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12.1 INTRODUCTION
Without the proper tools it may be possible to design a correct protocol, but in most
cases it will be impossible to formally establish its correctness with any measure of
reliability. So far, we have occupied ourselves mainly with the development of a
design discipline based on the usage of formal validation models. In this chapter we
extend this discipline with a software tool for simulating the behavior of validation
models written in PROMELA. The tool is called SPIN, which is short for: simple
PROMELA interpreter1 . SPIN can simulate the execution of a validation model by inter-
preting PROMELA statements on the fly. It can be used on either partial or complete
protocol designs, at any level of abstraction. It can quickly tell us whether or not we
are on the right track with a design and as such it can be a valuable design tool.

The program that we develop in this chapter will not try to validate correctness
requirements. That is a task for a validator (Chapter 13). A small exception to that
rule is made for PROMELA assert statements, since the corresponding requirements
are validated as a mere side-effect of their execution. The validation of non-progress
cycles, invalid end-states, and temporal claims, however, is outside the scope of a
simulator. The complete program for the simulator contains about 2000 lines of text.
It includes a lexical analyzer, a parser, and a process scheduler. It does require a fair
amount of explanation and some familiarity with C and UNIX to get through this
chapter. But, rest assured, it is not necessary to understand the details of the imple-
mentation to be able to use the simulator. Below we first discuss the general structure
and the type of output the simulator can generate. Then we discuss a small version of
the program, only for evaluating PROMELA expressions, and show how it works.
__________________
1. The terms simulator, interpreter, and evaluator are used as synonyms in this chapter.
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Finally, we extend this program into a complete interpreter, by adding the missing
pieces one by one. In the next chapter SPIN is extended with an option for performing
fast automated protocol validations. A source listing for the final version of SPIN can
be found in Appendices D and E.

12.2 SPIN – OVERVIEW
To build the interpreter we rely on the UNIX programming tools yacc, lex, and make.
A casual familiarity with these tools is therefore assumed. We concentrate here on
what the tools can do for us, rather than explain how they work inside. In case of
emergency consult a UNIX manual or refer to the Bibliographic Notes at the end of
this chapter for pointers to other literature that may be helpful.

A SAMPLE SIMULATION RUN
Consider the example program from Chapter 5 for calculating the factorial of a posi-
tive integer number.

proctype fact(int n; chan p)
{ int result;

if
:: (n <= 1) -> p!1
:: (n >= 2) ->

chan child = [1] of { int };
run fact(n-1, child);
child?result;
p!n*result

fi
}
init
{ int result;

chan child = [1] of { int };

run fact(12, child);
child?result;
printf("result: %d\n", result)

}

Running the analyzer on this program produces the following output:

$ spin factorial
result: 479001600
13 processes created

where $ is a UNIX system prompt. And fortunately,

12*11*10*9*8*7*6*5*4*3*2*1 = 479001600

Running the simulator in verbose mode gives us a little more information about the
run, for instance by printing all message transmissions, with the number of the pro-
cess performing them, the contents of the message being sent, and the name of the
destination channel.
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$ spin -s factorial
proc 12 (fact) line 5, Send 1 -> queue 12 (p)
proc 11 (fact) line 10, Send 2 -> queue 11 (p)
proc 10 (fact) line 10, Send 6 -> queue 10 (p)
proc 9 (fact) line 10, Send 24 -> queue 9 (p)
proc 8 (fact) line 10, Send 120 -> queue 8 (p)
proc 7 (fact) line 10, Send 720 -> queue 7 (p)
proc 6 (fact) line 10, Send 5040 -> queue 6 (p)
proc 5 (fact) line 10, Send 40320 -> queue 5 (p)
proc 4 (fact) line 10, Send 362880 -> queue 4 (p)
proc 3 (fact) line 10, Send 3628800 -> queue 3 (p)
proc 2 (fact) line 10, Send 39916800 -> queue 2 (p)
proc 1 (fact) line 10, Send 479001600 -> queue 1 (p)
result: 479001600
13 processes created

The column with the message value now implicitly gives us a running count of the
factorial being computed. If still more information is needed, we can also run the
simulator with additional flags to print, for instance, message receptions or the values
of variables. But the above example suffices for now.

12.3 EXPRESSIONS
One specific function that the simulator must perform is the evaluation of expressions.
In a statement such as

crunch!data(3*12+4/2)

the simulator must evaluate three expressions:
The value of the destination crunch
The value of the message type data and
The value of the argument 3*12+4/2

The evaluation of expressions may seem insignificant at first, but since PROMELA is
founded on the concept of executability, the evaluation of statements in general is
really at the core of the simulator. To keep things simple, let us therefore begin with a
small program that can do no more than evaluate PROMELA expressions.

We have to tell our program what valid expressions look like and how they should be
evaluated. The first issue calls for a grammar specification. If we ignore variable
names for a while, the simplest form of expression is a number, say an integer con-
stant. We write a constant as a series of one or more digits, where a digit is any sym-
bol in the range ’0’ to ’9’. If we formalize this we can write

digit : ’0’ | ’1’ | ’2’ | ’3’ | ’4’
| ’5’ | ’6’ | ’7’ | ’8’ | ’9’

The term we are defining is on the left side of the colon, and the defining symbols are
on the right side where the vertical bar ’|’ is used to separate alternatives. Recur-
sively then, we can define a constant as a series of one or more digits, as follows:
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const : digit
| digit const

And, similarly, we can specify that a simple expression is just a number by writing

expr : const

It is now easy to tag on more interesting types of expressions. From any two valid
expressions we can make another valid one by adding, subtracting, multiplying, or
dividing them. Recursively again, we define

expr : const
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| ’(’ expr ’)’

The last line is for good form: if 2+5 is a valid expression, then so is (2+5). It also
allows us to force the order of evaluation of subexpressions, but more about that later.

Formally, what we have defined here are three production rules. On the left side of
the rule (before the colon) we write the phrase we want to define. On the right side
we write a number of alternative ways in which the phrase can be constructed,
separated by vertical bars. Quoted characters are called literals. Names written in
capitals are called terminals or tokens. Everything else is called a non-terminal and
must be defined, that is, it must occur somewhere on the left side of a production rule.
A lexical analyzer is used to recognize the terminals and literals and pass them on to a
parser. The parser can then restrict itself to checking the grammar, and building a
‘‘parse tree.’’ This general structure is illustrated in Figure 12.1.

PROMELA

Specification

Lexical

Analyzer
Parser Scheduler

Simulation

Output

Figure 12.1 — General Structure of the Simulator
The scheduler evaluates the program by walking down the parse tree, evaluating its
nodes in accordance with the semantics of the language. So it is important that the
parser delivers a tree structure to the scheduler that is connected in such a way that it
can be evaluated on the fly. But, more about the parser and the scheduler later; let us
first look at the lexical analyzer.

A first specification of the lexical analyzer is fairly straightforward to define with the
UNIX tool lex. In fact, with lex, it is easy to consider numbers a special class of token
named CONST (uppercase, because it is now a terminal), with their numeric value
attached as an attribute. In this way the grammar specification can assume the
existence of the number tokens, rather than having to parse and check them for syn-
tax. This is what the specification of the lexical analyzer looks like. We call this first
version of the program spine (SPIN expression evaluator). As always, the line
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numbers are not part of the program text.

1 /***** spine: lex.l *****/
2
3 %{
4 #include "spin.h"
5 #include "y.tab.h"
6
7 int lineno = 1;
8 %}
9

10 %%
11 [ \t] { /* ignore white space */ }
12 [0-9]+ { yylval.val = atoi(yytext); return CONST; }
13 \n { lineno++; }
14 . { return yytext[0]; }

The program skips over white space (line 11), counts newlines (line 13), calculates
the value of sequences of digits (line 12) and returns it as part of a token of type
CONST. Everything else is passed on as a literal (line 14), i.e., as a single character.
We rely on yacc to produce the definition of the name CONST. It is contained in the
header file y.tab.h that is included on line 5. But before we discuss the input for
yacc, we have to go back briefly to the grammar definition.

We still have to define what an expression such as 2+5*3 means. As far as our pro-
gram is concerned, it could equally well mean either (2+5)*3 or 2+(5*3). The con-
vention is that multiplication and division have a higher precedence than addition and
subtraction, which means that the second interpretation is the correct one. We will
see below how these precedence rules can be stated formally in a grammar
specification.

All rules and definitions given so far can be expressed with the UNIX parser generator
yacc. A complete yacc specification for the grammar defined so far looks as follows:
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1 /***** spine: spin.y *****/
2
3 %{
4 #include "spin.h" /* defines what Nodes are etc */
5 %}
6
7 %union{ /* defines the data type of */
8 int val; /* the internal parse stack */
9 Node *node;

10 }
11
12 %token <val> CONST /* token CONST has a value */
13 %type <node> expr /* expressions produce nodes */
14
15 %left ’+’ ’-’ /* left associative operators */
16 %left ’*’ ’/’ /* idem, highest precedence */
17 %%
18
19 /** Grammar Rules **/
20
21 program : expr { printf("= %d\n", eval($1)); }
22 ;
23 expr : ’(’ expr ’)’ { $$ = $2; }
24 | expr ’+’ expr { $$ = nn( 0, ’+’, $1, $3); }
25 | expr ’-’ expr { $$ = nn( 0, ’-’, $1, $3); }
26 | expr ’*’ expr { $$ = nn( 0, ’*’, $1, $3); }
27 | expr ’/’ expr { $$ = nn( 0, ’/’, $1, $3); }
28 | CONST { $$ = nn($1, CONST, 0, 0); }
29 ;
30 %%

Parts of this specification will look familiar. Lines 23 to 29 define the structure of
expressions, and lines 15 and 16 define the precedence rules. Line 12 defines CONST
to be a token with an attribute of type val. Line 21 defines that, in this version, we
expect a PROMELA program to consist of a single expression.

There are also some new phrases. Line 13, for instance, contains the definition for the
internal representation of an expression: a data structure named node. We use yacc to
build a parse tree of a PROMELA program, or in this case a parse tree of an expression.
For example, parsing the expression 2+5*3 produces the tree shown in Figure 12.2.
The parse tree defines the structure of the program and will help us later to determine
how it is to be interpreted.

