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13.1 INTRODUCTION
To extend the protocol simulator from Chapter 12 with an validator generator, all we
have to do is to activate two command line options from the source listing in Appen-
dix D:

-a, To generate a protocol specific SPIN analyzer
-t, To follow an error trail produced by that analyzer

To do this we have to replace the two dummy routines gensrc() and
match_trail() in Appendix D with real code. To see how the analyzer is used
refer to Section 13.8 or Chapter 14.

The analyzer described here is based on the discussion in Chapter 11. To keep the
code reasonably simple, we will not discuss a complete implementation of the state
vector model. Even without that, it takes a fair amount of code to produce a validator
of good performance. But once the job is done right an efficient validator can be pro-
duced in a matter of seconds, and can be applied to problems of arbitrary complexity.
The validators that are produced by SPIN in this way are among the fastest programs
for exhaustive searching known to date. A full implementation of the state vector
model can secure a still better performance, but that is well beyond the scope of this
book.

The validators can be used in two different modes. For small to medium size models
the validators can be used with an exhaustive state space. The result of all validations
performed in this mode is equivalent to an exhaustive proof of correctness, for the
correctness requirements that were specified (by default, absence of deadlock). For
systems that are larger, the validators can also be used in supertrace mode, with the
bit state space technique as discussed in Chapter 11. In these cases the validations can
be performed in much smaller amounts of memory, and still retain excellent coverage
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298 A PROTOCOL VALIDATOR CHAPTER 13

of the state space. The results of all validations performed in supertrace mode are
superior to any other type of validation performed within the same physical con-
straints of the host machine (e.g., memory size and speed).

To produce an analyzer, the parse tree that is constructed by the SPIN simulator is
translated into a C program, and extended with state space searching modules. The
program that is generated is then compiled stand-alone. When it is executed it per-
forms the required validation. If an error is discovered, the program writes a simula-
tion trail into a file and stops. The simulation trail can be read by the original simula-
tor, which can then reproduce the error sequence and allow the user to probe the cause
of the error in detail.

Below we first discuss the general structure of the protocol analyzers that are gen-
erated. We then give an overview of the routines that extract the protocol specific
information from the SPIN parse tree. Next we discuss the extensions of the simulator
to provide for guided simulations. We conclude with some examples of the usage of
the new tool.

13.2 STRUCTURE OF THE VALIDATOR
Figure 13.1 shows the main components of the analyzers that can be generated.

run()

new_state()

Transition
Matrix

hash()
Variable Size
State Space

uerror()

Figure 13.1 — Structure of SPIN Validators
A procedure called run() allocates memory and prepares all data structures that the
validator will use during the search. It calls a single procedure new_state() to per-
form the actual search. The two main data structures used by this procedure
new_state() are the state space and a large transition matrix that encodes the com-
plete PROMELA validation model. Each statement in the model produces an entry in
this matrix, defining precisely the executability predicate and the effect of the execu-
tion. Every proctype definition contributes entries to this matrix.

The current state of the system is maintained in a vector of values that can grow and
shrink dynamically: a rubber state-vector. PROMELA run statements append new
processes to the state-vector. The rubber state-vector, therefore, fulfills a role that is
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similar to that of the run queue in the simulator scheduler. Procedure new_state()
performs a depth first search of all executable statements in the model. Instead of
selecting just one executable statement from the list of runnable processes, as the
simulator did, the validator’s job is to test the effects of all executable statements, in
all possible interleavings. Before starting the analysis for a new state new_state()
consults the state space, via the hash() function and decides whether the current state
was analyzed before and can be skipped.

If an error is found, procedure uerror() is called to produce an error trail for the
simulator and, unless otherwise specified, analysis stops. An error can be any viola-
tion of the formal correctness requirements, for instance, a local assertion failure or a
global system state in which all processes are permanently blocked.

Finding an inconsistency in the SPIN model and assisting the user in determining its
causes, is done with two different tools: validator and simulator. The rationale behind
this approach is the standard UNIX discipline: each tool we develop should do one
thing, and do it well.

The simulator is designed as an interactive tool. It has a short start-up time and
can give a a detailed look at the working of the protocol.
The validator is a non-interactive tool. It has a longer start-up time, since it
requires the compilation of an intermediate program, but it is optimized for
exhaustive searches.

13.3 THE VALIDATION KERNEL
Procedure new_state() is the core of the analyzer. It controls all executions, moni-
tors progress, and performs the correctness checks. More than half of the runtime is
spend in this routine, with the larger part of the remainder being used up in the calcu-
lation of hash values to access the state space.

