
PROTOCOL VALIDATION 11
214 Introduction 11.1

214 A Manual Proof Method 11.2
218 Automated Validation Methods 11.3

226 The Supertrace Algorithm 11.4
231 Detecting Non-Progress Cycles 11.5

234 Detecting Acceptance Cycles 11.6
235 Checking Temporal Claims 11.7

235 Complexity Management 11.8
237 Boundedness of PROMELA Models 11.9

238 Summary 11.10
239 Exercises

240 Bibliographic Notes

11.1 INTRODUCTION
In Chapter 9 we studied the problem of checking that the implementation of a proto-
col conforms to a formal specification. We now discuss the problem of verifying the
logical consistency of the formal specification itself, independent of an implementa-
tion. For consistency we assume that the specification is formalized as a validation
model in PROMELA, although this is not essential to many of the algorithms we dis-
cuss. We first describe a manual proof method based on the notion of state invariants
only. We then show how the same principle can be used to build an automated vali-
dation system. Finally, we extend the algorithms to support also the verification of
the other correctness requirements that can be expressed in PROMELA (see Chapter 6).

Most automated validation systems are based on exhaustive reachability analysis. To
establish the observance of state invariants, then, it suffices to verify their correctness
with a simple boolean test for each state that is reachable from a given initial system
state. The main problem that must be addressed in the design of such a system is the
‘‘state space explosion problem.’’ For protocols of a realistic size, the number of
reachable system states is usually too large for purely exhaustive analyses. We dis-
cuss the nature of this problem and some of the counter-strategies that have been
developed.

11.2 A MANUAL PROOF METHOD
Consider a simple transmission system with a sender S and a receiver R. Process S
sends messages to process R over an unreliable transmission medium that can lose but
not insert, reorder, or distort messages. Every message transmitted carries a sequence
number. Initially, this number is zero, and it is incremented by one for every new
message transmitted. It can grow arbitrarily large. The receiver acknowledges the

214

215

receipt of messages by echoing the sequence numbers over a similarly unreliable
return channel. The receiver stores the largest sequence number it has received in a
local variable B. The sender tries to keep track of that number by maintaining a count
in a local variable A. The value of A is equal to the largest sequence number that the
sender can be certain R has received. Initially, we have

A = B = 0

In the following we assume that sender and receiver simply exchange sequence
numbers and no other data. The protocol is then defined by four atomic operations,
two in each process. They can be formalized in PROMELA as follows, where for the
time being we will pretend that data of the type int have unbounded range. W is an
arbitrary positive constant.

mtype = { mesg, ack }

proctype S()
{ int A;

do
:: R!mesg(A + rand()%W) /* S1 */
:: S?ack(A) /* S2 */
od

}

proctype R()
{ int B, b;

do
:: S!ack(B) /* R1 */
:: atomic { /* R2 */

R?mesg(b);
B = fct(b,B);

}
od

}

Transition R2 consists of two statements that are, at least conceptually, executed in
one indivisible step. In the first step a new message is received. In the second step a
new value for B is obtained via a function fct(). The function records the reception
of a message numbered b and returns a value X≥B for which it can guarantee that all
messages with numbers smaller than X were recorded by fct() before. It could
accomplish this, for instance, by setting

if
:: (b == B+1) -> B = b
:: (b != B+1) -> skip
fi

forcing messages to be received in sequence, but it could also be more liberal (see
Chapter 4).

Assuming that there are r messages in queue R and s acknowledgments in S, with

r≥0 and s≥0

% PROTOCOL VALIDATION CHAPTER 11

the following condition holds invariantly for the acknowledgments that are buffered
in S:

A ≤ S[1] ≤ S[2] ≤ . . . ≤ S[s] ≤ B (1)

The correctness of this system invariant is proven by induction. First notice that in
the initial state the channels are empty and the invariant reduces to A≤B, which holds
trivially since A = B = 0. Next observe that if the invariant holds in an arbitrary sys-
tem state it must hold in all its successor states, since it cannot be invalidated by the
four atomic operations:

S1 does not change any of the variables in (1). S2 transforms (1) into

A = S[1] ≤S[2] ≤ . . . ≤S[s] ≤B

which must hold if (1) holds. R1, assuming that the acknowledgment is not lost,
transforms (1) into

A≤S[1] ≤S[2] ≤ . . . ≤S[s] ≤S[s + 1] = B

which also must hold if (1) held before R1 was executed. R2 can increase, but
never decrease, the value of B, and thus cannot invalidate the invariant either.

Together, this proves the validity of invariant (1). The next invariant applies to the r
messages waiting in queue R:

R[i] < R[j] + W , for 0≤i≤r and i < j≤r + 1 (2)

where, for convenience, we define

R[0] = B and R[r + 1] = A

In the initial state, with r = 0, the queue is empty, and the invariant becomes B < A + W
which trivially holds for all W > 0, since A = B = 0. We must check again that the
correctness of the invariant is unaffected by the four atomic operations.

S1 can add an element r + 1 to queue R (if the message is not lost):

A ≤ R[r + 1] < A + W (2a)

and then increment r. There are only two cases to consider where the invariant
could now be violated: i = r and j = r. For i = r, invariant (2) states

R[r] < R[r + 1] + W

By definition, this means

R[r] < A + W

which (2a) clearly cannot violate. For j = r, invariant (2) states

R[i] < R[r] + W , for 0≤i < r

Since (2a) guarantees that R[r] ≥A, after S1 completes, this reduces to

R[i] < A + W , for 0≤i < r

%

which must hold if it held before S1 was executed. S2 can only increase the value
of A, as a direct result of (1). R1 does not change any of the variables in (2). R2

deletes a message from the queue, thus removing one of the conditions from the
invariant. Either it has no effect or it sets R[0] = R[1], which also cannot disturb
the correctness of (2).

This completes the proof of invariant (2).

