that, with the right window size parameters, the flow
control layer correctly mimics the behavior of an ideal transmission channel to the
upper protocol layers, we can now use that result to simplify the validation of the ses-
sion layer. We can build a validation model for this test as follows, omitting every-
thing that was tested before:

/*
* PROMELA Validation Model
* Session Layer
*/

SECTION 14.6 SESSION LAYER VALIDATION 337

#include "defines2"
#include "user"
#include "present"
#include "session"
#include "fserver"

init
{ atomic {

run userprc(0); run userprc(1);
run present(0); run present(1);
run session(0); run session(1);
run fserver(0); run fserver(1);
flow_to_ses[0] = ses_to_flow[1];
flow_to_ses[1] = ses_to_flow[0]

}
}

The session layers are connected directly, as if connected by an ideal channel that
never loses, distorts or reorders messages. Since no flow control layer is present, we
can comment out the code in the session layer that is specifically meant for the initial-
ization of the flow control layer sequence numbers. The resulting code looks as fol-
lows:

1 /*
2 * Session Layer Validation Model
3 */
4
5 proctype session(bit n)
6 { bit toggle;
7 byte type, status;
8
9 endIDLE:

10 do
11 :: pres_to_ses[n]?type ->
12 if
13 :: (type == transfer) ->
14 goto DATA_OUT
15 :: (type != transfer) /* ignore */
16 fi
17 :: flow_to_ses[n]?type,0 ->
18 if
19 :: (type == connect) ->
20 goto DATA_IN
21 :: (type != connect) /* ignore */
22 fi
23 od;
24
25 DATA_IN: /* 1. prepare local file fsrver */
26 ses_to_fsrv[n]!create;
27 do
28 :: fsrv_to_ses[n]?reject ->
29 ses_to_flow[n]!reject,0;

338 USING THE VALIDATOR CHAPTER 14

30 goto endIDLE
31 :: fsrv_to_ses[n]?accept ->
32 ses_to_flow[n]!accept,0;
33 break
34 od;
35 /* 2. Receive the data, upto eof */
36 do
37 :: flow_to_ses[n]?data,0 ->
38 ses_to_fsrv[n]!data
39 :: flow_to_ses[n]?eof,0 ->
40 ses_to_fsrv[n]!eof;
41 break
42 :: pres_to_ses[n]?transfer ->
43 ses_to_pres[n]!reject(NON_FATAL)
44 :: flow_to_ses[n]?close,0 -> /* remote user aborted */
45 ses_to_fsrv[n]!close;
46 break
47 :: timeout -> /* got disconnected */
48 ses_to_fsrv[n]!close;
49 goto endIDLE
50 od;
51 /* 3. Close the connection */
52 ses_to_flow[n]!close,0;
53 goto endIDLE;
54
55 DATA_OUT: /* 1. prepare local file fsrver */
56 ses_to_fsrv[n]!open;
57 if
58 :: fsrv_to_ses[n]?reject ->
59 ses_to_pres[n]!reject(FATAL);
60 goto endIDLE
61 :: fsrv_to_ses[n]?accept ->
62 skip
63 fi;
64 /* 2. initialize flow control *** disabled
65 ses_to_flow[n]!sync,toggle;
66 do
67 :: atomic {
68 flow_to_ses[n]?sync_ack,type ->
69 if
70 :: (type != toggle)
71 :: (type == toggle) -> break
72 fi
73 }
74 :: timeout ->
75 ses_to_fsrv[n]!close;
76 ses_to_pres[n]!reject(FATAL);
77 goto endIDLE
78 od;
79 toggle = 1 - toggle;
80 /* 3. prepare remote file fsrver */
81 ses_to_flow[n]!connect,0;
82 if
83 :: flow_to_ses[n]?reject,0 ->

SECTION 14.6 SESSION LAYER VALIDATION 339

84 ses_to_fsrv[n]!close;
85 ses_to_pres[n]!reject(FATAL);
86 goto endIDLE
87 :: flow_to_ses[n]?connect,0 ->
88 ses_to_fsrv[n]!close;
89 ses_to_pres[n]!reject(NON_FATAL);
90 goto endIDLE
91 :: flow_to_ses[n]?accept,0 ->
92 skip
93 :: timeout ->
94 ses_to_fsrv[n]!close;
95 ses_to_pres[n]!reject(FATAL);
96 goto endIDLE
97 fi;
98 /* 4. Transmit the data, upto eof */
99 do