The yacc file is used to generate what is called an LALR(1) parser that can build the
tree in Figure 12.2. The parser scans its input in one pass from left-to-right. It builds
a rightmost derivation in reverse, using at most one look-ahead token. Each node in
the parse tree is represented by a data structure that is defined in the include file
spin.h, on lines 3 to 7. The structure is referred to in spin.y on lines 9 and 13.
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Figure 12.2 — Parse Tree for 2+5*3

1 /***** spine: spin.h *****/
2
3 typedef struct Node {
4 int nval; /* value attribute */
5 short ntyp; /* node type */
6 struct Node *lft, *rgt; /* children parse tree */
7 } Node;
8
9 extern Node *nn(); /* allocates nodes */

10 extern char *emalloc(); /* allocates memory */
11 extern void exit();

We have used only binary arithmetic operators so each node in the tree needs to point
to at most two descendants. In spin.h these are called lft and rgt, two pointers to
structures of type Node. The definition of a Node also contains a field for storing the
node type, which can be an operator such as ’+’, and ’*’, or it can be a terminal
node of type CONST. Terminal nodes, of course, have no descendants (cf. Figure
12.2), but they do have an attribute of type nval which is used to store the numerical
value of the constant calculated by the lexical analyzer and passed on to the parser in
the yylval.val field of the token (line 12 of lex.l).

Now, back to the parser. Whenever a subexpression is recognized it is remembered in
a structure of type Node. In our example we use the function nn() to prepare such a
structure. Its type is declared in spin.h on line 9. The definition of the procedure
itself looks as follows:
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Node *
nn(v, t, l, r)

Node *l, *r;
{

Node *n = (Node *) emalloc(sizeof(Node));
n->nval = v;
n->ntyp = t;
n->lft = l;
n->rgt = r;
return n;

}

The routine allocates memory for a new node in the parse tree, relying on emalloc()

to check for error conditions and it returns a pointer to the initialized structure. For
instance, when expression 5*3 is parsed, line 28 in spin.y is invoked twice, once for
5, once for 3. Each call produces a sub-expression of type CONST that is passed to line
26. The nodes of type CONST have no descendants, but the attribute fields are set to
the value of the constant. The value produced by lex.l is available in a predefined
parameter named $1, where the 1 refers to the first field in the production rule on line
28. In this case there is only one field on the right side of that rule, so $1 is also the
only valid parameter. The type of the field is an integer in this case, as defined on
lines 8 and 12.

On line 26 a new node is constructed of type ’*’ with the two sub-expressions of
type CONST as descendants. Arithmetical operators, such as ’*’, are passed as literals
from the lexical analyzer to the parser. The data structures representing the two sub-
expressions for the multiplication are again passed by yacc in two parameters, named
$1 and $3. They point at the first and the third field of the production rule.

When the complete parse tree has been built it is passed to the production rule on line
21 and it can be interpreted. Here is the code for the interpreter.

eval(now)
Node *now;

{
if (now != (Node *) 0)
switch (now->ntyp) {
case CONST: return now->nval;
case ’/’: return (eval(now->lft) / eval(now->rgt));
case ’*’: return (eval(now->lft) * eval(now->rgt));
case ’-’: return (eval(now->lft) - eval(now->rgt));
case ’+’: return (eval(now->lft) + eval(now->rgt));
default : printf("spin: bad node type %d\n", now->ntyp);

exit(1);
}
return 0;

}

The default clause defends against unknown node types. The known types of nodes
are evaluated recursively until the final answer is produced.

If we put all these pieces together we get the PROMELA expression evaluator. Here is
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a complete listing, together with the remaining routines that escaped mention above.

1 /***** spine: spin.h *****/
2
3 typedef struct Node {
4 int nval; /* value attribute */
5 short ntyp; /* node type */
6 struct Node *lft, *rgt; /* children parse tree */
7 } Node;
8
9 extern Node *nn(); /* allocates nodes */

10 extern char *emalloc(); /* allocates memory */
11 extern void exit();
12
13 /***** spine: lex.l *****/
14
15 %{
16 #include "spin.h"
17 #include "y.tab.h"
18
19 int lineno = 1;
20 %}
21
22 %%
23 [ \t] { /* ignore white space */ }
24 [0-9]+ { yylval.val = atoi(yytext); return CONST; }
25 \n { lineno++; }
26 . { return yytext[0]; }
27
28 /***** spine: spin.y *****/
29
30 %{
31 #include "spin.h" /* defines what Nodes are etc */
32 %}
33
34 %union{ /* defines the data type of */
35 int val; /* the internal parse stack */
36 Node *node;
37 }
38
39 %token <val> CONST /* token CONST has a value */
40 %type <node> expr /* expressions produce nodes */
41
42 %left ’+’ ’-’ /* left associative operators */
43 %left ’*’ ’/’ /* idem, highest precedence */
44 %%
45
46 /** Grammar Rules **/
47
48 program : expr { printf("= %d\n", eval($1)); }
49 ;
50 expr : ’(’ expr ’)’ { $$ = $2; }
51 | expr ’+’ expr { $$ = nn( 0, ’+’, $1, $3); }
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52 | expr ’-’ expr { $$ = nn( 0, ’-’, $1, $3); }
53 | expr ’*’ expr { $$ = nn( 0, ’*’, $1, $3); }
54 | expr ’/’ expr { $$ = nn( 0, ’/’, $1, $3); }
55 | CONST { $$ = nn($1, CONST, 0, 0); }
56 ;
57 %%
58
59 /***** spine: run.c *****/
60
61 #include "spin.h"
62 #include "y.tab.h"
63
64 eval(now)
65 Node *now;
66 {
67 if (now != (Node *) 0)
68 switch (now->ntyp) {
69 case CONST: return now->nval;
70 case ’/’: return (eval(now->lft) / eval(now->rgt));
71 case ’*’: return (eval(now->lft) * eval(now->rgt));
72 case ’-’: return (eval(now->lft) - eval(now->rgt));
73 case ’+’: return (eval(now->lft) + eval(now->rgt));
74 default : printf("spin: bad node type %d\n", now->ntyp);
75 exit(1);
76 }
77 return 0;
78 }
79
80 /***** spine: main.c *****/
81
82 #include "spin.h"
83 #include "y.tab.h"
84
85 main()
86 {
87 yyparse();
88 exit(0);
89 }
90
91 yywrap() /* a dummy routine */
92 {
93 return 1;
94 }
95
96 yyerror(s1, s2) /* called by yacc on syntax errors */
97 char *s1, *s2;
98 {
99 extern int lineno;

100 char buf[128];
101 sprintf(buf, s1, s2);
102 printf("spine: line %d: %s\n", lineno, buf);
103 }
104
105 char *
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106 emalloc(n)
107 { extern char *malloc(); /* library functions */
108 extern char *memset();
109
110 char *tmp = malloc(n);
111 if (!tmp)
112 { printf("spine: not enough memory\n");
113 exit(1);
114 }
115 memset(tmp,0,n); /* clear memory */
116 return tmp;
117 }
118
119 Node *
120 nn(v, t, l, r)
121 Node *l, *r;
122 {
123 Node *n = (Node *) emalloc(sizeof(Node));
124 n->nval = v;
125 n->ntyp = t;
126 n->lft = l;
127 n->rgt = r;
128 return n;
129 }

To compile this set of programs, the following makefile can be used.

# ***** spine: makefile *****

CC=cc # ANSI C compiler
CFLAGS= # no flags yet
YFLAGS=-v -d -D # verbose, debugging
OFILES= spin.o lex.o main.o run.o

spine: $(OFILES)
$(CC) $(CFLAGS) -o spine $(OFILES)

%.o: %.c spin.h # all files depend on spin.h
$(CC) $(CFLAGS) -c $%.c

The makefile defines which flags must be passed to yacc and cc and it records the
dependencies among the source files. It states, for instance, that when spin.h

changes, all object files must be recreated. The makefile is read by another UNIX util-
ity called make to produce the executable program spine. Here is the dialogue that is
printed on my system if this program is compiled and invoked with a sample expres-
sion.

$ make
yacc -v -d -D spin.y
cc -c y.tab.c
rm y.tab.c
mv y.tab.o spin.o
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lex lex.l
cc -c lex.yy.c
rm lex.yy.c
mv lex.yy.o lex.o
cc -c main.c
cc -c run.c
cc -o spine spin.o lex.o main.o run.o
$ echo "2+5*3" | spine
= 17
$

The complete program must of course recognize quite a few other language features
before it can simulate PROMELA programs. They can be grouped into five classes:

Variables
Statements
Control-flow constructs
Processes
Macro expansion

VARIABLES (Section 12.4, page 255)
We have to consider variable declarations, assignments to variables and references
variables, generally in expressions built from the full range of arithmetic and logical
operators, plus the special operators len and run. We consider variables of the five
basic data types bit, bool, byte, short, and int, plus the declaration of channel
type identifiers with the keyword chan.

STATEMENTS (Section 12.5, page 265)
There are two types of unconditional statements: assignments to variables and the
print statement we added to the simulator. There are also five basic types of condi-
tional statements: boolean conditions, timeouts, send and receive statements, and
assert. The ‘‘pseudo-statement’’ skip can be implemented as the equivalent of the
condition (1).

CONTROL FLOW (Section 12.6, page 275)
We have to consider the sequential control flow specifications: goto, break, selec-
tion, repetition, and atomic statements.

PROCESSES AND MESSAGE TYPES (Section 12.7, page 282)
Most importantly, we have to implement the code for parsing and interpreting global
declarations for both process types and message types.

MACRO EXPANSION (Section 12.8, page 292)
One of the easier parts of the code. Macro expansion is achieved by routing the input
to SPIN through the standard C preprocessor before parsing begins.

TO THE BRAVE
Each of the next four sections focuses on one of these four extensions of the little pro-
gram spine, that was discussed above. This discussion ultimately leads us to the full
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simulator source of SPIN as it is listed in Appendix D. The discussion below is pri-
marily meant for the benefit of those who would like to expand, or modify the code,
or the language that it parses. Feel free to skip sections or to move directly to a safer
part of the chapter, such as Section 12.9 explaining the general use of the program.
The brave who delve into the code may occasionally want to refer back to this over-
view or to the previews at the beginning of each section. To see the code in context
they may also want to refer to the appendix. Appendix D includes an index of all the
code, together with references to the page numbers that explain it.

12.4 VARIABLES
Most of the code that is required for the manipulation of variables is contained in two
files. The first file, sym.c, contains the definition of a general symbol table handler.
The second file, vars.c, contains the code for storing and manipulating variables of
the basic data types. We do not worry too much about variables of type chan just yet.
The bulk of that will come in the next extension when message passing is imple-
mented. For now, we will just parse the declarations. To fully implement the other
types of variables, we need some new hooks in the lexical analyzer, the parser and in
the expression evaluation routine. The next four subsections, then, focus on these
extensions:

Extensions to the lexical analyzer (Section 12.4.1, page 255)
New symbol table routines (Section 12.4.2, page 257)
Extensions to the parser (Section 12.4.3, page 260)
New code for the evaluator (Section 12.4.4, page 263)

We begin by taking a look at the changes that have to be made in the lexical analyzer.

12.4.1 LEXICAL ANALYZER
There is a range of new tokens that must be added to recognize variable names and
declarations in the input to the simulator. There are also several PROMELA operators
that consist of more than one character and are best recognized in the lexical analyzer
and converted into tokens. Let’s first look at variable declarations. Recognizing the
five basic data types and the keyword chan produces the following extra rules in
lex.l.