THE WINDOW PROTOCOL INVARIANT
Invariants (1) and (2) can be used to prove a more general property of the window
protocol.

B − W ≤ R[i] < B + W for 1≤i≤r (3)

To prove this, first note that by invariant (2) we have

R[i] < A + W for 1≤i≤r

Since by invariant (1) we also have A≤B the right side of (3) is easily proven.
Second, by invariant (2) we have

B < A + W or B − W < A

Since by invariant (1) we also have A ≤ R[i] the left side of (3) is also proven.

Invariant (3) implies that the receiver can deduce the true value of a message (i.e., its
sequence number) even if only part of the value is transmitted, for instance the value
modulo 2W. It is an elegant demonstration that the selective repeat ARQ protocol,
discussed in Chapter 4, needs a range of sequence numbers that is twice the window
size W.

DISCUSSION OF MANUAL PROOFS
The proof technique we have discussed was first described by Stein Krogdahl and
later refined by Donald Knuth. It is based on the notion of state invariants. Unlike
the methods used in most automated validation systems, this method is not based on
the inspection of reachable system states, but on the inspection of state transitions.
There are usually far fewer state transitions than reachable system states. The exam-
ple system illustrates this nicely: since the sequence numbers are unbounded, the
number of reachable system states is infinite, but the number of state transitions is res-
tricted to four. The effort required to verify that a transition cannot invalidate an arbi-
trary system invariant, however, can be substantial.

In independent work, Mohamed Gouda (see Bibliographic Notes) has argued that all
manual proofs can be build on just two basic notions:

System invariants, and
Well-founded formulas

A well-founded formula can be used, for instance, to prove termination or to build
induction proofs. To construct such a proof we must find a quantity that is inevitably
decreased during the lifetime of the program and that forces a desirable outcome of

218 PROTOCOL VALIDATION CHAPTER 11

the program when it reaches a minimum. To find the right invariants and well-
founded formulas can be hard. In general, the manual proofs must be structured care-
fully, requiring the user to find and to prove a series of intermediate invariants before
the correctness of a more general property can be demonstrated. The advantage of
this approach is that it forces the user to thoroughly understand both the design prob-
lem and the suggested solution.

This advantage, however, can turn into a disadvantage when the method is applied to
larger problems. The manual proofs can be tedious, and they are inevitably suscepti-
ble to human error, much like the protocol design that is the subject of the proof. For
each invariant that is to be proven the method may require a manual inspection of all
atomic state transitions within the system. The manual techniques break down in
cases where validation is needed most, i.e., for larger protocols. We accept here,
therefore, that there is a need for automatic tools to help us either in constructing
proofs, or in finding counter-examples to correctness claims (a euphemism for
‘‘debugging’’). After all, even a proof is not a proof unless its validity can be
checked. To quote Lamport [1977]:

‘‘A formal proof is one which is sufficiently detailed, and carried out in a sufficiently
precise formal system, so that it can be checked by a computer.’’

Although there is no simple algorithm that could automate the manual proof methods
we have discussed, there is, at least for finite state systems, an alternative. The alter-
native becomes possible if we base our proof method directly on reachable system
states, rather than indirectly on the transitions that connect them. Methods of this
type can be used to validate both properties of states and properties of sequences of
states, as discussed in Chapter 6. The remainder of this chapter is devoted to a discus-
sion of these methods.

11.3 AUTOMATED VALIDATION METHODS
Let us look at the general structure of automated validation systems based on reacha-
bility analysis. Initially, we will consider only the validation of state properties, such
as assertion violations and improper terminations. We discuss in some detail the lim-
itations of the reachability analysis methods and the strategies that have been
developed to exploit them. In later sections we show how the method can be
extended to validate properties of sequences of states, such as non-progress conditions
and temporal claims, as discussed in Chapter 6.

REACHABILITY ANALYSIS ALGORITHMS
A reachability analysis algorithm tries to generate and inspect all the states of a distri-
buted system that are reachable from a given initial state. Implicitly, it will construct
all possible execution sequences, although, depending on the type of algorithm used,
not all information about state sequences is necessarily available for analysis. There
are three main types of reachability analysis algorithms. In the order in which they
are listed here, they can be applied to systems of increasing complexity:

Full search (systems up to 105 states)

SECTION 11.3 AUTOMATED VALIDATION METHODS 219

Controlled partial search (systems up to 108 states)
Random simulation (larger systems)

The full search is the simplest algorithm. It performs the most thorough analysis of
the three types of algorithm, but it can only analyze the smallest class of protocols.
We quantify the limitations later in this chapter. If the full search method exceeds its
limits, it effectively reduces to an uncontrolled partial search method, and the quality
of the analysis deteriorates quickly.

The controlled partial search tries to optimize the quality of the reachability analysis
specifically for those cases where a full search is infeasible. It attempts this by select-
ing an optimal fraction of the full state space that can be searched within given con-
straints of memory and time.

Random simulation techniques are specifically meant for the validation of systems of
a complexity that defeats even the controlled partial search. The system state space
for these systems can be estimated to be so large that no partial search technique can
make a sensible selection. The best possible search in these cases is a random, or
biased random, walk of the state space.

There are two different measures for expressing the capabilities of a reachability
analysis tool: coverage and quality. The search coverage is easily quantified as the
number of system states tested divided by the number of states in the full state space.
A perhaps more appropriate, but less easily quantified measure, is the search’s ability
to find errors: the number of distinct errors found divided by the total number of
errors present. In the comparison of the three basic search methods below we use
both measures. In Chapter 13 we develop an automated protocol validation system
for PROMELA models that can perform reachability analysis in all three basic modes:
random simulations and either fully exhaustive or partial state space searches.

11.3.1 FULL STATE SPACE SEARCH
The standard full, or exhaustive, search algorithm explores all reachable composite
system states of a set of interacting finite state machines. How precisely the interac-
tion among the machines is defined is largely irrelevant to the design of the search
algorithm. The basic state machine model can be extended with finite message
queues, or local and global variables. As discussed in Chapter 8, these additions do
not extend the power of the finite state machine model, provided that they are defined
over a finite domain.