100 :: fsrv_to_ses[n]?data ->
101 ses_to_flow[n]!data,0
102 :: fsrv_to_ses[n]?eof ->
103 ses_to_flow[n]!eof,0;
104 status = COMPLETE;
105 break
106 :: pres_to_ses[n]?abort -> /* local user aborted */
107 ses_to_fsrv[n]!close;
108 ses_to_flow[n]!close,0;
109 status = FATAL;
110 break
111 od;
112 /* 5. Close the connection */
113 do
114 :: pres_to_ses[n]?abort /* ignore */
115 :: flow_to_ses[n]?close,0 ->
116 if
117 :: (status == COMPLETE) ->
118 ses_to_pres[n]!accept,0
119 :: (status != COMPLETE) ->
120 ses_to_pres[n]!reject(status)
121 fi;
122 break
123 :: timeout ->
124 ses_to_pres[n]!reject(FATAL);
125 break
126 od;
127 goto endIDLE
128 }

The user code is:

340 USING THE VALIDATOR CHAPTER 14

1 /*
2 * User Layer Validation Model
3 */
4
5 proctype userprc(bit n)
6 {
7 use_to_pres[n]!transfer;
8 if
9 :: pres_to_use[n]?accept -> goto Done

10 :: pres_to_use[n]?reject -> goto Done
11 :: use_to_pres[n]!abort -> goto Aborted
12 fi;
13 Aborted:
14 if
15 :: pres_to_use[n]?accept -> goto Done
16 :: pres_to_use[n]?reject -> goto Done
17 fi;
18 Done:
19 skip
20 }

And, finally, the presentation layer code is:

SECTION 14.6 SESSION LAYER VALIDATION 341

1 /*
2 * Presentation Layer Validation Model
3 */
4
5 proctype present(bit n)
6 { byte status, uabort;
7
8 endIDLE:
9 do

10 :: use_to_pres[n]?transfer ->
11 uabort = 0;
12 break
13 :: use_to_pres[n]?abort ->
14 skip
15 od;
16
17 TRANSFER:
18 pres_to_ses[n]!transfer;
19 do
20 :: use_to_pres[n]?abort ->
21 if
22 :: (!uabort) ->
23 uabort = 1;
24 pres_to_ses[n]!abort
25 :: (uabort) ->
26 assert(1+1!=2)
27 fi
28 :: ses_to_pres[n]?accept,0 ->
29 goto DONE
30 :: ses_to_pres[n]?reject(status) ->
31 if
32 :: (status == FATAL || uabort) ->
33 goto FAIL
34 :: (status == NON_FATAL && !uabort) ->
35 progress: goto TRANSFER
36 fi
37 od;
38 DONE:
39 pres_to_use[n]!accept;
40 goto endIDLE;
41 FAIL:
42 pres_to_use[n]!reject;
43 goto endIDLE
44 }

We will do a validation in two separate steps. The file server, session, and presenta-
tion layer processes are all cyclic: they should never terminate. The initial process
and the user processes, however, are terminating, and once they have completed their
execution, the other processes must have reached a well-defined end-state. In the first
validation, therefore, we can try to make sure that the system has no reachable invalid
end-states. We can do this with an exhaustive validation, as follows:

342 USING THE VALIDATOR CHAPTER 14

$ spin -a pftp.ses
$ cc -o pan pan.c
$ pan -w19
full state space search for:

assertion violations and invalid endstates
vector 144 byte, depth reached 451, errors: 0
509179 states, stored

9 states, linked
576192 states, matched total: 1085380

hash conflicts: 369417 (resolved)
(max size 2ˆ19 states, stackframes: 0/23)

unreached in proctype _init:
reached all 12 states

unreached in proctype fserver:
line 29 (state 30)
reached: 29 of 30 states

unreached in proctype session:
line 48 (state 37)
line 94 (state 64)
line 95 (state 65)
line 124 (state 93)
line 128 (state 99)
reached: 94 of 99 states

unreached in proctype present:
line 26 (state 15)
line 44 (state 34)
reached: 32 of 34 states

unreached in proctype userprc:
reached all 17 states

The unreached code in the presentation layer (line 26) indicates that no case was
found in which two subsequent abort messages are received from the user process.
Checking the user process, we can quickly see why that is: the user process does not
allow it. The unreached code in the session layer protocol, however, flags an incom-
pleteness in this first validation test. The unreached lines 48, 94, 95, 124, and line 128
are responses to timeout conditions that were included to allow the session layer to
recover from a sudden loss of communication with its peer process. This possibility,
however, is not modeled as part of the channel behavior and cannot be exercised.