"int" { yylval.val = INT; Token TYPE; }
"short" { yylval.val = SHORT; Token TYPE; }
"byte" { yylval.val = BYTE; Token TYPE; }
"bool" { yylval.val = BIT; Token TYPE; }
"bit" { yylval.val = BIT; Token TYPE; }
"chan" { yylval.val = CHAN; Token TYPE; }

Each declarator is passed as a token of type TYPE. The attribute is a constant, defined
in spin.h, that specifies the width of each data type in bits (except for CHAN).
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#define BIT 1 /* data types */
#define BYTE 8 /* width in bits */
#define SHORT 16
#define INT 32
#define CHAN 64

The term Token is also defined in a macro

#define Token if (!in_comment) return

which in combination with the following two lines

"/*" { in_comment=1; }
"*/" { in_comment=0; }

guarantees that no lexical tokens are passed to the parser within PROMELA comments.
The two-character operators are recognized by the following new lex rules.

"<<" { Token LSHIFT; /* shift bits left */ }
">>" { Token RSHIFT; /* shift bits right */ }
"<=" { Token LE; /* less than or equal to */ }
">=" { Token GE; /* greater than or equal to */ }
"==" { Token EQ; /* equal to */ }
"!=" { Token NE; /* not equal to */ }
"&&" { Token AND; /* logical and */ }
"||" { Token OR; /* logical or */ }

Most single character operators, such as ’<’ or ’>’ are still passed by the last line of
the rules section:

. { Token yytext[0]; }

which was basically unmodified from the version used in spine. An exception is the
assignment operator ’=’, which is converted into a real token, named ASGN. It is also
given a value attribute that is set to the line number on which the assignment was
found.

"=" { yylval.val = lineno; Token ASGN; }

To facilitate debugging, as many tokens as possible are tagged with a line number that
refers back to the PROMELA source file. The above lex rule shows how that works for
the assignment statement. The treatment of tokens for alphanumeric names is imple-
mented slightly differently. To simplify the code that lex has to produce a little bit,
we look up predefined alphanumeric names in a static table with procedure
check_name(). The procedure is called from within the lex rule

[a-zA-Z_][a-zA-Z_0-9]* { Token check_name(yytext); }

An arbitrary name starts with an upper or lower case letter, and is followed by zero or
more letters or digits. Underscores are allowed in names. To recognize the keywords
len, run, and of (used in chan initializers), for instance, we can write:
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static struct {
char *s; int tok;

} Names[] = {
"len", LEN,
"run", RUN,
"of", OF,
0, 0,

};

check_name(s)
char *s;

{
register int i;
for (i = 0; Names[i].s; i++)

if (strcmp(s, Names[i].s) == 0)
{ yylval.val = lineno;

return Names[i].tok;
}

yylval.sym = lookup(s); /* symbol table */
return NAME;

}

Unrecognized names go through to the symbol table routines, all others come back
immediately with a line number attached.

All new token names must be defined properly in the yacc grammar specification, but
we will come to that later. Let us first look at the way in which names are stored in
the symbol table. So far we have no separate processes, so all names are necessarily
global. The routine lookup() is defined in a new file sym.c with a symbol table
handler.

12.4.2 SYMBOL TABLE HANDLER
Each new name is stored in a data structure of type Symbol that is defined in the new
version of spin.h.

typedef struct Symbol {
char *name;
short type; /* variable or chan type */
int nel; /* 1 if scalar, >1 if array */
int *val; /* runtime value(s), initl 0 */
struct Node *ini; /* initial value, or chan-def */
struct Symbol *next; /* linked list */

} Symbol;

The structure Symbol contains the full name of the symbol being stored as a pointer
to a character string. It also holds its type and the number of elements that are acces-
sible if the name is defined to be an array. The pointer ini points to a parse tree frag-
ment that can be evaluated to initialize a new identifier: a channel initializer for mes-
sage channels, or an integer expression for variables of the five basic data types. The
integer pointer val points to a location where the runtime values of global variables
are stored.
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The last element of the structure, next, points to another symbol. In its simplest form
then, the symbol table can be implemented as a single linked list pointed to by

Symbol *symtab.

Initially the list is empty:

symtab = (Symbol *) 0.

Inserting a new symbol sp at the front list takes just two assignments in C:

sp->next = symtab;
symtab = sp;

Linked lists will come back a few more times in the other extensions we make. We
use them, for instance, to implement message channels and for storing process refer-
ences in the scheduler. Figure 12.3 illustrates how the linked list is used for the sym-
bol table routines.

symtab *
Symbol

next *
Symbol

next *
NULL

name, val,

..etc

name, val,

..etc

Figure 12.3 — Linked List for the Symbol Table

The complete lookup routine, using the linked list, can be written as follows:

Symbol *
lookup(s)

char *s;
{

Symbol *sp;

/* check if symbol is already in the list */
for (sp = symtab; sp; sp = sp->next)

if (strcmp(sp->name, s) == 0)
return sp; /* yes it is */

/* if not, create a new symbol */
sp = (Symbol *) emalloc(sizeof(Symbol));
sp->name = (char *) emalloc(strlen(s) + 1);
strcpy(sp->name, s);
sp->nel = 1; /* scalar */
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/* insert it in the list */
sp->next = symtab;
symtab = sp;

return sp;
}

The routine emalloc() allocates and clears memory for us, so by default the type
and the initial value of a new variable are both zero. The lookup routine is called by
the lexical analyzer that, as defined, has not enough context to determine the type of a
variable name or even if it is used as a scalar or as a vector. A separate routine
settype() is called by the parser to initialize the type field of variables when that
information has been collected. In the same check we can also make sure that an
array was not accidentally given a negative dimension. The first argument to
settype() is a linked list of names, with a pointer into the symbol table for each
name.

settype(n, t)
Node *n;

{
while (n)
{ if (n->nsym->type)

yyerror("redeclaration of ‘%s’", n->nsym->name);
n->nsym->type = t;
if (n->nsym->nel <= 0)

yyerror("bad array size for ‘%s’", n->nsym->name);
n = n->rgt;

}
}

The code maintains the same bookkeeping for all variables, scalars and arrays alike.
A scalar is simply an array of size one.

Using only a single linked list to store all names, however, makes the lexical analyzer
spend a disproportionate amount of time looking up variable names in the initial for
loop of routine lookup(). For each new name, the routine would be forced to look at
all previously entered names, before it can finally decide that a new symbol must be
created. The longer the list, the more severe the time penalty becomes. A standard
solution to this problem is to use a hash-table lookup scheme. We use the name of
the symbol to calculate a unique index into an array of symbol tables (the hash-table),
and store the symbol there. The average search time goes down linearly with the size
of the hash table. It leads to the following version, with Nhash a constant defined in
spin.h.
The value of Nhash must be of the type 2n −1, with arbitrary n.

Symbol *symtab[Nhash+1];
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hash(s)
char *s;

{
int h=0;

while (*s)
{ h += *s++;

h <<= 1;
if (h&(Nhash+1))

h |= 1;
}
return h&Nhash;

}

Symbol *
lookup(s)

char *s;
{

Symbol *sp;
int h=hash(s);

for (sp = symtab[h]; sp; sp = sp->next)
return sp; /* found */

for (sp = symtab[h]; sp; sp = sp->next)
return sp; /* global */

sp = (Symbol *) emalloc(sizeof(Symbol)); /* add */
sp->name = (char *) emalloc(strlen(s) + 1);
strcpy(sp->name, s);
sp->nel = 1;
sp->next = symtab[h];
symtab[h] = sp;

return sp;
}

12.4.3 PARSER
Now let us look at the extensions that we must make in the parser to recognize vari-
able names, declarations, and the new operators. First, recall that a token of type
NAME has an attribute of type Symbol. We must therefore extend the definition of the
parser’s stack.

%union{
int val;
Node *node;
Symbol *sym;

}

There are also some new token names and quite a few new precedence rules. Here is
what we added.
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%token <val> LEN OF
%token <val> CONST TYPE ASGN
%token <sym> NAME

%type <sym> var ivar
%type <node> expr var_list
%type <node> args arg typ_list

%right ASGN
%left OR
%left AND
%left ’|’
%left ’&’
%left EQ NE
%left ’>’ ’<’ GE LE
%left LSHIFT RSHIFT
%left ’+’ ’-’
%left ’*’ ’/’ ’%’
%left ’˜’ UMIN NEG

The assignment operator ASGN is right associative and gets the lowest precedence of
all operators. The new token of type NAME has a symbol attribute pointing to a slot in
the symbol table.
A sequence of zero or more variable declarations is parsed as follows:

any_decl: /* empty */ { $$ = (Node *) 0; }
| one_decl ’;’ any_decl { $$ = nn(0, 0, ’,’, $1, $3); }
;

one_decl: TYPE var_list { settype($2, $1); $$ = $2; }
;

As soon as a complete variable declaration is recognized, in the last production above,
the routine settype() is called to store the extra type information in the symbol
table. Before we look at the definition of a var_list, note that a variable name can
be followed by an array index. Variables are therefore defined in the grammar as a
non-terminal var, of type sym.

var : NAME { $1->nel = 1; $$ = $1; }
| NAME ’[’ CONST ’]’ { $1->nel = $3; $$ = $1; }

For the time being we just remember the array size specified, and check it for its vali-
dity later when a procedure settype() is called. A variable can also have an initiali-
zation field. An initialized variable can be defined as a non-terminal ivar, as fol-
lows:
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ivar : var { $$ = $1; }
| var ASGN expr { $1->ini = $3; $$ = $1; }
| var ASGN ch_init { $1->ini = $3; $$ = $1; }
;

ch_init : ’[’ CONST ’]’ OF ’{’ typ_list ’}’
{ if ($2) u_async++; else u_sync++;

cnt_mpars($6);
$$ = nn(0, $2, CHAN, 0, $6);

}
;

The initializer can be either an expression returning a value or a channel specification.
The production rules above allow both. Some statistics are gathered about the number
of message parameters used and the number of synchronous and asynchronous chan-
nels that are declared. The list of data types in a channel initializer is also quickly
defined.

typ_list: TYPE { $$ = nn(0, 0, $1, 0, 0); }
| TYPE ’,’ typ_list { $$ = nn(0, 0, $1, 0, $3); }
;

The check that, for instance, a channel is not initialized with an expression can be
placed in the code that performs the actual initializations. The set of production rules
that deals with variable declarations can be completed by defining

var_list: ivar { $$ = nn($1, 0, TYPE, 0, 0); }
| ivar ’,’ var_list { $$ = nn($1, 0, TYPE, 0, $3); }
;

The node allocation routine nn() must now also handle the new symbol-table refer-
ences. It is extended as follows:

Node *
nn(s, v, t, l, r)

Symbol *s;
Node *l, *r;

{
Node *n = (Node *) emalloc(sizeof(Node));
n->nval = v;
n->ntyp = t;
n->nsym = s;
n->fname = Fname;
n->lft = l;
n->rgt = r;
return n;

}

Next, we have to prepare to parse the new operators that we have added. Most of it is
straightforward. The series of production rules for expressions merely grows a bit.
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expr : ’(’ expr ’)’ { $$ = $2; }
| expr ’+’ expr { $$ = nn(0, 0, ’+’, $1, $3); }
| expr ’-’ expr { $$ = nn(0, 0, ’-’, $1, $3); }
...
| expr AND expr { $$ = nn(0, 0, AND, $1, $3); }
| expr OR expr { $$ = nn(0, 0, OR, $1, $3); }
...
| expr LSHIFT expr { $$ = nn(0, 0,LSHIFT,$1, $3); }
| expr RSHIFT expr { $$ = nn(0, 0,RSHIFT,$1, $3); }
| ’˜’ expr { $$ = nn(0, 0, ’˜’, $2, 0); }
| ’-’ expr %prec UMIN { $$ = nn(0, 0, UMIN, $2, 0); }
| ’!’ expr %prec NEG { $$ = nn(0, 0, ’!’, $2, 0); }
| LEN ’(’ varref ’)’ { $$ = nn($3->nsym,$1,LEN,$3,0); }
| varref { $$ = $1; }
| CONST { $$ = nn(0, $1, CONST, 0, 0); }
;

Perhaps the most interesting additions are the new types of expressions for the bit-
wise, arithmetic and logical unary operations: bitwise complement ’˜’, unary minus
and boolean negation. Since the minus operator can also be used as a binary operator
we have to set its precedence explicitly with the yacc keyword %prec. And, of course,
the negation operator ’!’ will double in one of the next extensions as a binary send
operator, so its precedence in this grammar rule is also explicitly set. In the final ver-
sion we replace the character token ’!’ with a token SND, which is again labeled with
a line number to improve error reporting.

The variable references, used in the last two production rules, are defined as follows:

varref : NAME { $$ = nn($1, 0, NAME, 0, 0); }
| NAME ’[’ expr ’]’ { $$ = nn($1, 0, NAME, $3, 0); }
;

There are just two types of variable references, one for scalars and one for arrays.
They both return a node of type NAME with the first field referring to the symbol that
defines the variable name. The left pointer specifies the optional array index. A null
pointer in place of an index trivially evaluates to zero. It should produce an error if
we try to determine the ‘‘length’’ of anything other than a channel variable. The
parser, however, does not check this.

12.4.4 EVALUATOR
The last routine we must look at for the addition of variables is the evaluator code in
run.c Luckily, the extension is almost trivial. There are merely some new cases in
the switch. For instance:
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switch (now->ntyp) {
...
case NE: return (eval(now->lft) != eval(now->rgt));
case EQ: return (eval(now->lft) == eval(now->rgt));
case OR: return (eval(now->lft) || eval(now->rgt));
case AND: return (eval(now->lft) && eval(now->rgt));
case LSHIFT: return (eval(now->lft) << eval(now->rgt));
case RSHIFT: return (eval(now->lft) >> eval(now->rgt));
...
case ASGN: return setval(now->lft, eval(now->rgt));
case NAME: return getval(now->nsym, eval(now->lft));
...

The only interesting new cases are the variable references on the last two lines above.
They are implemented with two procedure calls: getval() and setval().

To process an assignment, first the value to be assigned is determined by evaluating
the expression pointed to via now->rgt. Next, the target variable, and possibly its
index, must be found. All the information is available via the left pointer, which is
passed to setval(). A node of type NAME contains a pointer to the symbol table,
with the alpha-numeric variable name, and it contains an index for array references or
a null pointer for scalars. The routines getval() and setval() are defined in
vars.c. For global variables, the only type of variables we have so far, the routine
setval() hands the job to routine setglobal(), which checks the index and if
necessary allocates memory for the variables.

setglobal(v, m)
Node *v;

{
int n = eval(v->lft);

if (checkvar(v->nsym, n))
v->nsym->val[n] = m;

return 1;
}

with checkvar() defined as follows:

checkvar(s, n)
Symbol *s;

{
int i;

if (n >= s->nel || n < 0)
{ yyerror("array indexing error, ‘%s’", s->name);

return 0;
}
if (s->type == 0)
{ yyerror("undecl var ‘%s’ (assuming int)", s->name);

s->type = INT;
}
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if (s->val == (int *) 0) /* uninitialized */
{ s->val = (int *) emalloc(s->nel*sizeof(int));

for (i = 0; i < s->nel; i++)
{ if (s->type != CHAN)

s->val[i] = eval(s->ini);
else

s->val[i] = qmake(s);
} }
return 1;

}

A plain variable is initialized by evaluating the expression in the initialization field of
the symbol. A null pointer in this field, again, trivially evaluates to the default initial
value zero. A channel variable is initialized by passing the initialization pointer to a
routine qmake() that is discussed in the next section. A type clash between initializer
and variable triggers an error in either the evaluator or in the channel building routine.

The routine getval() hands off to getglobal().

getglobal(s, n)
Symbol *s;

{
if (checkvar(s, n))

return cast_val(s->type, s->val[n]);
return 0;

}

A zero result is returned if the checkvar routine fails, that is, if an indexing error was
detected. The routine cast_val() interprets the type of the variable and masks or
casts variable values accordingly.

cast_val(t, v)
{ int i=0; short s=0; unsigned char u=0;

if (t == INT || t == CHAN) i = v;
else if (t == SHORT) s = (short) v;
else if (t == BYTE) u = (unsigned char)v;
else if (t == BIT) u = (unsigned char)(v&1);

if (v != i+s+u)
yyerror("value %d truncated in assignment", v);

return (int)(i+s+u);
}

It is considered an error if a value changes due to type casting. Variables are only cast
to the right value when they are read. Internally, all values are stored in 32-bit
integers.

12.5 STATEMENTS
Adding statements is relatively easy at this point. We discuss four sets of extensions:

Extensions to the lexical analyzer (Section 12.5.1, page 266)
Extensions to the parser (Section 12.5.2, page 266)
Extensions to the evaluation routines (Section 12.5.3, page 267)
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The implementation of message passing (Section 12.5.4, page 268)
To implement message passing statements we add a new file mesg.c. We begin by
adding five types of statements: boolean conditions, timeouts, assignments, printf,
and assert statements, plus the pseudo-statement skip.

12.5.1 LEXICAL ANALYZER
Three of the statements, assert, printf, and timeout, produce new entries into the
static lookup table of alphanumeric names in the lexical analyzer.

static struct {
char *s; int tok;

} Names[] = {
"assert", ASSERT,
"printf", PRINT,
"timeout", TIMEOUT,
...

};

The line number attached to the tokens by the routine checkname() allows us to pro-
duce the right feedback to a user when an assert statement fails during a simulation
run.
The pseudo statement skip is translated into the equivalent constant with the lex rule

"skip" { yylval.val = 1; return CONST; }

To implement the printf statement properly, we must define strings. The only place
where string arguments are used is in printf’s, so we can treat it as a special token
with a symbol attribute. The symbol pointer than holds the string, rather than the
variable name. This produces one more lex rule.

\".*\" { yylval.sym = lookup(yytext); return STRING; }

Finally, we add a rule for translating arrows into semicolons.

"->" { return ’;’; /* statement separator */ }

12.5.2 PARSER
To update the parser we must add some new production rules again for parsing state-
ments. So far, a statement can be an assignment, a print statement, an assertion, a
jump, or an expression (a condition). The timeout is implemented as a special
predefined variable that can be part of a condition. It is added in the code for parsing
expressions.

stmnt : varref ASGN expr { $$ = nn($1->nsym,$2, ASGN,$1,$3); }
| PRINT ’(’ STRING prargs ’)’ { $$=nn($3, $1, PRINT,$4, 0); }
| ASSERT expr { $$ = nn(0, $1, ASSERT, $2, 0); }
| GOTO NAME { $$ = nn($2,$1, GOTO, 0, 0); }
| expr { $$ = nn(0,lineno, ’c’, $1, 0); }
...

expr : TIMEOUT { $$ = nn(0, $1,TIMEOUT, 0, 0); }
...
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We have made a separate production rule for parsing variable references, named
varref. It can be used in a few more cases later.

A sequence of statements is defined as follows:

sequence: step { add_seq($1); }
| sequence ’;’ step { add_seq($3); }
;

step : any_decl stmnt { $$ = $2; }
;

There is no need to group declarations at the start of a program body in PROMELA, so
in the rules above we have allowed each statement to be preceded by one or more
declarations. The routine add_seq() is defined in flow.c to tag statements onto a
linked list, but we look at that in more detail in Section 12.6. For now, a program
body is just a sequence of statements, which is parsed as follows:

body : ’{’ { open_seq(1); }
sequence { add_seq(Stop); }

’}’ { $$ = close_seq(); }
;

The first open brace starts a new linked list to store the statements via a call on routine
open_seq(). When a complete sequence is recognized a special Stop node is tagged
onto the end and the sequence is closed and passed up in the parse tree. We look at
the routines for manipulating the sequences in flow.c in more detail later when we
discuss compound statements. Let us first now consider the additions we have to
make in the interpreter code to evaluate the statements added so far.

12.5.3 EVALUATOR
The additions are still modest. The interpreter only has to handle these new node
types.

case TIMEOUT: return Tval;
case ’c’: return eval(now->lft); /* condition */
case PRINT: return interprint(now);
case ASSERT: if (eval(now->lft)) return 1;

yyerror("assertion violated", (char *)0);
wrapup(); exit(1);

Timeouts are a modeling feature of PROMELA; they are implemented as a test on a
predefined variable here. In the final simulator the scheduler can explicitly enable or
disable timeout events to test if the protocol can recover from exception conditions.
Conditions, identified by the internal node type ’c’, are evaluated recursively and
return a zero or non-zero status. The assert statement is interpreted directly and
causes an error exit if it fails, printing the line number that was duly carried along as a
token attribute. We have moved the grubby details of the implementation of the print
statements into a separate procedure interprint(). It can be defined as follows:
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interprint(n)
Node *n;

{
Node *tmp = n->lft;
char c, *s = n->nsym->name;
int i, j;

for (i = 0; i < strlen(s); i++)
switch (s[i]) {
default: putchar(s[i]); break;
case ’\"’: break; /* ignore */
case ’\\’:

switch(s[++i]) {
case ’t’: putchar(’\t’); break;
case ’n’: putchar(’\n’); break;
default: putchar(s[i]); break;
}
break;

case ’%’:
if ((c = s[++i]) == ’%’)
{ putchar(’%’); /* literal */

break;
}
if (!tmp)
{ yyerror("too few print args %s", s);

break;
}
j = eval(tmp->lft);
tmp = tmp->rgt;
switch(c) {
case ’c’: printf("%c", j); break;
case ’d’: printf("%d", j); break;
case ’o’: printf("%o", j); break;
case ’u’: printf("%u", j); break;
case ’x’: printf("%x", j); break;
default: yyerror("unrecognized print cmd %%’%c’", c);

break;
}
break;

}
fflush(stdout);
return 1;

}

which recognizes a modest number of conversions of the UNIX library function
printf().