A state machine, in this model, is defined by a finite number of states and state transi-
tions. Each state transition has two parts: a pre-condition and an effect. The pre-
condition is typically a boolean condition on the state of the machine, the queues, and
the variables. The transition is enabled, and can be executed, only if the pre-condition
holds. The effect of an execution can change the state of the system, for instance the
states of the local machine, the queues, and the variables, and perhaps even the state
of other machines (e.g., in a multi-party rendezvous system).

The system as a whole is defined by the composite of all individual machine, variable,

220 PROTOCOL VALIDATION CHAPTER 11

and queue states, and the combination of all simultaneously enabled local state transi-
tions. From here on, the term state is used as a short-hand for composite system state.
Where this can cause confusion we use the terms machine state or system state.
Given an initial state for each machine in the system, the sets of machine states and
system states can each be divided into two disjoint classes: reachable states and
unreachable states. Normally it is required that the system not contain any unreach-
able machine states: they would correspond to unexecutable code in an implementa-
tion. Normally, also, the set of unreachable system states is several orders of magni-
tude larger than the set of reachable system states. The set of unreachable system
states should include all error states.

An exhaustive reachability analysis tries to determine which states are reachable and
which are not. Every reachable state and every sequence of reachable states can be
checked for a given set of correctness criteria. These criteria can be general condi-
tions that must hold for any protocol, such as the absence of deadlocks or buffer over-
runs, or they can be protocol-specific requirements such as a temporal claim about the
proper working of a message retransmission discipline. In many cases protocol-
specific requirements can be formalized as state invariants, the correctness of which
can be verified with a simple boolean test in every reachable system state.

In the algorithm below, the reachability analysis starts with a small routine named
start() that initializes two sets: a working set of system states to be analyzed, called
W, and a set of states that have been analyzed, called A.

start()
{ W = { initial_state }; /* work set: to be analyzed */

A = { }; /* previously analyzed states */
analyze();

}

Set A is also referred to as the system state space. When the algorithm terminates, it
should include all the reachable system states The basic structure of the reachability
analysis algorithm is as follows.

analyze() /* exhaustive or full search */
{ if (W is empty) return;

q = last element from W;
add q to A;
if (q == error_state)

report_error();
else
{ for each successor state s of q

if (s is not in A or W)
{ add s to W;

analyze();
}

}
delete q from W;

}

SECTION 11.3 AUTOMATED VALIDATION METHODS 221

The order in which states are retrieved from working set W seems irrelevant at first, but
it turns out to be an important control point. If states are stored in set W in first-in
last-out (i.e., stack) order, the algorithm performs a depth-first search of the state
space tree. If states are stored and removed in first-in first-out order, this changes into
a breadth-first search (element q must be deleted upon retrieval from set W in this type
of algorithm). A breadth-first search has the advantage that it finds the shortest error
sequences first. A depth-first search, however, has the advantage that it requires a
smaller work set W. An intuitive explanation for this is that the size of W in a depth-first
search is a function of the depth of the search tree, but a function of its width in a
breadth-first search. The depth of the search tree depends on the maximum length of
a unique execution sequence. The width of the tree, however, is determined by the
maximum number of distinct execution sequences, which is usually a much larger
number.

As an example, consider a protocol where every state has two successors. The state
space is then equivalent to a binary expanding tree. After n transitions, the breadth of
the search tree is 2n states. The depth of the tree, however, is only n states.

There is one other important advantage to the depth-first search discipline. When an
error is discovered we would like the algorithm to be able to produce an execution
sequence that leads to the error via a valid sequence of state transitions, starting from
the initial system state. With a breadth-first search method, the path from the initial
system state must be reconstructed from information stored in the state space set A.
With a depth-first search, however, such a path need not be reconstructed: a sequence
is implicitly defined by the stack order of set W.

DISCUSSION OF THE FULL SEARCH METHOD
The main problem with the full search strategy is its restricted applicability. It is
important to note that the coverage of the full state space search technique is not
necessarily 100%: it depends on the size of the state space and the amount of memory
that is available for the search. If the size of the state space is R and the maximum
number of states that can be stored in memory during the search is A both the cover-
age and the search quality can only reach 100% when R≤A. When R > A the coverage
reduces to A / R, but the search quality is likely to be worse.

For large protocols the exhaustive search algorithm deteriorates into a low-
quality partial search.

Consider a protocol for two processes, each having 100 states, one message queue,
and each accessing five local variables. The two message queues are restricted to five
slots each, and the effective range of the local variables is assumed to be limited to ten
values. The number of distinct messages exchanged is ten. In this relatively small
example system, there are 105.2 possible states of the protocol variables. Each pro-
cess can be in one of 102 different states, so two processes can maximally be in 104

different composite system states. Finally, each queue can hold between zero and five
messages, where each message can be one out of ten possible messages. The total
number of system states in the worst case then is

222 PROTOCOL VALIDATION CHAPTER 11

1010 .104 .


i = 0
Σ
5

10i




2

or in the order of 1024 different states. If we assume, quite unrealistically, that each
state can be encoded in 1 byte of memory and can be analyzed in 10− 6 sec of CPU
time, we would still need a machine with at least 1015 times as much memory as
currently available, and would need roughly 1011 years of CPU time to perform an
exhaustive analysis.

Fortunately, the number of effectively reachable states is usually much smaller than
the total number of system states calculated above. After all, it is the purpose of a
protocol to restrict the the behavior of the protocol processes, and thus the number of
effectively reachable states, in order to realize the desired functionality. Still, even
relatively small protocol systems can easily generate anywhere from 105 to 109 reach-
able system states. The number of states grows dramatically if, for instance, the size
of a message queue is increased, or if the assumptions about the behavior of the
‘‘environment’’ in which the protocol is executed (e.g., the channel characteristics)
are relaxed.