To verify also that these timeout conditions cannot cause havoc, we must revise the
validation model. We can do so by adding a few lines to the initialization code in the
init process given above:

atomic
{ byte any;

chan foo = [1] of { byte, byte };
ses_to_flow[0] = foo;
ses_to_flow[1] = foo

};

SECTION 14.6 SESSION LAYER VALIDATION 343

end: do
:: foo?any,any
od

}

At any time after the initial start-up of the protocol, these extra lines can now be exe-
cuted. The effect is that the two peer session layer processes are disconnected. The
loop at the end removes all the messages that the two session layers produce. The
extension increases the complexity of the test somewhat more, but a bit state space
analysis is still feasible. The result is now

$ spin -a pftp.ses1
$ cc -DBITSTATE -o pan pan.c
$ pan -w29
bit state space search for:

assertion violations and invalid endstates
vector 148 byte, depth reached 456, errors: 0
1686543 states, stored
246135 states, linked

1960294 states, matched total: 3892972
hash factor: 318.326063 (best coverage if >100)
(max size 2ˆ29 states, stackframes: 0/25)

unreached in proctype _init:
line 31 (state 19)
reached: 18 of 19 states

unreached in proctype fserver:
line 29 (state 30)
reached: 29 of 30 states

unreached in proctype session:
line 128 (state 99)
reached: 98 of 99 states

unreached in proctype present:
line 26 (state 15)
line 44 (state 34)
reached: 32 of 34 states

unreached in proctype userprc:
reached all 17 states

Compared to the first test, we have now explored over three times as many states and
effectively reached all relevant protocol states. The hash factor is large enough to be
confident that close to 100% of the reachable system states have been tested within
the memory arena that is available. An exhaustive search would have required at least
1,686,543×148 or 249 Mbytes of memory, four times more than we have used.

THE TEMPORAL CLAIM
In the second validation of the session layer protocol that we undertake here, we con-
sider the temporal claim that was formulated in Chapter 7.

344 USING THE VALIDATOR CHAPTER 14

never {
do
:: !pres_to_ses[n]?[transfer]
&& !flow_to_ses[n]?[connect]
:: pres_to_ses[n]?[transfer] ->

goto accept0
:: flow_to_ses[n]?[connect] ->

goto accept1
od;

accept0:
do
:: !ses_to_pres[n]?[accept]
&& !ses_to_pres[n]?[reject]
od;

accept1:
do
:: !ses_to_pres[1-n]?[accept]
&& !ses_to_pres[1-n]?[reject]
od

}

Since the protocol is symmetric, it suffices to validate this claim for just one value of
n, e.g., zero. The result is as follows:

$ spin -a pftp.ses2
$ cc -o pan pan.c
$ pan
cycle of length 6 (99) 104
pan: accept state in cycle (at depth 99)
pan: wrote pan.trail
full statespace search on behavior restricted to claim for:

assertion violations
and absence of acceptance labels in all cycles

search was not completed
vector 148 byte, depth reached 100, errors: 1

151 states, stored
9 states, linked

16 states, matched total: 176
hash conflicts: 0 (resolved)
(max size 2ˆ18 states, stackframes: 0/4)

An acceptance cycle was detected, which means that the claim can be violated. A
closer look with the simulator can reveal the cause.

$ spin -t -r -s pftp.ses2 # -t: follow trail produced by pan
proc 3 (userprc) line 8, Send transfer -> queue 6 (use_to_pres[1])
proc 5 (present) line 11, Recv transfer <- queue 6 (use_to_pres[1])
proc 5 (present) line 19, Send transfer -> queue 4 (pres_to_ses[1])
proc 7 (session) line 11, Recv 13 <- queue 4 (pres_to_ses[1])
proc 7 (session) line 56, Sent open -> queue 8 (ses_to_fsrv[1])
...
<<<<<START OF CYCLE>>>>>
proc 9 (fserver) line 13, Recv data <- queue 8 (ses_to_fsrv[1])
proc 6 (session) line 101, Send data,0 -> queue 1 (ses_to_flow[0])

SECTION 14.6 SESSION LAYER VALIDATION 345

proc 8 (fserver) line 23, Sent data -> queue 9 (fsrv_to_ses[0])
proc 6 (session) line 100, Recv data <- queue 9 (fsrv_to_ses[0])
proc 7 (session) line 37, Recv data,0 <- queue 1 (flow_to_ses[1])
spin: trail ends after 179 steps
step 179, #processes: 10
...

The validator discovered here that the number of data messages that is exchanged
during a file transfer session is not bounded. This means that the sending of a final
accept or reject message to the presentation layer can be postponed indefinitely,
which is a direct violation of our correctness requirement.