The procedure is statically defined in a header file named pangen1.h. Different por-
tions of the code are enabled or disabled depending on the presence or absence of ren-
dezvous communications, temporal claims, acceptance states, or progress states, and
depending on the type of state space storage that is selected. Ignoring, for the time
being, all these options, the plain exhaustive state searching algorithm looks as fol-
lows:

1 new_state()
2 { register Trans *t, *ta;
3 char n, m, ot, lst;
4 short II, tt;
5 short From = now.nr_pr-1;
6 short To = 0;
7 Down:
8 if (depth >= maxdepth)
9 { truncs++;

10 goto Up;
11 }
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12 if (To == 0)
13 { if (hstore((char *)&now, vsize))
14 { truncs++;
15 goto Up;
16 }
17 nstates++;
18 }
19 if (depth > mreached)
20 mreached = depth;
21 n = timeout = 0;
22
23 Again:
24 for (II = From; II >= To; II -= 1)
25 { this = pptr(II);
26 tt = (short) ((P0 *)this)->_p;
27 ot = (unsigned char) ((P0 *)this)->_t;
28 for (t = trans[ot][tt]; t; t = t->nxt)
29 {
30 #include "pan.m"
31 P999: /* jumps here when move succeeds */
32 if (m>n||(n>3&&m!=0)) n=m;
33 depth++; trpt++;
34 trpt->pr = II;
35 trpt->st = tt;
36 if (t->st)
37 { ((P0 *)this)->_p = t->st;
38 reached[ot][t->st] = 1;
39 }
40 trpt->o_t = t; trpt->o_n = n;
41 trpt->o_ot = ot; trpt->o_tt = tt;
42 trpt->o_To = To;
43 if (t->atom&2)
44 { From = To = II; nlinks++;
45 } else
46 { From = now.nr_pr-1; To = 0;
47 }
48 goto Down; /* pseudo-recursion */
49 Up:
50 t = trpt->o_t; n = trpt->o_n;
51 ot = trpt->o_ot; II = trpt->pr;
52 tt = trpt->o_tt; this = pptr(II);
53 To = trpt->o_To;
54 #include "pan.b"
55 R999: /* jumps here when done */
56 depth--; trpt--;
57 ((P0 *)this)->_p = tt;
58 } /* all options */
59 } /* all processes */
60
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61 if (n == 0)
62 { if (!endstate() && now.nr_pr)
63 { if (!timeout)
64 { timeout=1;
65 goto Again;
66 }
67 uerror("deadlock");
68 }
69 }
70 if (depth > 0) goto Up;
71 }

The procedure is called once and does not return until either a complete search is per-
formed or an error found. In this version, without all the trimmings of a full imple-
mentation, the only type of error checked for is an invalid end-state. The main work
is done in two for loops. The first one, on line 24, loops over all currently executing
processes. The second one, on line 28, exhaustively checks all executable statements
in each process. The proctype of the current process is stored in a local variable ot,
and the process state is kept in a local variable tt. These two variables together are
used to index the transition matrix, trans[ot][tt], on line 28. A pointer T points
to the definition of the transition itself: the condition, the effect and the next state.
The execution of the transitions themselves are hidden in a file pan.m that is included
on line 30. It is a simple case switch that records all transitions that are defined in the
system. If a transition is executable, it leads to label P999. If it is unexecutable a
continue is executed that brings us back into the inner loop on line 28.

A successful transition produces a new state that must be analyzed in precisely the
same fashion as the current one. This is where normally a recursion step is executed.
The time and space required for the recursive procedure calls, however, can easily be
avoided if the recursion is replaced with iteration. Let us look at how this is imple-
mented.

Lines 32 to 42 perform some housekeeping to prepare the validator for the analysis of
a newly generated state. The depth count is increased, a pointer is incremented for the
user level stack stptr, which maintains, among others, the execution trail. If the
transition was labeled atomic, line 43 makes sure that the current process will con-
tinue executing in the next step, foregoing options for executions in the other
processes. The default case is invoked on line 46, defining that all currently execution
processes must be considered. The recursion step is replaced on line 48 with a jump
to the label Down.

On the return from the pseudo recursion, with a jump to label Up on line 48, all
relevant local variables are retrieved via the stack pointer stptr, which, if all is well,
points at exactly the location where they were saved before the matching jump to
Down. Then the state vector is restored to its original value by performing a reverse
operation that undoes the effect of the last forward transition that was explored. The
code that does this is hidden in a separate file pan.b that is included on line 48. This
file also contains a case switch, that relies on the pointer to the transition matrix t to
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point the program to the right operation to execute.

The state itself, storing state information about all currently executing processes and
all currently accessible queues and variables, is maintained in a global variable now,
though that is not visible in the body of this procedure.