The exhaustive search method unavoidably breaks down when the state space grows
beyond approximately 105 states. A quick ‘‘back of the envelope’’ calculation can
illustrate this.

If one system state can be stored in S bytes of memory, and we have a machine with M
bytes available, we can generate and analyze no more than M / S states. M is a
machine-dependent constant that is typically in the range from 106 to 107. Values for
S are typically in the range 10 to 102 bytes, with larger values corresponding to the
larger numbers of reachable states. This leads to an estimate for the maximum state
space size of about 105 states. This value can also be found experimentally by running
the full search algorithm until it has exhausted available memory.

This means that in many cases the full search method is feasible only if we can reduce
the complexity of our validation models to the maximum that a given machine can
analyze. The complexity of protocol models can be reduced substantially by structur-
ing and layering techniques, but in some cases, even after such reductions, the prob-
lems to be analyzed remain inherently complex and cannot be further reduced without
losing essential features.

As one example, consider the window protocol described in Chapter 7. It is a simple
protocol, with no obvious further simplification. In its basic form this protocol is well
within the range of the full search method. As illustrated in Chapter 14, however, the
complexity of the search goes up dramatically if the assumptions about channel
behavior are relaxed and can make a full search impossible.

11.3.2 CONTROLLED PARTIAL SEARCH
If the state space is larger than the available memory can accommodate, the exhaus-
tive search strategy discussed above effectively reduces to a partial search, without

SECTION 11.3 AUTOMATED VALIDATION METHODS 223

guaranteeing that the most important parts of the protocol are inspected. This obser-
vation has led to the development of a new class of algorithms that specifically try to
exploit the benefits of a partial search. They are based on the premise that in most
cases of practical interest the maximum number of states that can be analyzed, A, is
only a fraction of the total number of reachable states R. A controlled partial search,
then, has the following objectives:

To analyze precisely A states, with A = M / S
To select these A states from the complete set of reachable states R in such a
way that all major protocol functions are tested
To select the A states in such a way that the search quality, i.e., the probability
of finding any given error, is better than the coverage A / R

An algorithm for the partial search looks exactly like the earlier algorithm for an
exhaustive search, with only one difference: not all successor states are analyzed.

analyze() /* partial search */
{ if (W is empty) return;

q = last element from W;
add q to A;
if (q == error_state)

report_error();
else
{ for some successor state s of q

if (s is not in A or W)
{ add s to W;

analyze(); /* recursive */
}

}
delete q from W;

}

It is interesting to note that even a random selection of successor states is superior to
an uncontrolled partial search, since it guarantees that the complete state space is sam-
pled, rather than the unknown fragment that happens to be generated first in a full
search. The selection can also be based on a heuristic that favors executions that are
likely to reveal design errors fast. Many different ways of organizing a controlled
partial search have been studied. They include methods based on:

Depth-bounds
Scatter searches
Guided searches
Probabilistic searches
Partial orders
Random selections

We discuss the first five methods briefly below. The last method, based on random
selections, is developed in the remainder of this chapter. References to more detailed
descriptions of all techniques are included in the Bibliographic Notes.

224 PROTOCOL VALIDATION CHAPTER 11

DEPTH-BOUNDS
A fairly standard and simple partial search technique is the placement of a bound on
the length of the execution sequences that are analyzed. It limits the search to a useful
subset of behaviors, ruling out, for instance, degenerate cases of multiple overlapping
executions. In the full search algorithm, for instance, it allows us to restrict the max-
imum size of working set W.

SCATTER SEARCH
In a scatter search, executions are selected that lead closer to potential deadlock states.
One of the requisites of a deadlock state, for instance, is that there are no messages
pending (all channels are empty). The algorithm therefore favors receive operations
over send operations. The goal of the method is to increase the probability of finding
errors fast.

GUIDED SEARCH
In a guided search, the state selection criterion is a cost function that is dynamically
evaluated for each successor state. The cost function can be fixed, as in a scatter
search, or it can be changed dynamically during the search. Not much is known about
the types of cost functions, or ‘‘guiding expressions,’’ that could prove to be useful.

PROBABILISTIC SEARCH
In a probabilistic search, successor states are explored in decreasing order of their pro-
bability of occurrence. All transitions in the system are labeled, minimally with a tag
that gives them a ‘‘high’’ or a ‘‘low’’ probability of occurrence, and these tags are
used as the selection criteria.

PARTIAL ORDERS
The main factor that is responsible for the state space explosion problem is the large
number of possible interleavings of concurrent events. As shown in Chapter 5 (page
96), not all interleavings are necessarily relevant in the search for error states.

There are several ways of exploiting partial orders. A first method is based on the
definition of a heuristic for either

Fair progress state exploration or
Maximum progress state exploration

Both heuristics work by assigning a search priority to the protocol processes. The
number of transitions that are inspected during the search is limited, with preference
given to the transitions that belong to high-priority processes. Transitions in lower-
priority processes are only considered if all higher-priority processes are blocked. In
a fair progress exploration technique, the relative priority of a process is decreased
when one of its transitions is executed during the search; in the maximum progress
exploration technique the relative priority is increased.

A second, more recent, method to exploit partial orders is based on formal definitions
of equivalence relations on system behavior. The goal is then to prune away that part
of a search that can be proven to be irrelevant. (References to these and the other

SECTION 11.3 AUTOMATED VALIDATION METHODS 225

techniques are collected in the Bibliographic Notes.)

RANDOM SELECTIONS
In a controlled partial search based on random selections of successor states, no effort
is made to predict where likely errors in the state space are to be found. We will
argue below that this is not only the simplest technique to implement, but is also
likely to produce the highest quality search. It is the only technique that can satisfy
all three requirements for a controlled partial search that were listed at the start of this
section.