12.5.4 IMPLEMENTING MESSAGE PASSING
The synchronous and asynchronous message passing primitives are good for another
two to three hundred lines of source text. The easiest part is the extension of the
parser to pass the new statements on to the interpreter.

The sending and receiving get a relatively low evaluation priority, equivalent to
assignment. Three new types of statements are added.
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stmnt : ...
| varref RCV margs { $$ = nn($1->nsym, $2, ’r’,$1,$3); }
| varref SND margs { $$ = nn($1->nsym, $2, ’s’,$1,$3); }

with message arguments defined as follows:

margs : arg { $$ = $1; }
| expr ’(’ arg ’)’ { $$ = nn(0, 0, ’,’, $1, $3); }
;

arg : expr { $$ = nn(0, 0, ’,’, $1, 0); }
| expr ’,’ arg { $$ = nn(0, 0, ’,’, $1, $3); }
;

The arguments of a receive operation can only be constants or names, but it is easier
to verify that part of the syntax later. There is also one new type of expression

expr : ...
| varref RCV ’[’ margs ’]’ { $$ = nn($1->nsym,$2, ’R’, $1, $4); }

which corresponds to a side-effect free test of the executability of a receive statement
(see Chapter 5).

The interpreter now has three extra clauses for the new internal node types ’r’, ’s’,
and ’R’. This corresponds to the following code in run.c.

case LEN: return qlen(now);
case ’s’: return qsend(now);
case ’r’: return qrecv(now, 1); /* full-receive */
case ’R’: return qrecv(now, 0); /* test only */

The three procedures called here, together with the procedure for the initialization of
new channels qmake() mentioned in passing before, are expanded in the file mesg.c.
Let us first look at the implementation of qmake().

The descriptions of the message channels are stored in a linked list of structures of
type Queue, using the following definition from spin.h.

typedef struct Queue {
short qid; /* runtime q index */
short qlen; /* nr messages stored */
short nslots, nflds; /* capacity, flds/slot */
short *fld_width; /* type of each field */
int *contents; /* the actual buffer */
struct Queue *nxt; /* linked list */

} Queue;

In mesg.c the head of the list is defined like this.

Queue *qtab = (Queue *) 0; /* linked list */
int nqs = 0; /* number of queues */

The rest is easy. We give zero length (rendezvous) channels one slot to temporarily
hold a message as it is passed from a sender to a receiver.
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qmake(s)
Symbol *s;

{
Node *m;
Queue *q;
int i; extern int analyze;

if (!s->ini)
return 0;

if (s->ini->ntyp != CHAN)
fatal("bad channel initializer for %s\n", s->name);

if (nqs >= MAXQ)
fatal("too many queues (%s)", s->name);

q = (Queue *) emalloc(sizeof(Queue));
q->qid = ++nqs;
q->nslots = s->ini->nval;
for (m = s->ini->rgt; m; m = m->rgt)

q->nflds++;
i = max(1, q->nslots); /* 0-slot qs get 1 slot minimum */

q->contents = (int *) emalloc(q->nflds*i*sizeof(int));
q->fld_width = (short *) emalloc(q->nflds*sizeof(short));
for (m = s->ini->rgt, i = 0; m; m = m->rgt)

q->fld_width[i++] = m->ntyp;
q->nxt = qtab;
qtab = q;
ltab[q->qid-1] = q;

return q->qid;
}

Of course, a channel can only be created if an initializer is provided. It is a fatal error
if the initializer has the wrong type or if too many channels already exist. For
efficiency only, an index to all active channels is also maintained in a linear list
named ltab. Implementing qlen() is now straightforward.

qlen(n)
Node *n;

{
int whichq = eval(n->lft)-1;

if (whichq < MAXQ && whichq >= 0 && ltab[whichq])
return ltab[whichq]->qlen;

return 0;
}

We check that the index calculated is within the correct range, that the corresponding
queue exists, and return the length field from the corresponding data structure. The
hard part remains: the implementation of synchronous and asynchronous versions of
qsend() and qrecv(). We use a simple interface to decide which routine to use.
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qsend(n)
Node *n;

{
int whichq = eval(n->lft)-1;
if (whichq == -1)
{ printf("Error: sending to an uninitialized chan\n");

whichq = 0;
}
if (whichq < MAXQ && whichq >= 0 && ltab[whichq])
{ if (ltab[whichq]->nslots > 0)

return a_snd(ltab[whichq], n);
else

return s_snd(ltab[whichq], n);
}
return 0;

}
qrecv(n, full)

Node *n;
{

int whichq = eval(n->lft)-1;

if (whichq == -1)
{ printf("Error: receiving from an uninitialized chan\n");

whichq = 0;
}
if (whichq < MAXQ && whichq >= 0 && ltab[whichq])

return a_rcv(ltab[whichq], n, full);
return 0;

}

A rendezvous is triggered by the sender of a message. If, at that time, at least one pro-
cess is blocked on the matching receive operation, a rendezvous can take place. The
rendezvous receive operation, therefore, can be the same for both synchronous and
asynchronous operations. First we consider the asynchronous case. Its basic form
looks as follows (the version in Appendix D contains a few more features that are not
relevant here):

a_snd(q, n)
Queue *q;
Node *n;

{
Node *m;
int i = q->qlen*q->nflds; /* q offset */
int j = 0; /* q field# */

if (q->nslots > 0 && q->qlen >= q->nslots)
return 0; /* q is full */

for (m = n->rgt; m && j < q->nflds; m = m->rgt, j++)
q->contents[i+j] = cast_val(q->fld_width[j], eval(m->lft));
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q->qlen++;
return 1;

}

If the channel is full, a zero status is returned, which means that the statement is
currently unexecutable. If there is at least one free slot in the queue, the fields are
copied and masked with the predefined field widths. The receive operation is a little
more involved.

a_rcv(q, n, full)
Queue *q;
Node *n;

{
Node *m;
int j, k;

if (q->qlen == 0) return 0; /* q is empty */

for (m = n->rgt, j=0; m && j<q->nflds; m = m->rgt, j++)
{ if (m->lft->ntyp == CONST

&& q->contents[j] != m->lft->nval)
return 0; /* no match */

}
for (m = n->rgt, j=0; j<q->nflds; m = (m)?m->rgt:m, j++)
{ if (m && m->lft->ntyp == NAME)

setval(m->lft, q->contents[j]);
for (k = 0; full && k < q->qlen-1; k++)

q->contents[k*q->nflds+j] =
q->contents[(k+1)*q->nflds+j];

}
if (full) q->qlen--;
return 1;

}

The argument full is zero when the receive operation is used as a condition, as in
qname?[ack], and non-zero otherwise. In the first case the procedure has no side-
effects and merely returns the executability status of the receive. There are two for

loops in the procedure. The first one checks that all message parameters that are
declared as constants are properly matched and it checks that the other parameters are
variable names. The second cycle copies the data from the queue into the variables
specified and, as required, shifts message fields up one slot.

Only the synchronous version of the send operation remains to be expanded.

s_snd(q, n)
Queue *q;
Node *n;

{
Node *m;
int i, j = 0; /* q field# */
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for (m = n->rgt; m && j < q->nflds; m = m->rgt, j++)
q->contents[j] = cast_val(q->fld_width[j], eval(m->lft));

q->qlen = 1;
if (complete_rendez())

return 1;
q->qlen = 0;
return 0;

}

The sender first appends the message and then checks if there is a receiver that can
execute the matching receive. There is no need to check the queue length here: when
the send operation is executable, all rendezvous channels are guaranteed to be empty.
If no matching receive is found, the send operation fails, cancels the message in the
queue and returns a zero. If there is a matching receive operation, it will execute
before the routine complete_rendez() returns, and both sender and receiver
proceed to the next statement, again leaving the channel empty. The routine
complete_rendez() is in fact a tiny portion of the scheduler and is listed in
sched.c. It blocks all statements except a synchronous receive and the code that is
required for evaluating expressions.

complete_rendez()
{ RunList *orun = X;

Element *e;
int res=0;

Rvous = 1;
for (X = run; X; X = X->nxt)

if (X != orun && (e = eval_sub(X->pc)))
{ X->pc = e;

res = 1;
break;

}
Rvous = 0;
X = orun;
return res;

}

The routine first sets a global flag Rvous to make sure that only receive operations are
enabled. The variable X is then pointed to every runnable process to check if it can
complete the rendezvous handshake. The evaluation routine that looks into every
option of a compound for a possible match is called eval_sub().

Element *
eval_sub(e)

Element *e;
{

Element *f, *g;
SeqList *z;
int i, j, k;
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...
if (e->sub)
{ for (z = e->sub, j=0; z; z = z->nxt)

j++;
k = rand()%j; /* nondeterminism */
for (i = 0, z = e->sub; i < j+k; i++)
{ if (i >= k && f = eval_sub(z->this->frst))

return f;
z = (z->nxt)?z->nxt:e->sub;

}
} else
{ if (e->n->ntyp == ATOMIC)

{ ...
} else if (Rvous)
{ if (eval_sync(e->n))

return e->nxt;
} else

return (eval(e->n))?e->nxt:(Element *)0;
}
return (Element *)0;

}

The evaluation routine recursively searches through the options of compounds. If
there is more than one option, the scheduler picks one at random, using the library
routine rand(). When, at the lowest level in the recursion, it finds a statement instead
of a compound to evaluate, it checks for the value of Rvous and calls this routine
when it is set.

eval_sync(now)
Node *now;

{ /* allow only synchronous receives
/* and related node types */

if (now)
switch (now->ntyp) {
case TIMEOUT: case PRINT: case ASSERT:
case RUN: case LEN: case ’s’:
case ’c’: case ASGN: case BREAK:
case IF: case DO: case ’.’:

return 0;
case ’R’:
case ’r’:

if (!q_is_sync(now))
return 0;

}
return eval(now);

}

We will come back to the details later when we look more closely at the scheduler
code itself.
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12.6 CONTROL FLOW
Our next job is to bring some structure into the language by implementing the selec-
tion, repetition, break, goto and atomic statements. We have to build up a program
as a coherent set of statements, with a control flow discipline that defines which state-
ment from this set is to be evaluated by the scheduler at each execution step. All rou-
tines that deal explicitly with the control flow are placed in the file flow.c. This sec-
tion discusses:

Code for manipulating sequences (Section 12.6.1, page 275)
Keeping track of labels (Section 12.6.2, page 278)
Code for parsing compound statements (Section 12.6.3, page 279)

12.6.1 SEQUENCES
Recall the definition of the non-terminal program in spin.y, which we discussed
before.

body:
’{’ { open_seq(1); }

sequence { add_seq(Stop); }
’}’ { $$ = close_seq(); }

sequence:
step { add_seq($1); }

| sequence ’;’ step { add_seq($3); }

A program body is a sequence of statements terminated by a special Stop node. But
this time we have to carry around some extra information for compound statements.
A compound statement is basically a fork in the execution sequence, where one
sequence divides into a number of option sequences. We store each individual
sequence in a structure of type Sequence defined in spin.h.

typedef struct Sequence {
Element *frst;
Element *last;

} Sequence;

A set of sequences is stored as a linked list, as follows:

typedef struct SeqList {
Sequence *this; /* one sequence */
struct SeqList *nxt; /* linked list */

} SeqList;

And, of course the nodes of the parse tree will have to accommodate the new informa-
tion, so the data structure for a Node is expanded somewhat more.
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typedef struct Node {
int nval; /* value attribute */
short ntyp; /* node type */
Symbol *nsym; /* new attribute */
Symbol *fname; /* filename of src */
struct SeqList *seql; /* list of sequences */
struct Node *lft, *rgt; /* children in parse tree */

} Node;

Statements are added one by one to a sequence with add_seq(). The statements are
most conveniently stored in structures of type Element. The definition in spin.h

looks as follows:

typedef struct Element {
Node *n; /* defines the type & contents */
int seqno; /* uniquely identifies this el */
unsigned char status; /* used by analyzer generator */
struct SeqList *sub; /* subsequences, for compounds */
struct Element *nxt; /* linked list */

} Element;

Each element in a sequence is labeled with a unique sequence (or state) number, that
will prove to be useful in building the validator in the next chapter. The numbers are
handed out by routine new_el().

Element *
new_el(n)

Node *n;
{

Element *m;

if (n && (n->ntyp == IF || n->ntyp == DO))
return if_seq(n->seql, n->ntyp, n->nval);

m = (Element *) emalloc(sizeof(Element));
m->n = n;
m->seqno = Elcnt++;
return m;

}

The sub field of an element points to the options of a compound. It is set, only for
those types of statements, in routine if_seq(), which is examined in detail in Sec-
tion 12.6.3.
The sequence numbers are kept in a global counter Elcnt that is reset to one at the
start of every new process. In the code below this happens when open_seq() is
called with a non-zero argument.
The open brace of a body initializes a new sequence by a call on procedure
open_seq(). The closing brace closes the sequence and passes it via close_seq().
Initializing a new sequence of elements or returning a completed one is fairly straight-
forward. In its simplest form it looks like this.
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void
open_seq(top)
{ SeqList *t;

Sequence *s = (Sequence *) emalloc(sizeof(Sequence));

t = seqlist(s, cur_s);
cur_s = t;
if (top) Elcnt = 1;

}

Sequence *
close_seq()
{ Sequence *s = cur_s->this;

cur_s = cur_s->nxt;
return s;

}

The listing in Appendix D performs some extra checks that are relevant only to the
validator.

The routine seqlist() attaches a new sequence to a linked list of sequences.

SeqList *
seqlist(s, r)

Sequence *s;
SeqList *r;

{
SeqList *t = (SeqList *) emalloc(sizeof(SeqList));
t->this = s;
t->nxt = r;
return t;

}

Adding an element to the current sequence happens as follows:

add_seq(n)
Node *n;

{
Element *e;
if (!n) return;
innermost = n;
e = colons(n);
if (innermost->ntyp != IF && innermost->ntyp != DO)

add_el(e, cur_s->this);
}

The routine that allocates memory for a new element new_el() filters out the com-
pound statements and does all the hard work for them, so that need not be repeated
above. The routine add_el() which is used here is not too exciting.
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add_el(e, s)
Element *e;
Sequence *s;

{
if (!s->frst)

s->frst = e;
else

s->last->nxt = e;
s->last = e;

}

12.6.2 JUMPS AND LABELS
Routine add_seq() also catches labels, identified by a node type ’:’, and
remembers them in another linked list.

typedef struct Label {
Symbol *s;
Symbol *c;
Element *e;
struct Label *nxt;

} Label;

The code is again straightforward.

set_lab(s, e)
Symbol *s;
Element *e;

{
Label *l; extern Symbol *context;
if (!s) return;
l = (Label *) emalloc(sizeof(Label));
l->s = s;
l->c = context;
l->e = e;
l->nxt = labtab;
labtab = l;

}

When the scheduler has to determine the destination of a goto jump, it consults that
list, and retrieves a pointer to the element that carried the label.

Element *
get_lab(s)

Symbol *s;
{

Label *l;
for (l = labtab; l; l = l->nxt)

if (s == l->s)
return (l->e);

fatal("undefined label %s", s->name);
return 0; /* doesn’t get here */

}

The routine is called at the top of every invocation of the generic evaluation routine
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eval_sub(), as follows:

if (e->n->ntyp == GOTO)
return get_lab(e->n->nsym);

Of course, to get the goto statements and labels at the right places into the parse tree,
we must add a few more rules to the lex and yacc files. The lookup table in lex.l is
expanded with

"goto", GOTO,

while adding a token GOTO to spin.y. The two production rules that recognize jumps
and labels are:

| GOTO NAME { $$ = nn($2, $1, GOTO, 0, 0); }
| NAME ’:’ stmnt { $$ = nn($1, $3->nval, ’:’, $3, 0); }

The line number for a labeled statement is extracted from the node that is passed up
through the third parameter $3. The GOTO token carries its own line number that is
copied from $1.

12.6.3 COMPOUND STATEMENTS
The real challenge is to process the compound statements. There are a few new
tokens to be handled, such as if, fi, do, od, ::, break, and atomic. The lexical
analyzer is again extended with one line for each. Three new statement types and two
new production rules are added to the production rules in spin.y.

stmnt : ...
| IF options FI { $$ = nn(0, $1, IF, 0, 0);

$$->seql = $2;
}

| DO { pushbreak(); }
options OD { $$ = nn(0, $1, DO, 0, 0);

$$->seql = $3;
}

| BREAK { $$ = nn(break_dest(),$1,GOTO,0,0); }
| ATOMIC

’{’ { open_seq(0); }
sequence

’}’ { $$ = nn(0,$1, ATOMIC, 0, 0);
$$->seql = seqlist(close_seq(), 0);
make_atomic($$->seql->this);

}
;

options : option { $$ = seqlist($1, 0); }
| option options { $$ = seqlist($1, $2); }
;

option : SEP { open_seq(0); }
sequence { $$ = close_seq(); }

;

Every option in a compound statement can be a sequence of statements and is again
captured in a data structure of type Sequence. Multiple options are again grouped
into a linked list of sequences of the type SeqList that was defined before.
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Repetition statements can be terminated with break statements. To keep track of the
proper destinations we use pushbreak() to push an internal label onto a stack for
every new repetition structure that is entered, and a routine breakdest() to retrieve
the current destination of a break statement, much as with the labels and goto jumps
we discussed earlier.

typedef struct Lbreak {
Symbol *l;
struct Lbreak *nxt;

} Lbreak;

pushbreak()
{ Lbreak *r = (Lbreak *) emalloc(sizeof(Lbreak));

Symbol *l;
char buf[32];

sprintf(buf, ":b%d", break_id++);
l = lookup(buf);
r->l = l;
r->nxt = breakstack;
breakstack = r;

}

Symbol *
break_dest()
{ if (!breakstack)

fatal("misplaced break statement", (char *)0);
return breakstack->l;

}

A break statement, if it occurs, is translated with a call on break_dest() into a
jump to the last break statement that was pushed onto the stack.
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Figure 12.4 — Parse Tree for a Selection Structure

Now it is time to turn to one of the toughest procedures for parsing the compound
statements: if_seq(). A selection or repetition structure must push several elements
into the statement sequence. Figure 12.4 illustrates the node structure that is built by
the procedure if_seq() to include selection statements into a sequence. Only com-
pound statements (selections and repetitions) attach any nodes to the sub field of an
Element. That field of sub-sequences starts a linked list (a SeqList) of options, with
one complete Sequence structure per option in the compound statement. Figure 12.4
shows a selection statement with two options.

The last pointer of the sub sequence that defines an option is connected to the ele-
ment that immediately follows the one that contains the original sub field. In the
figure this is the Element labeled t (for target). It formalizes that a selection
sequence is terminated whenever an option terminates.

The structure build for a repetition statement is almost the same, with just one excep-
tion: the last field of each sub sequence is now pointed at an Element that is placed
immediately preceding the compound, at the place of the dotted box in Figure 12.4. It
formalizes that a repetition structure is repeated when an option terminates. The
break statement in the repetition structure will still point to the target Element t.
The code that makes all this happen looks as follows:
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Element *
if_seq(s, tok, lnno)

SeqList *s;
{

Element *e = new_el((Node *) 0);
Element *t = new_el(nn((Symbol *) 0, lnno, ’.’,

(Node *)0, (Node *)0)); /* target */
SeqList *z;

e->n = nn((Symbol *)0, lnno, tok, (Node *)0, (Node *)0);
e->sub = s;
for (z = s; z; z = z->nxt)

add_el(t, z->this);
if (tok == DO)
{ add_el(t, cur_s->this);

t = new_el(nn((Symbol *)0, lnno, BREAK, (Node *)0, (Node *)0));
set_lab(break_dest(), t);
breakstack = breakstack->nxt; /* pop stack */

}
add_el(e, cur_s->this);
add_el(t, cur_s->this);
return e; /* destination node for label */

}

12.7 PROCESSES AND MESSAGE TYPES
The main thing missing from our simulator at this point is the concept of a process.
With that extension we can place some finishing touches on the software by also cod-
ing the scheduler, by adding the distinction between local and global variables. The
code for the scheduler is confined to a file named sched.c. The extension of the lexi-
cal analyzer is minimal at this point: the mere addition of the keywords proctype,
init, and mtype. The other extensions are more substantial:

Extensions to the parser (Section 12.7.1, page 282)
The process scheduler (Section 12.7.2, page 285)
Interpreting local variables (Section 12.7.3, page 289)

12.7.1 PARSER
A complete PROMELA program is constructed from a series of program units defined
as follows:

program : units { sched(); }
;

units : unit | units unit
;

unit : proc
| init
| claim
| one_decl
| mtype
;
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proc : PROCTYPE NAME { context = $2; }
’(’ decl ’)’

body { ready($2, $5, $7);
context = (Symbol *) 0;

}
;

mtype : MTYPE ASGN ’{’ args ’}’ { setmtype($4); }
| ’;’ /* optional ; as separator of units */
;
...

decl : /* empty */ { $$ = (Node *) 0; }
| decl_lst { $$ = $1; }
;

decl_lst: one_decl { $$ = nn(0, 0, ’,’, $1, 0); }
| one_decl ’;’ decl_lst { $$ = nn(0, 0, ’,’, $1, $3); }
;

A unit is either a process declaration, a list of message types, a temporal claim, or an
init specification, each of which can be preceded by one or more global variable
declarations. The init module and the temporal claims are defined as special type of
processes:

init : INIT { context = $1; }
body { runnable($3, $1);

context = (Symbol *) 0;
}

;
claim : CLAIM { context = $1;

if (claimproc)
yyerror("claim %s redefined",

claimproc);
claimproc = $1->name;

}
body { ready($1, (Node *) 0, $3);

context = (Symbol *) 0;
}

;

There can be only one init and one temporal claim per specification. The first is
required, the second optional. The presence of a claim is flagged in the global pointer
claimproc.