To fix this problem we can try telling the temporal claim to ignore data messages,
that is, to consider only zero-length file transfers.

never {
do
:: !pres_to_ses[0]?[transfer]
&& !flow_to_ses[0]?[connect]
:: pres_to_ses[0]?[transfer] ->

goto accept0
:: flow_to_ses[0]?[connect] ->

goto accept1
od;

accept0:
do
:: !ses_to_pres[0]?[accept]
&& !ses_to_pres[0]?[reject]
&& !ses_to_flow[0]?[data]
od;

accept1:
do
:: !ses_to_pres[1]?[accept]
&& !ses_to_pres[1]?[reject]
&& !ses_to_flow[1]?[data]
od

}

The validation with this new claim proceeds as follows:

$ spin -a pftp.ses3
$ cc -o pan pan.c
$ pan
cycle of length 5 (99) 103
pan: accept state in cycle (at depth 99)
pan: wrote pan.trail
full state space search on behavior restricted to claim for:

assertion violations
and absence of accept states in all cycles

search was not completed
vector 148 byte, depth reached 132, errors: 1

21645 states, stored
9 states, linked

20316 states, matched total: 41970

346 USING THE VALIDATOR CHAPTER 14

hash conflicts: 2293 (resolved)
(size 2ˆ18 states, stackframes: 0/5)

Again, the validator discovered that the correctness requirement can be violated. The
relevant part of the trail is as follows:

$ spin -t -r -s pftp.ses3
...
proc 4 (present) line 19, Send transfer -> queue 3 (pres_to_ses[0])
proc 6 (session) line 42, Recv transfer <- queue 3 (pres_to_ses[0])
<<<<<START OF CYCLE>>>>>
proc 6 (session) line 43, Send reject,NON_FATAL -> \

queue 11 (ses_to_pres[0])
proc 4 (present) line 31, Recv reject,15 <- queue 11 (ses_to_pres[0])
proc 4 (present) line 19, Send transfer -> queue 3 (pres_to_ses[0])
spin: trail ends after 176 steps
...

After a file transfer has started, there can be an unbounded number of conflicting
transfer requests from the remote peer process. Again, processing these requests as
non-fatal rejects can postpone for arbitrarily long the sending of the final accept or
reject message for the active file transfer.

This time it is much harder to modify the temporal claim to remove this pattern from
consideration. An acceptance-state label identifies events as potentially bad. In this
case, however, we can work more effectively with a method for labeling a small set of
events as good and focus on others. The right tool for that is the progress-state label.
If we can rephrase the temporal claim as a correctness requirement on the absence of
non-progress cycles it becomes easier to exclude certain patterns from consideration.

Note that, if we disregard the two patterns discovered earlier, all executions of the ses-
sion layer protocol must terminate. Any cycle that can be identified, therefore, will
become a non-progress cycle and thus a detectable a violation of the correctness
requirements. We label the states DATA_IN and DATA_OUT in the session layer proto-
col as progress states. To exclude the two patterns discovered above, we also label
the data exchanges with the file server as progress states, plus one state in the presen-
tation layer protocol. A new listing of the presentation layer is given below:

proctype present(bit n)
{ byte status, uabort;

endIDLE:
do
:: use_to_pres[n]?transfer ->

uabort = 0;
break

:: use_to_pres[n]?abort ->
skip

od;

TRANSFER:
pres_to_ses[n]!transfer;

CHAPTER 14 BIBLIOGRAPHIC NOTES 347

do
:: use_to_pres[n]?abort ->

if
:: (!uabort) ->

uabort = 1;
pres_to_ses[n]!abort

:: (uabort) ->
assert(1+1!=2)

fi
:: ses_to_pres[n]?accept ->

goto DONE
:: ses_to_pres[n]?reject(status) ->

progress: if
:: (status == FATAL || uabort) ->

goto FAIL
:: (status == NON_FATAL && !uabort) ->

goto TRANSFER
fi

od;
DONE:

pres_to_use[n]!accept;
goto endIDLE;

FAIL:
pres_to_use[n]!reject;
goto endIDLE

}

The validation is straightforward from this point on.

$ spin -a pftp.ses4
$ cc -DBITSTATE -o pan pan.c
$ pan -l -w28
bit state space search for:

assertion violations and non-progress loops
vector 148 byte, depth reached 458, non-progress loops: 0
847134 states, stored

18 states, linked
1104341 states, matched total: 1951493

hash factor: 316.874472 (best coverage if >100)
(size 2ˆ28 states, stackframes: 0/489)

A bit state space analysis completed with good coverage. No non-progress cycles
were discovered, which means that with good probability the correctness require-
ments are met.