DISCUSSION OF CONTROLLED PARTIAL SEARCH METHODS
The first four techniques for controlling the partial search that we discussed above
have one main problem in common. All four methods try to predict where the errors
in a protocol can be found. This is an inherently risky approach. As a corollary of
Murphy’s law, the errors are likely to hide where a designer or a validator has decided
not to look. Next to the random selection of successor states, the techniques based on
partial orders can, in principle, avoid that problem. The dependencies between
processes, however, can be subtle. Consider, for instance, a system of three processes
A, B, and C, where A and B interact with C, but not with each other. It would be tempt-
ing to conclude that since A and B are disjoint, all possible interleavings of their
behaviors are necessarily equivalent. But, alas, this assumption is invalid. Note that
the behavior of process A can depend on B’s behavior indirectly through their mutual
interaction with C. Every distinct interleaving of the actions of A and B can be
significant in determining the outcome.

To determine mechanically, therefore, which particular interleavings can safely be
ignored in state space searches can be non-trivial. An accurate assessment may well
be more expensive that a full blast exhaustive search, and thus be self-defeating as an
optimization technique.

A final problem with the first five methods is that, although they can reduce the size of
the state space, none of these methods provides a tool for matching the size of the
state space to the size of available memory. For all these methods the size of the frac-
tion of the state space that is effectively searched can only be determined experimen-
tally, and is protocol dependent. This means that we may have to perform many vali-
dations, with different selection criteria, before we can find the optimal one that
analyzes precisely M / S states. In Section 11.4 we will develop the idea of the random
selection of successor states and show that it can be used to effectively solve also this
problem.

Before doing so, we discuss a final state space exploration method, also based on the
random selection of successor states, but this time without any attempt to build a state
space

226 PROTOCOL VALIDATION CHAPTER 11

11.3.3 RANDOM SIMULATION
The controlled partial search methods have wide applicability. There are applications,
however, where also a controlled partial search becomes infeasible. One can attempt,
for instance, to apply a protocol validation algorithm directly to highly-detailed, com-
piled code that runs in a machine. In those cases, the parameter S, measuring the size
of a single composite system state in bytes, can range anywhere from 103 to 105 bytes
of memory.

Even on a larger machine, the largest number of states that can be maintained by a
partial search then drops to a few hundred system states at best, in a state space that is
many orders of magnitude larger. In cases like these, the only sensible approach is to
discard sets A and W from the search algorithm and to explore the state space with a
random simulation or ‘random walk.’ The algorithm is as follows.

analyze() /* random simulation */
{ q = initial state;

while (1) /* forever */
{ if (q is error_state)

{ report_error();
q = initial state;

} else
q = a successor state of q;

}
}

This technique works largely independent of the size and complexity of the system
being modeled; even ‘‘infinite size’’ systems can be explored in this manner. The
coverage of the method, of course, cannot be measured, though in principle an
exhaustive coverage of finite state spaces is guaranteed, given a sufficient amount of
time. In practice this is not a very useful guideline, since a ‘‘sufficient’’ amount of
time can easily mean a century of computation time or worse. In experiments, how-
ever, Colin West was able to show that even for an immeasurably small search cover-
age the quality, or error-finding capability, of the search can be adequate.

The remainder of this chapter is devoted to the development and motivation of a con-
trolled partial search technique that was named supertrace. An implementation in C
of an exhaustive search algorithm for PROMELA, with a supertrace option for large
problems, is discussed in Chapters 12 to 13.

11.4 THE SUPERTRACE ALGORITHM
Given M bytes of memory, how can we organize a state space search to use precisely
M bytes, no more and no less, and perform the largest search possible within that
arena? To answer that question we look in a little more detail at the memory storage
methods that are traditionally used. The standard way to maintain the state space set
A in either a full or a partial search algorithm is to use a storage technique called
hashing. Hashing allows us to determine quickly whether or not a new state s is
already a member of set A and can be discarded or is not yet in A and needs to be
inserted. The method is to use the contents of s to calculate a hash value h(s), which

SECTION 11.4 THE SUPERTRACE ALGORITHM 227

is used as an index into a lookup table of states. The table is organized as shown in
Figure 11.1.

Linked List

Lookup Table

state: s h(s)

H–1

0

Figure 11.1 — Hash Table Lookup
Assume that we have H slots in the hash table. Hash function h(s) is defined such
that it returns an arbitrary value in the range 0 .. (H − 1). For the same state s∈A, h(s)
always returns the same value. But there is also a possibility that two different states
produce the same hash value. In the case we are studying, the hash table will have to
accommodate a large number of states, which means A > H. The hash function will
then produce the same hash value for an average of A / H different states. All states
that hash to the same value are stored in a linked list that is accessible via the lookup
table under the calculated index (the hash value). On the average then, when the table
is full, each new state must be compared to A / H other states before it is either inserted
into the linked list, or discarded as redundant. When A grows beyond the first H
states, the number of comparisons required grows steadily, and the search efficiency
degrades: there is a time penalty for analyzing systems of more than H states.

A typical value for H is 104 slots. The table itself takes up H×B bytes of memory,
plus B bytes for each state that is inserted, where B is the size of an address pointer.
On most machines B = 4, which means that a table with say 256,000 slots requires
more than 1 Mbyte of overhead that can no longer be used to store states. To accom-
modate the largest possible state space, therefore, a small value for H is required. As
shown above, however, a small value for H means a low search efficiency.