Process declarations are placed in a ready queue of process bodies. To allow us to
remember type declarations of formal parameters, declarations must now return a
node containing the parameter list. Before the body of a process declaration is
parsed, though, a context variable is set to identify any variable names and parameters
to be recognized as local to the process declaration. Initially, only the init process is
labeled runnable. Procedure setmtype() logically belongs in sym.c and can be
implemented as follows:

Node *Mtype = (Node *) 0;
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void
setmtype(m)

Node *m;
{

Node *n = m;
if (Mtype)

yyerror("mtype redeclared", (char *)0);

Mtype = n;
while (n) /* syntax check */
{ if (!n->lft || !n->lft->nsym

|| (n->lft->ntyp != NAME)
|| n->lft->lft) /* indexed variable */

fatal("bad mtype definition", (char *)0);
n = n->rgt;

}
}
Node *Symnode = 0;

void
syms(m)

Node *m;
{

if (Symnode)
yyerror("Duplicate Symmetry definition", (char *)0);

Symnode = m;
}

The procedure merely checks syntax and stores the arguments for later processing.
The message-type definitions can be hidden completely from the rest of the program
if we let the lexical analyzer check the list whenever it sees a NAME and map all mes-
sage names found there onto constants. We can do that in procedure check_name().

check_name(s)
char *s;

{
register int i;
for (i = 0; Names[i].s; i++)

if (strcmp(s, Names[i].s) == 0)
{ yylval.val = lineno;

return Names[i].tok;
}

if (yylval.val = ismtype(s))
return CONST;

yylval.sym = lookup(s); /* symbol table */
return NAME;

}

The routine ismtype() looks up names in the list of message types.
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ismtype(str)
char *str;

{
Node *n;
int cnt = 1;

for (n = Mtype; n; n = n->rgt)
{ if (strcmp(str, n->lft->nsym->name) == 0)

return cnt;
cnt++;

}
return 0;

}

12.7.2 SCHEDULER
The procedures ready() and runnable() require little imagination; they need
merely store their arguments in linked lists where the scheduler can find them. The
list of runnable processes is defined as follows:

typedef struct ProcList {
Symbol *n; /* name */
Node *p; /* parameters */
Sequence *s; /* body */
struct ProcList *nxt; /* linked list */

} ProcList;

And the routine that fills the list is

runnable(s, n)
Sequence *s; /* body */
Symbol *n; /* name */

{
RunList *r = (RunList *) emalloc(sizeof(RunList));
r->n = n;
r->pid = nproc++;
r->pc = s->frst;
r->maxseq = s->last->seqno;
r->nxt = run;
run = r;

}

The actual runlist of executing processes has a program counter pc and a pointer to
current values of local variables, which we call symtab again, since it is basically
another symbol table list.

typedef struct RunList {
Symbol *n; /* name */
int pid; /* process id */
int maxseq; /* used by analyzer generator */
Element *pc; /* current stmnt */
Symbol *symtab; /* local variables */
struct RunList *nxt; /* linked list */

} RunList;
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Inserting a process into the list is easy.

ready(n, p, s)
Symbol *n; /* process name */
Node *p; /* formal parameters */
Sequence *s; /* process body */

{
ProcList *r = (ProcList *) emalloc(sizeof(ProcList));
r->n = n;
r->p = p;
r->s = s;
r->nxt = rdy;
rdy = r;

}

Moving a process from the process list to the run list is a little more involved, since
also the parameter fields must be initialized.

enable(s, n)
Symbol *s; /* process name */
Node *n; /* actual parameters */

{
ProcList *p;
for (p = rdy; p; p = p->nxt)

if (strcmp(s->name, p->n->name) == 0)
{ runnable(p->s, p->n);

setparams(run, p, n);
return (nproc-nstop-1); /* pid */

}
return 0; /* process not found */

}

where

setparams(r, p, q)
RunList *r;
ProcList *p;
Node *q;

{
Node *f, *a; /* formal and actual pars */
Node *t; /* list of pars of 1 type */

for (f = p->p, a = q; f; f = f->rgt) /* one type at a time */
for (t = f->lft; t; t = t->rgt, a = (a)?a->rgt:a)
{ int k;

if (!a) fatal("missing actual parameters: ’%s’", p->n->name);
k = eval(a->lft); /* must be initialized*/
if (typck(a, t->nsym->type, p->n->name))
{ if (t->nsym->type == CHAN)

naddsymbol(r, t->nsym, k); /* copy */
else
{ t->nsym->ini = a->lft;

addsymbol(r, t->nsym);
}

}



SECTION 12.7 PROCESSES AND MESSAGE TYPES 287

}
}

with

naddsymbol(r, s, k)
RunList *r;
Symbol *s;

{
Symbol *t = (Symbol *) emalloc(sizeof(Symbol));
int i;

t->name = s->name;
t->type = s->type;
t->nel = s->nel;
t->ini = s->ini;
t->val = (int *) emalloc(s->nel*sizeof(int));
if (s->nel != 1)
fatal("array in formal parameter list, %s", s->name);
for (i = 0; i < s->nel; i++)

t->val[i] = k;
t->next = r->symtab;
r->symtab = t;

}

and

addsymbol(r, s)
RunList *r;
Symbol *s;

{
Symbol *t = (Symbol *) emalloc(sizeof(Symbol));
int i;

t->name = s->name;
t->type = s->type;
t->nel = s->nel;
t->ini = s->ini;
if (s->val) /* if initialized, copy it */
{ t->val = (int *) emalloc(s->nel*sizeof(int));

for (i = 0; i < s->nel; i++)
t->val[i] = s->val[i];

} else
checkvar(t, 0); /* initialize it */

t->next = r->symtab; /* add it */
r->symtab = t;

}

To be able to create new process instantiations on the fly during a simulation, we
expand the run statement in run.c as follows:

case RUN: return enable(now->nsym, now->lft);

Processes can only be deleted from the run-list in reverse order of creation: a process
can only disappear if all its children have disappeared first (Chapter 5). The pids can
therefore be recycled in stack order. In the value returned by enable(),
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(nproc-nstop-1), the count nproc equals the total number of processes created,
and nstop, the number of processes that deleted.

The most interesting routine left to discuss is the scheduling routine proper: sched().
Its relevant portion looks as follows:

sched()
{ Element *e, *eval_sub();

RunList *Y; /* previous process in run queue */
int i=0;
...
for (Tval = 0; Tval < 2; Tval++)
{ while (i < nproc-nstop)

for (X=run, Y=0, i=0; X; X = X->nxt)
{ lineno = X->pc->n->nval;

Fname = X->pc->n->fname;
if (e = eval_sub(X->pc))
{ X->pc = e; Tval=0;
} else /* process terminated? */
{ if (X->pc->n->ntyp == ’@’

&& X->pid == (nproc-nstop-1))
{ if (Y)

Y->nxt = X->nxt;
else

run = X->nxt;
nstop++; Tval=0;

} else
i++;

}
Y = X;

} }
wrapup();

}

The scheduler executes one statement in each runnable process in round-robin
fashion. It calls the routine eval_sub(), which we saw earlier, to recursively evalu-
ate compound statements and atomic sequences. The evaluation of an atomic
sequence only succeeds if the whole sequence can be completed. The code is part of
eval_sub().

if (e->n->ntyp == ATOMIC)
{ f = e->n->seql->this->frst;

g = e->n->seql->this->last;
g->nxt = e->nxt;
if (!(g = eval_sub(f)))

return (Element *)0;
Rvous = 0;
while (g && (g->status & (ATOM|L_ATOM))
&& !(f->status & L_ATOM))
{ f = g;

g = eval_sub(f);
}
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if (!g)
{ wrapup();

lineno = f->n->nval;
fatal("atomic sequence blocks", (cha *)0);

}
return g;

} else if (Rvous)
...

It is a fatal error if an atomic sequence blocks. If a process hits an unexecutable state-
ment the scheduler checks to see if it is in a stop state. If so, the process is removed
from the run queue and the count of terminated processes nstop is incremented. A
global variable X points to the currently executing process. It is mainly used by the
new routines for manipulating local variables, getlocal() and setlocal(), to
determine in which process structure the variables are located. The scheduler also
maintains a value Tval that is used by the interpreter in run.c to determine the exe-
cutability of the timeout statement.

case TIMEOUT: return Tval;

During normal execution, when the system is not blocked, Tval is zero and condi-
tions that include a timeout are unexecutable. To recover from a potential deadlock,
the scheduler can enable the timeout statements by incrementing Tval. If the system
does not recover, the scheduler declares a true hang state and gives up.