The label Again, on line 23, with the matching jump on line 65, is used to implement
the timeout recovery mechanism. If the search gets stuck this is first noticed on line
61 by the zero value of variable n. A quick check is then performed to see if the
deadlock is not in fact a valid endstate. If this test fails, the timeouts are enabled and
second attempt is made to perform a transition with a return to label Again. If this
also fails, the error routine uerror() is called, which can trigger the writing of an
error trail and optionally abort the search.

The extensions that are needed to implement the full range of correctness checks dis-
cussed in Chapter 6 triple the size of the algorithm, though in a none too exciting way.
To check temporal claims, for instance, the search alternately executes atomic state-
ments in the model and in the claim. The toggle bit, which determines where to look
for the next statement to execute, is piggybacked onto the variable tau. To implement
rendezvous message passing, a global variable boq (short for ‘‘blocked on queue’’) is
set after every rendezvous send operation. The variable blocks all operations other
than a matching receive operation. Effectively, then, the send-receive handshake
becomes one indivisible step, though the validator performs it as two distinct transi-
tions. The other extensions similarly make the algorithm somewhat harder to read,
but do not change it in a fundamental way. In the discussion we therefore restrict our-
selves mainly to the basic version. A listing of the complete algorithm for exhaustive
validation is given in Appendix E.

13.4 THE TRANSITION MATRIX
The transition matrix shown in Figure 13.1 performs a central role in the search.
Some precautions are taken to make sure that it does not contain any spurious moves
that could slow down the search. It is constructed from elements of the following
type:

typedef struct Trans {
short atom; /* is this an atomic transition */
int st; /* the next state/statement */
int forw; /* index for forward transition */
int back; /* index for return transition */
struct Trans *nxt;",

} Trans;

Every proctype in the original SPIN specification defines a set of entries in the
matrix: one for every control flow state. The following array is used to keep track of
them.

Trans *trans[NPROCS][NSTATES]

The transitions of a process of type 19 for control flow state 90 can be found through
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the pointer

trans[19][90]

Figure 13.2 illustrates a typical use of the matrix elements.

trans[19][90]

atom: 0

st: 51

back: 41

forw: 14

trans[19][51]

atom

st

back

forw

pan.m: switch (t->forw) {
case 1: ...
case 2: ...

case 14: ...

pan.b: switch (t->back) {
case 1: ...
case 2: ...

case 41: ...

Figure 13.2 — Transition Matrix Elements
The first field of a Trans structure is used to label transitions that are atomic. A zero
entry means that the transition is a normal, asynchronous one. Field st defines the
successor state that is reached if a transition is successfully executed. The next field
forw is an index that identifies the right operation to execute. It indexes a switch of
transitions that is generated in the include file pan.m. Similarly, back is an index into
the switch of pan.b that identifies the operation that can undo the effect of the for-
ward transition and restore the state vector to its original state.

Whenever there is a nondeterministic choice of transitions to make, e.g., for SPIN

selection and repetition structures, the options are placed in a linked list that is con-
nected via the transition element’s nxt pointer (not shown in Figure 13.2). To exam-
ine all executable options, the inner loop of new_state() simply walks down the
linked list.

13.5 THE VALIDATOR-GENERATOR CODE
It would seem that all that is left to do to make the analyzer run is to generate the right
transition matrix. Well, not quite. Since we are generating code anyway we can also
generate protocol specific routines for manipulating the queues, instantiating process
instances, and the like. It is a fairly substantial piece of code that generates all this
information, but well worth it.
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MESSAGE CHANNELS
Before discussing the code of the validator generator itself, let us look briefly at the
code that it tries to produce. From the 25 relevant routines that are part of every
analyzer generated, 7 deal with the message channels:

addqueue()
delq()
q_restor()
qsend()
qrecv()
unsend()
unrecv()

The first routine, for instance, implements the PROMELA chan statement, and the
second routine removes a channel when it goes out of scope, that is, when the creating
process has terminated. For every different type of message channel, a separate queue
template is generated. For example,

typedef struct Q1 {
unsigned char Qlen; /* q_size */
unsigned char _t; /* q_type */
struct {

unsigned fld0 : 32;
} contents[1];

} Q1;

defines a queue with one slot and one message field. Two queue fields are predefined:
one specifies the type of the channel and the other the current number of messages
that the corresponding queue stores. The routine q_restor() is used in backward
moves to restore a deleted queue to its last known state, just before a deletion with
qdel(). Messages are appended to a queue with the procedure qsend(into,

fld0, ...). Parameter fld0 indicates the value of the first message parameter.
Procedure qrecv(from, slot, fld, done) retrieves a single message field fld

from slot slot in a queue from. The parameter done is set to one after all fields have
been extracted and the message can be removed from the queue. Note that a single
receive operation can have multiple side-effects by setting variables. The definition
of a procedure that reads one message parameter at a time is a simple general solution
to that problem.