If we could somehow manage to use a very large value for H, the number of hash
conflicts could be minimized and thus the speed of the search algorithm could be
optimized. Let us assume we can use the full search algorithm with a value for H in
the order of 108 slots. In a state space of up to 105 states we can expect to have fewer

228 PROTOCOL VALIDATION CHAPTER 11

than 105 /108 hash conflicts, or less than one conflict in a thousand states. This means
that there will rarely be more than a single state in the linked list that is connected to
each slot in the hash table. But this means that we do not have to store complete state
descriptions in the hash table: in all but a few cases the hash table index (the hash
value) uniquely identifies a state. The only bookkeeping required is to remember if a
slot in the hash table is filled or not. A single bit of storage per state will suffice. If
we have M bytes of memory available, we have 8M bits for the state space (assuming
8 bits per byte). A 10 Mbyte machine can thus give us a state space large enough to
hold 80 million states. The hash function h(s) is used to calculate the position of a bit
in the available memory arena M. A bit value of 1 will now indicate that the state
corresponding to this hash value has been previously analyzed. The state itself is not
stored.

Since no states are stored, there are no states to compare a new state against: the bit
position uniquely identifies the state. The method can be expected to work well if the
state space is sparse and indeed H is very large. A large value of H makes hash
conflicts rare for all cases where A < H. Most importantly, however, when A > H the
hashing automatically defines a randomized partial search method that matches the
coverage of the search to the available memory. The method therefore approximates
an exhaustive search for smaller protocols and slowly changes into a controlled partial
search method for larger protocols. For smaller protocols, however, we do not need a
partial search method: we can use a traditional exhaustive search technique.

Supertrace is a controlled partial-search technique that is only meant for the
validation of protocol systems that cannot be analyzed exhaustively.

As an exhaustive search technique the supertrace algorithm would compare unfavor-
ably with almost any other standard depth-first search method, simply because it can-
not guarantee 100% coverage due to the possibility of unresolved hash conflicts (cf.
Tables 13.1 and 13.2 in Chapter 13). We will show, however, that as a partial search
technique, the new algorithm is superior to other methods.

HASH CONFLICTS
The overhead of the lookup table with a supertrace algorithm reduces from

HB + (S + B) A

bytes to

H /8

bytes. However, since the states are no longer stored we can no longer compensate
for hash conflicts. Remarkably, this defect has a positive effect on the overload
behavior of the algorithm during partial searches. Here is how it works.

If a new state s is generated and it is found that the flag is set at index h(s), we must
conclude that state s was analyzed before and should be ignored. When a hash
conflict occurs, the above conclusion is wrong, and the search will ignore a state that

SECTION 11.4 THE SUPERTRACE ALGORITHM 229

should have been analyzed: the search is truncated. As A / H → 0, the number of hash
conflicts that will be encountered approaches zero, and the method approaches (but
can never guarantee to be) a fully exhaustive search. Indeed, therefore, it is best to
choose H as large as possible.

The maximum value for H that we can choose for given memory size M is H = 8M.
Let us see how this algorithm compares to a traditional partial search.

The memory requirements are the same. The limit to the coverage of the traditional
search, however, is A = M / S. Storing the same M / S states in the hash table of the
modified algorithm, with H = 8M, gives a ratio

A / H = M /(8MS) = 1/(8S)

For a typical value of S ∼− 100, the probability of a hash conflict then approaches 10 − 3.
But the new algorithm is not restricted to a maximum of M / S states. It can analyze a
maximum of H distinct states. The hash conflicts, which increases as the state space
fills up, now work to scatter the states that are selected for analysis across the set of
reachable states in an approximately random manner.

There are two cases to consider. For R < M / S, the coverage of the traditional algo-
rithm will be the same as or slightly better than the new algorithm, since it avoids the
effect of the hash conflicts. However, when R < M / S we do not need a partial search
algorithm at all since we can still perform an exhaustive (traditional) search in
memory. The supertrace algorithm should not be used in these cases.

For problems with R > M / S, the coverage of the new algorithm, i.e., the total number
of effectively analyzed states compared to the total number of reachable states, is sub-
stantially higher than the coverage of the traditional algorithm. For R >> M it
approaches 8M / R, compared to M /(S R) for the traditional algorithm (see also Figure
11.2).

If state description S becomes larger the traditional algorithm can analyze fewer and
fewer states, but the performance of the new algorithm stays the same. If, for M fixed
at 107 bytes of memory, S grows from 100 to 1000 bytes per state, the coverage of a
traditional partial search algorithm drops from 105 to 104 analyzable states. The cov-
erage of the new algorithm, however, remains constant at a maximum of H = 8.107

analyzable states.

The effect is illustrated, for a fixed size S, in Figure 11.2. Increasing S is equivalent to
moving the dotted and the dashed line to the left: the behavior of the traditional algo-
rithm changes, but the behavior of the supertrace algorithm remains constant.

For state spaces that are larger than an exhaustive search algorithm can accommodate,
the traditional method breaks down very rapidly, its coverage dropping by a factor of
ten for every tenfold increase in the number of reachable states. The coverage of the
new algorithm is substantially better.

When A→R, A is the same order of magnitude as H, which means that a large fraction

230 PROTOCOL VALIDATION CHAPTER 11

0

20

40

60

80

100

1 10 100 1000 10000

Coverage (%)

Reachable States (× 1000)

.

Supertrace

Partial

Full Search
100% Coverage

Figure 11.2 — Comparison of Two Algorithms
of the state space can still be analyzed, the hash conflicts acting as a random pruning
that scatters the search over the oversized state space. For still larger protocols with
A > H the coverage of the search approaches H / A, or 8M / R.

MULTIPLE HASHINGS
The hash functions helps us to make a fast random selection of states from a large
state space, and thus implements an efficient controlled partial search. Assume a
hypothetical 10 Mbytes of memory available for the search and a state space of 800
million states of 100 bytes each. The coverage of all traditional search methods,
except supertrace and random simulation, is limited to the analysis of 107 /100 in
8.108 states or 0.0125 %. A single run of supertrace would give a maximum cover-
age of 8.107 /8.108 or 10%. The question is: Can we ever achieve a still better cover-
age with the same system constraints? Surprisingly, the answer for the supertrace
algorithm is: Yes.