12.7.3 LOCAL VARIABLES
Since local variables are created on the fly, upon the instantiation of new processes,
the logical place for the code that manipulates them is in the scheduler. If a variable
name is local, two special variants of getvar() and setvar() are used.

getlocal(s, n)
Symbol *s;

{
Symbol *r;

r = findloc(s, n);
if (r) return cast_val(r->type, r->val[n]);
return 0;

}

setlocal(p, m)
Node *p;

{
int n = eval(p->lft);
Symbol *r = findloc(p->nsym, n);

if (r) r->val[n] = m;
return 1;

}

The routine findloc() locates the name in the symbol table of the currently execut-
ing process, pointed to by X->symtab.
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Symbol *
findloc(s, n)

Symbol *s;
{

Symbol *r = (Symbol *) 0;

if (n >= s->nel || n < 0)
{ yyerror("array indexing error %s", s->name);

return (Symbol *) 0;
}

if (!X)
{ if (analyze)

fatal("error, cannot evaluate variable ’%s’", s->name);
else

yyerror("error, cannot evaluate variable ’%s’", s->name);
return (Symbol *) 0;

}
for (r = X->symtab; r; r = r->next)

if (strcmp(r->name, s->name) == 0)
break;

if (!r && !Noglobal)
{ addsymbol(X, s);

r = X->symtab;
}
return r;

}

The local variables and the process states of any running process can be referred to in
assertions and temporal claims. The hooks in the parser that enable remote referenc-
ing are simple. References to remote variables and process states require the last two
production rules:

| NAME ’[’ expr ’]’ ’.’ varref { $$ = rem_var($1, $3, $6); }
| NAME ’[’ expr ’]’ ’:’ NAME { $$ = rem_lab($1, $3, $6); }

with

Node *
rem_var(a, b, c)

Symbol *a;
Node *b, *c;

{
Node *tmp;
if (!context || strcmp(context->name, ":never:") != 0)

yyerror("warning: illegal use of ’.’ (outside never claim)", (char *)0);
tmp = nn(a, 0, ’?’, b, (Node *)0);
return nn(c->nsym, 0, ’p’, tmp, c->lft);

}

and
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Node *
rem_lab(a, b, c)

Symbol *a, *c;
Node *b;

{
if (!context || strcmp(context->name, ":never:") != 0)

yyerror("warning: illegal use of ’:’ (outside never claim)", (char *)0);
return nn((Symbol *)0, 0, EQ,

nn(lookup("_p"), 0, ’p’, nn(a, 0, ’?’, b, (Node *)0), (Node *)0),
nn(c, 0, ’q’, nn(a, 0, NAME, (Node *)0, (Node *)0), (Node *)0));

}

The reference is implemented as a condition on the control flow state of a process,
represented by the internal variable _p, and the state value of a label name. The value
of the special variable _p is determined, just like the other remote variables, using a
node of type ’p’. The label name is determined with a new node of type ’q’. The
node type ’?’ is only used as a temporary place holder.

In the evaluator two new node types trigger calls on these two routines:

case ’p’: return remotevar(now);
case ’q’: return remotelab(now);

The first routine, for referencing the current value of a local variable in a remote pro-
cess, is implemented with a context switch in the scheduler, as follows:

remotevar(n)
Node *n;

{
int pno, i, j;
RunList *Y, *oX = X;

pno = eval(n->lft->lft); /* pid */
i = nproc - nstop;
for (Y = run; Y; Y = Y->nxt)
if (--i == pno)
{ if (strcmp(Y->n->name, n->lft->nsym->name))

yyerror("wrong proctype %s", Y->n->name);
X = Y; j = getval(n->nsym, eval(n->rgt)); X = oX;
return j;

}
yyerror("remote ref: proc %s not found", n->nsym->name);
return 0;

}

The second routine, for determining the control flow state in a remote process that
corresponds to a given label name, is implemented with a search in the list of labels,
as follows:
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remotelab(n)
Node *n;

{
int i;

if (n->nsym->type)
fatal("not a labelname: ‘%s’", n->nsym->name);

if ((i = find_lab(n->nsym, n->lft->nsym)) == 0)
fatal("unknown labelname: %s", n->nsym->name);

return i;
}

12.8 MACRO EXPANSION
The final version of SPIN in Appendix D has an expanded version of main() that
properly interprets option flags, accepts a file argument and routes its input through
the C preprocessor in /lib/cpp for macro expansion. The output of the preprocessor
is dumped into a temporary file that is immediately unlinked to make sure that it
disappears from the file system, even if the run of the simulator is interrupted. The
parser, however, keeps a link to the file in the predefined file pointer yyin.

if (argc > 1)
{ char outfile[17], cmd[64];

strcpy(filename, argv[1]);
mktemp(strcpy(outfile, "/tmp/spin.XXXXXX"));
sprintf(cmd, "/lib/cpp %s > %s", argv[1], outfile);
if (system(cmd))
{ unlink(outfile);

exit(1);
} else if (!(yyin = fopen(outfile, "r")))
{ printf("cannot open %s\n", outfile);

exit(1);
}
unlink(outfile);

} else
strcpy(filename, "<stdin>");

The preprocessor drops lines into the file that look like

# 1 "spin.examples/lynch"

The lexical analyzer can pick them up and interpret them with an extra rule that is
defined as follows:

\#\ [0-9]+\ \"[ˆ\"]*\" { /* preprocessor directive */
int i=1;
while (yytext[i] == ’ ’) i++;
lineno = atoi(&yytext[i])-1;
while (yytext[i] != ’ ’) i++;
Fname = lookup(&yytext[i+1]);

}

The line number is remembered in variable lineno. The file name is stored in the
symbol table and a global pointer to it is kept in Fname. But most of these remaining



SECTION 12.9 SPIN — OPTIONS 293

features are cosmetic and can be either changed or ignored without undue risk.

12.9 SPIN — OPTIONS
The simulator recognizes eight command line options which can be used in any com-
bination. Two (flags a and t) are specific to the analysis code that we have yet to
develop in Chapter 13. The other six are discussed below.
spin –s

Prints a line on the display for every message that is sent. Example:

$ spin -s factorial
proc 12 (fact) line 5, Send 1 -> queue 12 (p)
proc 11 (fact) line 10, Send 2 -> queue 11 (p)
proc 10 (fact) line 10, Send 6 -> queue 10 (p)
proc 9 (fact) line 10, Send 24 -> queue 9 (p)
proc 8 (fact) line 10, Send 120 -> queue 8 (p)
...

spin –r
Prints a line on the display for every message received. It prints the name and pid

of the running process, and a source line number for its current state. Example:

$ spin -s -r factorial
proc 12 (fact) line 5, Send 1 -> queue 12 (p)
proc 11 (fact) line 9, Recv 1 <- queue 12 (child)
proc 11 (fact) line 10, Send 2 -> queue 11 (p)
proc 10 (fact) line 9, Recv 2 <- queue 11 (child)
proc 10 (fact) line 10, Send 6 -> queue 10 (p)
proc 9 (fact) line 9, Recv 6 <- queue 10 (child)
....

spin –p
Prints a line on the display for every statement executed. Example:

$ spin -p factorial
proc 0 (_init) line 18 (state 2)
proc 1 (fact) line 8 (state 4)
proc 1 (fact) line 9 (state 5)
proc 2 (fact) line 8 (state 4)
proc 2 (fact) line 9 (state 5)
proc 3 (fact) line 8 (state 4)
...
proc 3 (fact) terminates

spin –l
Adds the value of all local variables to the output. This option, like the next one,
is most useful in combination with –p. Example:

$ spin -p -l factorial
...
proc 12 (fact) line 12 (state 9)

queue 12 (p):
n = 1
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proc 11 (fact) line 4 (state 8)
result = 1
queue 12 (child):
queue 11 (p): [2]
n = 2

...
proc 12 (fact) terminates
...

spin –g
Adds the current values of all global variables to the listings.

spin –t12345
Initializes the random number generator with the user specified seed 12345 to
secure a simulation run that can be reproduced exactly.

12.10 SUMMARY
The last version of SPIN contains about 2000 lines of source code, more than ten times
the size of the little expression evaluator that we started this chapter with. To give an
indication of the performance of SPIN we ran the following program to calculate
Fibonacci numbers. It creates and runs a total of 1000 processes.

/***** Fibonacci Sequence *****/

proctype fib(short n)
{ short a = 0;

short b = 1;
short c;

atomic
{ do

:: (b < n) ->
c = b;
b = a+b;
a = c

:: (b >= n) ->
break

od
}

}

init
{ int i = 1;

atomic
{ do

:: (i < 1000) -> i = i+1; run fib(1000)
:: (i > 999) -> break
od

}
}

On a DEC-VAX/8550 computer, one simulation run takes about 7.6 second of user
time. A program optimized for calculation can run a similar program two to ten times
faster, but of course does not have the synchronization and multi-process features of
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PROMELA. The most expensive function calls of a simulation run can be found with
the UNIX utility prof. For the Fibonacci test 80% of the runtime is spend in the fol-
lowing routines:

% Time #Calls Name
23 2.633 433411 _eval
13 1.533 166433 _findloc
11 1.233 116950 _eval_sub
9 1.050 0 _strcmp
8 0.917 0 mcount
6 0.717 117482 _getlocal
5 0.617 117482 _cast_val
5 0.617 117482 _getval

If at some point SPIN’s efficiency must be improved, a good target for optimizations
would be procedure eval(). (See also the Exercises.) For protocol simulations, how-
ever, the program is sufficiently fast.

In the next chapter we will see how we can extend SPIN’s capabilities with a generator
for exhaustive protocol validations. As discussed in Chapter 11, the potential perfor-
mance bottlenecks in protocol validators do require careful attention if we are to pro-
duce a tool of practical value. We therefore shift most efficiency considerations to
that part of the SPIN software.

EXERCISES

12-1. 12-1. Change the semantics of the timeout statement by allowing a timeout count to be
specified. Add a predefined variable time that is incremented once for each cycle
through the list on running processes by the scheduler. Apply and test the new features
with a sample protocol.

12-2. 12-2. The simulator and the language PROMELA use a 32-bit signed quantity as the largest
number. This puts restrictions on the use of SPIN as a calculator. What is the largest fac-
torial that can be computed with the factorial program from Section 12.2?

12-3. 12-3. Run the Fibonacci test on your system and measure the run-time. Make the atomic
sequences non-atomic and repeat the test. Explain the result.

12-4. 12-4. Model and simulate an arbitrary example PROMELA program from this book.

12-5. 12-5. Add more features to PROMELA. For instance,
Allow inline C code fragments
Allow a keyword else in compound statements
Add C-like data structures
(Rob Pike) Add device channels

A device channel is a prefined message queue that connects a PROMELA program to the
outside world (for instance, add a terminal-screen and a keyboard channel).

12-6. 12-6. Add a pre-simulation run optimizer that rewrites parts of the parse tree on the fly. Good
candidates for optimization, for instance, are expressions involving only constant refer-
ences, such as (5*3+2).
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12-7. 12-7. Use the simulator to implement a random walk validation strategy. Consider the feasibil-
ity of validating each of the correctness criteria discussed in Chapter 6.

BIBLIOGRAPHIC NOTES
The best reference to the C programming language is still Kernighan and Ritchie
[1978, 1988]. The second edition of this book, published in 1988, is an excellent
reference to the new ANSI standard version of the C language. Another good discus-
sion of the ANSI standard definition can be found in Harbison and Steele [1987].
Much more about the design of parsers and lexical analyzers can be found in the
famous dragon books by Al Aho and others. See for instance Aho and Ullman
[1977], and Aho, Sethi and Ullman [1986]. A very useful guide to the usage of the
UNIX tools yacc and lex can also be found in Schreiner and Friedman [1985].
An outstanding tutorial on C program development can be found in Kernighan and
Pike [1984]. Chapter 8 of that book is especially recommended.
Device channels (Exercise 12-5) were also defined in the language Squeak, and its
successor Newsqueak. See, for instance, Cardelli and Pike [1985].