FURTHER REDUCTIONS
To confirm the earlier results with an exhaustive validation, we could pursue several
options. Incremental composition and generalization can be used to combine the user
and presentation layer processes into a single environment process to the session
layer. This model may look as follows, appropriately labeled with progress tags:

348 USING THE VALIDATOR CHAPTER 14

/*
* PROMELA Validation Model
* Presentation & User Layer - combined and reduced
*/

proctype present(bit n)
{ byte status;

progress0:
pres_to_ses[n]!transfer ->
do
:: pres_to_ses[n]!abort;

progress1: skip
:: ses_to_pres[n]?accept,status ->

break
:: ses_to_pres[n]?reject,status ->

if
:: (status == NON_FATAL) ->

goto progress0
:: (status != NON_FATAL) ->

break
fi

od
}

The external behavior of this process is indistinguishable from the external behavior
of the two separate processes, with one important exception: the new model is less
well-behaved. The reduced model can spark an arbitrary number of abort messages
while a transfer request is outstanding. If the session layer protocol is correct for this
environment, it must also be correct with respect to the original one, simply because
the original behavior is a subset of the new one. The validation can now be done
exhaustively and produces the following result:

$ spin -a pftp.ses5
$ cc -DMEMCNT=27 -o pan pan.c
$ pan -l -m2000
full state space search for:

assertion violations and non-progress loops
vector 132 byte, depth reached 1783, non-progress loops: 0
553987 states, stored

8 states, linked
798367 states, matched total: 1352362

hash conflicts: 990275 (resolved)
(size 2ˆ18 states, stackframes: 0/325)

memory used: 70872461

The validation run confirms that the correctness requirement of the session layer pro-
tocol is properly met. Had this first reduction been insufficient, further reduction
steps could still be taken to force an exhaustive validation. All interactions of the ses-
sion layer with the file server, for instance, could be removed and replaced with
equivalent nondeterministic choices within the session layer. Similarly, the combined

CHAPTER 14 BIBLIOGRAPHIC NOTES 349

user and presentation layer could be merged into the session layer protocol to produce
a single process that represents the behavior of one protocol session layer entity. The
combinations can be made manually, carefully preserving the equivalence with the
original model, or automatically with an incremental composition method as dis-
cussed in Chapters 8 and 11.

14.7 SUMMARY
Our admiration for programmers who can design and debug a protocol using only
tools developed for sequential systems can only grow after the first experience with an
automated protocol validation system. It is, of course, not really surprising that the
validation runs reported in this chapter have failed to reveal serious errors in the
design from Chapter 7. The errors were certainly present in the initial versions of the
protocol, but were found with SPIN and removed before these final tests were per-
formed. Most of the errors found in the earlier stages of the design were cases of
incompleteness that are very hard to find by manual inspection of the code.

Given a machine of reasonable size, the basic protocols for session control and flow
control can fairly easily be validated with purely exhaustive searches of all reachable
system states. This much is well within the power of the automated tools. The tools
are severely tested by the exception conditions that must be validated: message loss,
duplication errors, and hangups. The increase in complexity makes it impossible to
perform the traditional completely exhaustive validations. Bit state space hashing
proves to be a powerful alternative here. As an example, one test performed for an
earlier version of the session layer protocol generated 15,462,939 system states of 472
bytes each. A full state space that stores all these states would be over 7 Gigabytes
(7,298,507,208 bytes), well beyond what can effectively be stored or processed. On a
machine with 64 Mbytes of memory available for the search, no more than 142,179 of
these states can be stored in a full state space search: a coverage of less than 1%. The
bit state space technique, using the same amount of memory, can accommodate over
250,000,000 states, more than 15 times what is required. With this method we could
effectively increase the coverage of that search from less than 1% to one that, with
high probability, is close to 100%. No other method known to date can do better.

EXERCISES

14-1. 14-1. Validate your favorite protocol with the tools described here.

14-2. 14-2. Develop and implement more specific tools for automating the generalization or incre-
mental composition of PROMELA models (research project).

BIBLIOGRAPHIC NOTES
A detailed validation study as performed in this chapter is rarely documented. The
first automated validations were reported in West and Zafiropulo [1978], though the
analytical power of our tools has grown substantially since then. The validation
method applied in this chapter was originally described in Holzmann [1987b, 1988].
Its capabilities are compared with more conventional approaches to the protocol

350 USING THE VALIDATOR CHAPTER 14

validation problem in Holzmann [1990]. It has been applied to systems that are ordi-
narily well outside the range of exhaustive validation, as reported in Holzmann and
Patti [1989].