The hash function can be used as a parameter in repeated searches. Suppose the first
search with hash function H1 selected 80 million states are random from the 800 mil-
lion reachable states. A second search with a different hash function H2 will also
select 80 million states, but it will make a different selection. We may expect that
there will be a 10% overlap between the two state sets, but the combined coverage of
the two searches has now gone up to 80 + 72 million states out of the 800 million can-
didates, or 19%. Continuing this process, we can in theory get arbitrarily close to a
coverage of 100% of the state space, provided that a sufficient number of independent
hash functions can be found.

The validator developed in Chapter 13 uses this principle to increase the coverage of
searches. It uses two hash functions in each single run.

SECTION 11.5 DETECTING NON-PROGRESS CYCLES 231

11.5 DETECTING NON-PROGRESS CYCLES
So far, we have only discussed the validation of state properties, using a straightfor-
ward reachability analysis algorithm. The complexity of the algorithm, even for this
simple case, is in PSPACE. We have therefore made a deliberate effort to find the
fastest, most frugal implementation so that the range of problems we can apply it to is
as large as possible. But we are not done. There are other properties that we may be
interested in proving, specifically for PROMELA validation models. If, as we have
argued above, the efficiency of a straight reachability analysis is a concern, the
efficiency of the more subtle types of validation is crucial.

A straightforward check for non-progress conditions could be based on the construc-
tion and inspection of all strongly connected components in the reachability graph
that is implicitly defined by the state space of the system being analyzed. This
approach, though commonly used, fails when the state space is too large to be stored
completely. Here we explore a different option that has a modest expense and, most
importantly, that can be used in combination with a supertrace algorithm to do partial
validations of very large systems.

Our first problem is to detect cycles in the reachability graph that do not pass through
any states marked as progress-states. The algorithm we develop is only for identify-
ing non-progress cycles. We will not try to combine it with a simultaneous search for
assertion violations and improper terminations. A first attempt to find the non-
progress cycles is to perform a standard depth-first reachability analysis where all
sequences are truncated when a progress-state is reached. That is, progress-states are
treated as if they have no successors. All cycles that can be constructed in a search of
this type, must be non-progress cycles. The size of the state space that is created in
this search is at most equal to the size of a straight depth-first search. It is likely to be
smaller due to the truncations at progress states.

To see how this may be implemented, refer to the algorithm for the full state space
search given in Section 11.3.1. A cycle is detected if the depth-first search reaches a
state that is already in work-set W, assuming that states are extracted from set W in last-
in first-out order.

The flaw of this method is that it does not allow us to detect cycles that do not pass
through the initial system state. There may well be a cyclic execution sequence (as
defined in Chapter 6) that first passes through a finite number of states, some of which
may be marked as progress states, before entering a cycle of strictly non-progress
states. This observation, however, immediately leads to a new algorithm that does
work.

A non-progress cycle might start in any reachable system state. So we must inspect
two distinct state spaces: one created by the original depth-first search, and one that is
created when transitions from progress states are disabled. The task of our search
algorithm is to inspect every possible prefix of a cyclic sequence in the original state
space and see if it can be continued into a cycle in the second state space. The imple-
mentation is simple. We can add a two-state demon to our validation model that

232 PROTOCOL VALIDATION CHAPTER 11

defines in which mode the search will operate, as follows

proctype demon() { bit magic = 0; magic = 1 }

The initial state of demon process is just before the assignment, with variable magic
equal to zero. The second, and final, state of the demon is immediately after the
assignment, with magic equal to one. The demon process can switch from the initial
state to the final state nondeterministically, and once it has switched it cannot go back.
The value of variable magic defines in which mode the search is performed. When
magic is zero, a normal depth-first search is performed, without any error checking.
When magic is one, all transitions that originate in progress states are disabled. All
subsequent execution sequences should be terminating. If there is any cycle of states
that are reachable while magic is one, it must be a non-progress cycle.

The value of magic can only change once in any given execution sequence, and it can
only change from zero to one. Let us assume that, after magic has changed value, a
cycle of states is detected that is not a non-progress cycle. By definition that cycle
contains at least one transition originating at a progress state. This transition can only
occur when magic is equal to zero. This means that the value of variable magic

changes from zero to one and back at least once each time through the cycle. This
contradicts the earlier observation that magic only changes value once.

The algorithm we have constructed further has the property that if any non-progress
cycle exists, at least one will be detected. To prove that, let us assume that there
exists a reachable strongly connected component that contains only non-progress
states. (A strongly connected component is any set of states in which every member
can reach every other member of the set via one or more transitions.)

The algorithm generates two copies of every reachable state; there is one copy in which
magic is equal to zero, and one copy with magic equal to one. There is a transition
from the first copy to the second that corresponds to the one transition that the demon
process can make. Consider the case where no state from the strongly connected
component has been generated with magic equal to one. Consider the first such state
that is generated. Since the strongly connected component is assumed to be reachable,
and the transition of the demon process is always executable, this must happen at some
point in the search. Call this state the seed state. The depth-first search tree that is
rooted at the seed has all states from the strongly connected component as successors,
including itself (by the definition of a strongly connected component). Since the seed
state is also reachable from itself (by the same definition) via non-progress states only
(by our original assumption), it must be revisited. The moment the seed is revisited, a
cycle is detected. By our earlier proof, that cycle must be a non-progress cycle.

There can, of course, be many different paths through a strongly connected com-
ponent, each one of which may represent a different type of non-progress cycle. The
algorithm above does not guarantee that all variants are detectable in a single execu-
tion of the search. It does guarantee that at least one variant is detected. If no non-
progress cycles are detected, therefore, we can be certain that none exist.

Figure 11.3 illustrates how a difficult case of a non-progress cycle is detected. The
circles represent system states and the arrows represent transitions. The states are

SECTION 11.5 DETECTING NON-PROGRESS CYCLES 233

1

2

3P

4

5.
..
..
..
..
..
..
. ..
..
..
..
..
.

6

7.

(a)

1

2

3P

6

7.
..
..
..
..
..
..
. ..
..
..
..
..
.