Every action has an undo. The counterparts of send and receive are named unsend()

and unrecv(), which, respectively, remove a complete message from the tail of a
queue or put one back at its head.

PROCESSES
Three routines deal with processes.

addproc()
delproc()
p_restor()

Every type of process is again defined in a different template. For instance, for the
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factorial program we find

typedef struct P1 { /* factorial */
unsigned _t : 2; /* proctype */
unsigned _p : 4; /* state */
int result;
unsigned char child;
int n;
unsigned char p;

} P1;

The process type and the current process state are a standard part of the template. The
required width of the bitfields is calculated by the generator. These first two fields are
used to index the transition matrix. The remaining entries reserve slots for local vari-
ables. The procedure addproc() appends one of these templates to the state vector,
and delproc() removes it. Procedure p_restor() is used in backward moves to
restore a deleted process to its last known state.

STATE SPACE MAINTENANCE
The state space can be accessed in two different ways, selectable by a preprocessor
directive named BITSTATE. Unless this name has been defined, a full state space is
constructed with a traditional exhaustive search method. To access the state space the
routine hstore() is used. Seen from procedure new_state() this looks as follows:

if (hstore((char *)&now, vsize))
{ truncs++;

goto Up;
}
nstates++;

The variable vsize gives the current size of the state vector in bytes. The global now
points to it. If hstore() returns the boolean value false, the state is new and must
be analyzed. As a side effect of hstore(), the state is also stored in full in the state
space. The next time that this same state is encountered the routine will return the
boolean value true, which means that the state can be skipped. Internally hstore()

uses a fast hash function called s_hash().

If the name BITSTATE is explicitly defined during compilation, the more memory
efficient supertrace, bit state space memory routines are used. They invoke a double
value hashing function called d_hash(). The routine uses the state vector to calculate
two different hash values (see Chapter 11, page 230). A check is then made on the
two bit positions in the state space, and if a double match is found, the state is
assumed to have been analyzed before. This is how it works:
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d_hash((unsigned char *) &now, vsize);
j3 = (1<<(J1&7)); j1 = J1>>3;
j4 = (1<<(J2&7)); j2 = J2>>3;
if ((SS[j2]&j3) && (SS[j1]&j4))
{ truncs++;

goto Up;
}
SS[j2] |= j3; SS[j1] |= j4; /* storage */
nstates++;

First d_hash() is called to produce two hash values for the first vsize bytes of the
state vector, stored in now. The values are written into the integer global variables J1,
and J2. The next few operations take the low order 3 bits from J1 and J2, using the
bit mask 7, and assign them to j3 and j4. The remaining bits are shifted down by
three bit positions and assigned to j1 and j2. The test

if ((SS[j2]&j3) && (SS[j1]&j4))

selects the calculated bit positions and only if both bits are on a match is assumed.
The last line sets the two bits with a binary OR operation, to secure a future match on
the same state. It is the only storage operation performed: a savings in memory of
(8×vsize−2) bits per state, assuming 8 bits per byte.

THE REMAINING ROUTINES
The remainder of the validation routines is fairly straightforward. There is a routine
endstate() to determine if the current combination of process states is a valid end-
state, by comparing them with the known stop states in each process. A routine
assert() checks user defined assertions and produces an error trail if one is violated.
There is a routine r_ck() for every process type in the system that performs the
reachability check after the depth-first search by verifying that every relevant control
flow state in the specification has indeed been reached by at least one of the executing
processes. Two main routines deal with the transition matrix, settable() and
retrans(). The first sets the table (matrix) to its default contents as produced by the
generator, using the parse tree structure. The second quickly goes through the struc-
ture to optimize it a little for the validation task. Nested choices, for instance, are
rewritten into single choices, without, of course, violating the semantics of PROMELA.

13.6 OVERVIEW OF THE CODE
The code for the generator is included in four C files. At the time of writing, a count
of these routines produced:

$ wc pangen[1-4].c
424 1341 8812 pangen1.c
501 1784 13595 pangen2.c
102 303 1659 pangen3.c
170 583 4024 pangen4.c

Three header files contain fixed code that is included with every program generated:
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$ wc pangen[1-2].h
910 3363 22276 pangen1.h
127 528 3389 pangen2.h
108 348 2151 pangen3.h

And finally, one more file is used to implement the guided simulation option.

$ wc pangen5.c
158 489 3292 pangen5.c

The complete code for the exhaustive validation option can be found in Appendix E.
Here we highlight only the major parts.

The routine that is actually called by the simulator, if the command line option -a is
given, is called gensrc(). It is included in pangen2.c. It starts by creating the five
target files pan.[chtmb] and copying some code from pangen2.h into them. It
then calls procedure putproc() once for every basic proctype that was parsed:
once for the description of the init process, stored in the simulator’s run queue, and
once for every process in the ready queue. These calls generate all the code for the
transition matrix and for the case switches with the transition statements. The remain-
ing procedures to make the analyzer run are mostly included in the file pangen1.c

and are invoked in calls at the close of gensrc().

The actual work of translating portions of the parse tree into C code happens in just
two procedures: putstmnt() and undostmnt(). There is no magic here, just the
generation of code, with some care taken to reduce the runtime requirements of vali-
dations. The state numbers are given by the seqno field in parse tree elements: every
basic statement is assigned a unique sequence number by the parsing routines, as
explained in Chapter 12. A set of transitions is assigned to every state to index the
case switches. The transitions are numbered separately (note that there are likely to
be more transitions than states if selection structures are used), and they are stored in
the transition matrix.

Every sequence in a process body results in a call on procedure putseq(). The
sequence is translated one statement at a time in a largely arbitrary order. Every ele-
ment in the sequence that has been translated is labeled DONE in the status field. For
the transitions the pointers between elements are followed, skipping as many inter-
mediate steps as possible, using the routine huntini(). The actual code that repro-
duces the effect of a forward transition is generated by putstmnt(), listed in
pangen2.c. The code that can undo the effect, when the depth first search unwinds,
is generated by undostmnt(), listed in pangen4.c. Rather then giving a detailed
expose of all the code being generated, let us consider the translation of one specific
type of statement: an assignment.

The routine putstmnt() contains code which, after macro substitutions, amounts to
the following:
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case ASGN: fprintf(fd, "(trpt+1)->oval = ");
putstmnt(fd, now->lft,m,pid);
fprintf(fd, ";\n\t\t");
putstmnt(fd,now->lft,m,pid);
fprintf(fd," = ");
putstmnt(fd,now->rgt,m,pid);
break;

Given the parse tree for the SPIN assignment

nips = 12+3*crunch;

this is translated into the sequence

case 34: (trpt+1)->oval = now.nips;
now.nips = (12 + (3 * ((P1 *)this)->crunch));
m = 3; goto P333;

assuming that 34 is the number in the transition matrix assigned to the current
transition, nips is a global variable, a permanent part of the state vector now, and
crunch is a local variable that is accessible via the predefined pointer to the template
of the current process in the state vector this. The first line is a backup of the old
value of global nips in a special field of the stack that is used to organize the search
in procedure new_state(). There is an offset of 1 to account for the fact that
officially we do not know yet if the transition is going to be executable or not. Only if
the execution is executable is the stack pointer increased, and the backup value will be
in the right place for the undo operation.

The code for the generation of the matching undo operation looks as follows:

case ASGN: putstmnt(tb, now->lft, m, pid);
fprintf(tb, " = trpt->oval");
checkchan(now->rgt, m, pid);
break;

which for the same statement produces this code

case 28: now.nips = trpt->oval;
goto R333;

assuming again that 28 is the index assigned to the current undo operation in the tran-
sition matrix. The additional call on checkchan() in the undo code above is to
make sure that no channels were created as a side effect of the assignment. If so,
these channels are to be deleted again in the reverse transition.

13.7 GUIDED SIMULATION
The last extension to the simulator source code to be discussed is the implementation
of procedure match_trail(). The code can be found in file pangen5.c. It looks for
the simulation trail in file pan.trail, where the validator puts it. In its basic form,
the trail has the following format:
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0:0:1
1:0:2
2:0:3
3:0:4
4:0:5
5:0:6
6:0:8
7:3:15

Each line specifies a transition in three integer fields, separated by colons. The first
field is a step number, counting up from zero to whatever the length of the error trail
may be. The second field is the process number, with 0 for the init process, 1 for
the first process that was started in a run statement, and so on. The last number on
each line of the error trail identifies the state to which the process moves. The
simulator’s job is to follow the trail and touch upon all states listed. If, for now, we
omit error recovery, temporal claim processes, and the treatment of stop states, the
code looks as follows:

1 match_trail()
2 { FILE *fd;
3 int i, pno, nst;
4
5 if (!(fd = fopen("pan.trail", "r")))
6 { printf("spin -t: cannot find ‘pan.trail’\n");
7 exit(1);
8 }
9 Tval = 1; /* timeouts may be part of the trail */

10 while (fscanf(fd, "%d:%d:%d\n", &depth, &pno, &nst) == 3)
11 { i = nproc - nstop; /* number of running procs */
12 for (X = run; X; X = X->nxt)
13 if (--i == pno) /* find process pno */
14 break;
15 lineno = X->pc->n->nval;
16 do /* bring it to state nst */
17 { X->pc = d_eval_sub(X->pc, pno, nst);
18 } while (X && X->pc && X->pc->seqno != nst);
19 }
20 printf("spin: trail ends after %d steps\n", depth);
21 wrapup();
22 }

After opening the trail file (lines 5-8), one directive at a time is read from the trail
(lines 10). The right process is located (lines 12-14), and it is executed until the right
state is reached (lines 16-18).

A stop state is identified by the new state 0, a non-existing state. It is executed as a
removal of the process that was identified. The full code for match_trail() in
Appendix E has extra checks to prepare it for cases where the validation model is
unable to follow the trail, for instance if the model was changed since the trail was
written. In these cases the simulator will report, for example,



310 A PROTOCOL VALIDATOR CHAPTER 13

step 23: lost trail (proc 4 state .13)

giving a rough indication where the simulation failed. In this case an inconsistency
was discovered in step 23, just before process 4 reached state 13.

One case in which the simulator may lose track of the simulation trail, in a syntacti-
cally correct validation model, is illustrated by the following example.

do
:: (m >= N-1) -> break
:: (m < N-1) -> m = m - 1
:: (m < N-1) -> m = m - 1; n = n + 1
od

The two almost equal execution paths may, with the current implementation of the
simulator, lead to an ambiguous trail. The problem can be avoided straightforwardly,
by removing the ambiguity:

do
:: (m >= N-1) -> break
:: (m < N-1) -> m = m - 1

if
:: skip
:: n = n + 1
fi

od

13.8 SOME APPLICATIONS
The analysis option is invoked from the original simulator with the flag -a, for
instance, as follows:

$ spin -a factorial

At this point, typically within a second, we have generated a program that consists of
five separate C files: a header file, the two case switches with forward and backward
transitions, a main file with the main C routines, and a file with the transition matrix
and some related routines.

$ wc pan.?
55 197 1161 pan.b # backward moves

731 2159 14822 pan.c # c routines
108 409 2526 pan.h # header
120 482 2925 pan.m # forward moves
129 377 2580 pan.t # transition matrix

1143 3624 24014 total

The program can be compiled in two different ways. The default

$ cc -o pan pan.c

generates an analyzer that constructs a full state space, ruling out any chance of
incompleteness. It provides 100% coverage, unless it runs out of memory. Option-
ally, a more frugal supertrace validator can be generated with the command
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$ cc -DBITSTATE -o pan pan.c

In either case, the validation is started by typing

$ pan
pan: deadlock
pan: wrote pan.trail
...etc

If the validator finds an error it writes the simulation trail. The trail is used with the
simulator in any of the modes discussed in Chapter 12, for instance with the -s

option:

$ spin -t -s factorial
....etc.

where the new -t flag will tell the simulator to follow the trail in pan.trail rather
than performing a random simulation.

Consider the following PROMELA version of Lynch’s protocol, discussed in Chapters
2 and 5.
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1 #define MIN 9 /* first data message to send */
2 #define MAX 12 /* last data message to send */
3 #define FILL 99 /* filler message */
4
5 mtype = { ack, nak, err }
6
7 proctype transfer(chan chin, chout)
8 { byte o, i, last_i=MIN;
9

10 o = MIN+1;
11 do
12 :: chin?nak(i) ->
13 assert(i == last_i+1);
14 chout!ack(o)
15 :: chin?ack(i) ->
16 if
17 :: (o < MAX) -> o = o+1 /* next */
18 :: (o >= MAX) -> o = FILL /* done */
19 fi;
20 chout!ack(o)
21 :: chin?err(i) ->
22 chout!nak(o)
23 od
24 }
25
26 proctype channel(chan in, out)
27 { byte md, mt;
28 do
29 :: in?mt,md ->
30 if
31 :: out!mt,md
32 :: out!err,0
33 fi
34 od
35 }
36
37 init
38 { chan AtoB = [1] of { mtype, byte };
39 chan BtoC = [1] of { mtype, byte };
40 chan CtoA = [1] of { mtype, byte };
41 atomic {
42 run transfer(AtoB, BtoC);
43 run channel(BtoC, CtoA);
44 run transfer(CtoA, AtoB)
45 };
46 AtoB!err,0 /* start */
47 }

A few integer data messages are inserted into the system to allow us to look at at least
a few message exchanges. We have also added a process type to model the expected
behavior of the communication channel: randomly distorting messages. We can
simulate the behavior of the system with the old simulator code, for instance
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$ spin -s lynch
proc 0 (_init) line 46, Send err,0 -> queue 1 (AtoB)
proc 1 (transfer) line 22, Send nak,10 -> queue 2 (chout)
proc 2 (channel) line 31, Send nak,10 -> queue 3 (out)
proc 3 (transfer) line 14, Send ack,10 -> queue 1 (chout)
...etc.

This may or may not hit the assertion violation, depending on how the nondetermin-
ism is resolved at each step.

For a validation of the same specification, we generate and compile the validation pro-
gram, let’s assume in supertrace mode, as follows:

$ spin -a lynch
$ cc -o pan pan.c

We now have an executable program called pan. To see what options it accepts to
perform the search, we can try

$ pan -?
unknown option
-cN stop at Nth error (default=1)
-l find non-progress loops
-mN max depth N (default=10k)
-wN hash-table of 2ˆN entries (default=18)

We can, for instance, set the maximum search depth (the size of the backtrace stack)
to another value than the default of 10,000 steps, or we can change the size of the hash
table.

With full state space storage, the size of the hash table should be chosen larger
than or equal too the total number of reachable states that is expected, to avoid a
serious time penalty for the resolution of the hash collisions (see Chapter 11).
In supertrace mode the size of the hash-table is equal to the number of bits in the
state space, so the -w flag really selects the actual size of the state space that is
used for the search. By default this state space is set to 2ˆ22 = 4,194,304 bits =
524,288 bytes. The size of the state space determines the maximum number of
states that can be analyzed. For the default case this is roughly 4,194,304/2 =
2,097,152 states, independent of the size of the state vector. (In this implementa-
tion two bits are used for every state stored.)

The coverage of the search will be smaller as we get closer to that limit. We discuss
an indicator of that coverage, the hash factor, with a few other examples later. We
first try the validator in exhaustive mode.
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$ pan
assertion violated (i==(last_i+1))
pan: aborted (at depth 53)
pan: wrote pan.trail
full state space search for:

assertion violations and invalid endstates
search was not completed
vector 56 byte, depth reached 53, errors: 1

58 states, stored
2 states, linked
1 states, matched total: 61

hash conflicts: 0 (resolved)
(size 2ˆ18 states, stackframes: 0/16)

At the end of each run the validator prints the numbers of states stored, linked and
matched. Stored states are states that have been added to the state space, either in full
or in compressed form as two bits, depending on how the program was compiled.
Linked states are states that were encountered within an atomic sequence, no state
space checks are performed on them. Matched states are states that were analyzed
and later revisited.

The validator found an error that is documented in the file pan.trail. We can now
feed back this error trail to the simulator to look precisely at what goes on. For
instance:

$ spin -t -s -r lynch
proc 0 (_init) line 46, Send err,0 -> queue 1 (AtoB)
proc 1 (transfer) line 21, Recv err,0 <- queue 1 (chin)
proc 1 (transfer) line 22, Send nak,10 -> queue 2 (chout)
proc 2 (channel) line 29, Recv nak,10 <- queue 2 (in)
proc 2 (channel) line 32, Send err,0 -> queue 3 (out)
proc 3 (transfer) line 21, Recv err,0 <- queue 3 (chin)
proc 3 (transfer) line 22, Send nak,10 -> queue 1 (chout)
proc 1 (transfer) line 12, Recv nak,10 <- queue 1 (chin)
proc 1 (transfer) line 14, Send ack,10 -> queue 2 (chout)
....
proc 3 (transfer) line 21, Recv err,0 <- queue 3 (chin)
proc 3 (transfer) line 22, Send nak,99 -> queue 1 (chout)
proc 1 (transfer) line 12, Recv nak,99 <- queue 1 (chin)
spin: "lynch" line 13: assertion violated
#processes: 4

_p = 3
proc 3 (transfer) line 11 (state 15)
proc 2 (channel) line 28 (state 6)
proc 1 (transfer) line 13 (state 3)
proc 0 (_init) line 47 (state 6)
4 processes created

The simulator run can be repeated with different flags, e.g., printing variable values
and process states, until the cause of the error is determined and can be repaired.
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13.9 COVERAGE IN SUPERTRACE MODE
The coverage of the search in supertrace mode is determined by the number of hash
collisions that occur. This number, of course, is usually unknown. It can be deter-
mined by comparing a run with full state storage to a run with a bit state space, but
this is not always feasible. The number of hash collisions, however, depends criti-
cally on the ratio of the size of the hash-table, i.e., the number of bits in the state
space, and the number of states that is stored. We call this factor the hash factor. It is
calculated by the validator after each run as the size of the hash-table divided by the
number of states stored. A high number (more than 100) correlates with good cover-
age. Low numbers (near 1) imply poor coverage.

Since we store two bits per state in supertrace mode, the hash factor can be anywhere
from 2ˆN up to and including 0.5, where N can be set by the user to grab the maximum
amount of memory that is available on the target machine. (For full state space
storage the lower limit on the hash factor is zero.) By empirical testing with full and
bit state space runs it can be confirmed that a hash-factor of 100 or more virtually
guarantees a coverage of 99% to 100% of all reachable states. As an example, Table
13.1 gives the results of tests with a protocol model that has 334,151 reachable states.

The original run in this case was the full state space version, using 45.6 Mbyte of
memory. It stored all states and resolved a total of 66,455 hash conflicts on the way.
The run was repeated, first with a supertrace validation using the flag -w25, giving a
hash factor of 100.9 and a coverage of 99.45%. By virtue of the double bit hash func-
tion, the number of hash conflicts is substantially lower than in the first run. The pre-
cise number can be found by subtracting the number of reached and stored states in
the first run from the number of reached (but not stored) states in the second run. In
each of the next three supertrace validations we halved the hash factor by using the
flags -w24, -w23, and -w22. The last run uses no more than 6.3 Mbyte of memory, of
which 6 Mbyte, in both the full state space storage version and the supertrace version,
is used for storing the backup trail which was 300,000 steps long for all runs of this
test protocol. (This also explains why the amount of memory required does not pre-
cisely half each time the argument to the -w flag is decremented.)

Table 13.1 – Correlation between Hash Factor and Coverage
_ _____________________________________________________________________________ ____________________________________________________________________________

Search Hash Factor States Stored Hash Collisions Memory Used Coverage_ ____________________________________________________________________________
exhaustive — 334,151 66,455 45.6 Mb 100%
supertrace 100.9 332,316 1,835 9.9 Mb 99.45%
supertrace 50.9 329,570 4,581 7.9 Mb 98.62%
supertrace 25.7 326,310 7,841 6.9 Mb 97.65%
supertrace 13.0 322,491 11,660 6.3 Mb 96.51%_ ____________________________________________________________________________

For comparison, a run of the full state space storage method that is restricted to 6.3
Mbyte of memory to store its state space, predictably, gets less coverage. The
exhaustive search effectively degrades into an uncontrolled partial search, as illus-
trated in Table 13.2.
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Table 13.2 – Coverage of Partial Searches
_ _____________________________________________________________________________ ____________________________________________________________________________

Search Hash Factor States Stored Hash Collisions Memory Used Coverage_ ____________________________________________________________________________
exhaustive — 83,961 389,671 6.3 Mb 25.12%
supertrace 13.0 322,491 11,660 6.3 Mb 96.51%_ ____________________________________________________________________________

The bit state space is clearly the method of choice here.

13.10 SUMMARY
Many automated validation tools require considerable effort from the user to translate
a validation model into the low level code that is used to run the validator. The
interpretation of error reports produced by those tools similarly can require consider-
able human ingenuity. With the simulator and validator generator SPIN, and the vali-
dation language PROMELA, we have tried to provide a high level design environment
in which everything from simple protocols, up to complete designs for distributed
message passing systems can be thoroughly tested and debugged before they are
implemented. These tools can help us to deal effectively with the notoriously difficult
problems of asynchrony and concurrency. The tools are portable, powerful, and
efficient.

EXERCISES

13-1. 13-1. Consider how the code must be changed to replace the depth-first search order with
breadth-first. What are the memory requirements?

13-2. 13-2. Modify the code to optimize the implementation of send and receive routines, and meas-
ure its effect.

13-3. 13-3. Add an option to SPIN for restricting the validation runs to ‘‘fair’’ executions. This
option is based on the assumption of a ‘‘fair process scheduler.’’ This means that any
process that can execute a statement is assumed to be enabled to do so within finite time.
All infinite executions (cycles) that violate this fairness assumption can be ignored. All
non-progress loops or acceptance cycles that violate this assumption should similarly be
ignored. Hint: perform an extra check before reporting any error in cyclic sequences.

13-4. 13-4. (E.A. Emerson - P. van Eijk) Implement a method that can give a better prediction of the
coverage of partial supertrace validations. Do this by starting a supertrace validation by
selecting 1000 states at random from the state space. (How?) Store those full states in a
separate lookup table and check during the supertrace validation how many of those 1000
states are reached. The fraction of the states reached is an indication of the coverage.
How reliable is the estimate? How expensive?

13-5. 13-5. Modify the validator generator to allow for the automatic generation of protocol imple-
mentations from PROMELA code. Note that C code is already generated for all transitions
and actions. Replace the search procedure new_state() with a scheduler, as used in the
simulator code (Chapter 12), and allow for certain channels to be identified as special
device channels (for example, files) that can be linked to C library routines that access
the raw I/O channels. Your solution need not contain more than two pages of code.
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BIBLIOGRAPHIC NOTES
The validator described has several predecessors of varying scope and performance.
For those interested, the papers Holzmann [1984a, 1985, 1988] document the more
significant changes. The last of these papers contains a detailed explanation of the
state vector model and the bit state space method. The method described in
Holzmann [1988] is the only version from this sequence that achieves a better perfor-
mance, in terms of runtime and memory usage, than the method described here. It
requires substantially more code to implement.