4

5

(b)

Figure 11.3 — Detection of a Non-Progress Cycle
numbered in the order in which they are visited during a search. The state marked P
is a progress-state. State 1 is the initial system state. The dashed line from state 1 to
state 2 is an arbitrary execution sequence. The dotted lines indicate state matches.
Remember that after the creation of every state our depth-first search algorithm
checks to see if the state was created before. If a match is found the search is trun-
cated. If the match occurs in work set W, i.e., on the stack, a cycle is detected.

In Figure 11.3a a fragment of the state space is shown as it would be created in a nor-
mal depth-first search. In Figure 11.3b the same states are shown after the transition
of the demon process to the state in which transitions starting at progress states are
disabled. The numbers indicate the order in which states are visited.

Before the transition of the demon process, in Figure 11.3a, just one cycle is detected
by the normal depth-first search method. It is detected when the fifth state visited is
found to match the second state, which is on the stack. The loop is benign, since it
contains the progress-state. The search continues, after removing states 4, 3, and 2
from the stack, with the new state 6. The seventh state visited matches the fourth one,
and the search is completed. The last match does not produce a cycle, because state 4
is no longer on the stack.

The non-progress loop through the states marked 2, 6, 7, 4, and 5 therefore remains
undetected in the standard depth-first search. After the transition of the demon pro-
cess, all transitions from the state marked P are disabled. This means that the states
are now visited in the order indicated in Figure 11.3b. The first, harmless, cycle can
now no longer be constructed, but the second cycle can, and is correctly detected.

With the addition of a simple two-state demon process, the algorithm is trivial to
implement. An implementation in C is given in Appendix E. Its expense is a dou-
bling of the time and space requirements. Perhaps the most important advantage of

234 PROTOCOL VALIDATION CHAPTER 11

the algorithm, however, is that it can be used in combination with any controlled par-
tial search method. Specifically it can be used with a bit state space technique, as
used in the supertrace algorithm.

11.6 DETECTING ACCEPTANCE CYCLES
The detection of acceptance cycles (see Chapter 6, page 118) is substantially harder
than the detection of non-progress cycles, discussed in the last section. This time, all
execution cycles that pass through at least one acceptance state must be detected. We
are interested in finding an algorithm that continues to work with supertrace, so that
its application to very large problems is not excluded.

The following algorithm is due to Mihalis Yannakakis (see the Bibliographic Notes).
The expense of the algorithm is at worst a doubling of the time and space require-
ments of the basic search. We conduct a depth-first search with two state spaces
instead of one (i.e., two copies of set A). Call the second state space set C. When no
acceptance state is encountered, set C remains unused, and the search is precisely the
same as before. For every acceptance state that is removed from work set W and added
to set A (i.e., after all its successor states have been visited) the algorithm switches
sets A and C and begins a new search. Call the acceptance state the seed of that
search. If at any time during this search the seed state can be revisited, an acceptance
cycle is found, and an error can be declared (i.e., the temporal claim is satisfied, which
means that an undesirable behavior is possible). When no such error is found, the
second search terminates when all successors of the seed have been added to set C. At
this point, sets A and C are swapped again, and the depth-first search continues as
before.

No state will be visited more than twice in this search, once in set A and once in set C.
It is not hard to convince ourselves that any cycle found by this algorithm is neces-
sarily an acceptance cycle. It is harder to show, however, that in the absence of hash
collisions any acceptance cycle that exists is also found.

Assume that there are acceptance states that belong to one or more strongly connected
components in the reachability graph. If all states in the reachability graph are
numbered in the order in which they are added to set A, consider the acceptance state
with the lowest number. Call that state the seed. Because the seed belongs to a
strongly connected component it is reachable from itself. The acceptance cycle is
detected if and only if none of the intermediate states along that path have been added
to set C before the seed. If there is any such state, however, it necessarily has a lower
search number than the seed. All states along the path we are interested in belong, by
definition, to the same strongly connected component as the seed. If any one of those
states has a lower search number, and was added to set C before, its complete set of
successors must have been analyzed as well, before we reach the seed. This means that
all these successor states have a lower search number than the seed. The set of
successors, however, includes the seed, because they all belong the same strongly
connected component. This means that this is not the first visit to the seed, which
contradicts our assumption.

SECTION 11.8 COMPLEXITY MANAGEMENT 235

11.7 CHECKING TEMPORAL CLAIMS
To check temporal claims, as they were defined in Chapter 6, every state transition in
the reachability graph for the original system, without the temporal claim, must be
matched with a state transition in the finite state machine that represents the temporal
claim.

Fortunately, this requirement is relatively easy to meet, and compatible with super-
trace. After the generation of a successor state during the standard search we include
one extra test, a forced transition of the temporal claim process to a new state. If such
a transition cannot be made, the search can be truncated as if a state match was found.
It means that the undesirable behavior that is expressed in the claim cannot be realized
after the last transition in the system is made. The details of an implementation in C
are given in Appendix E. In the best possible case, if no transition from the initial
system state can be matched by a transition in the claim, the time and space require-
ments of the new algorithm reduce to almost zero. In the worst possible case, how-
ever, the size of the state space is multiplied by the number of reachable states of the
claim.

The worst-case expense of the validation of temporal claims increases linearly with
the size of the claim, measured as the number of states of the extended finite state
machine that defines the claim. With the discussion of the last two sections, we can
compare the complexity of the validation of different types of PROMELA correctness
requirements. The minimum expense is incurred for the validation of properties of
states, such as assertions and improper terminations. It can be twice as hard to check
for non-progress properties, and 2N times as hard to check a temporal claim of N
states.

If we turn this argument around, we can say that, with the same search quality, for the
validation of state properties the system can be 2N times larger than for the validation
of temporal claims. It is therefore important that a validation system, such as
PROMELA, allows us to validate each type of property separately ,1 so that the simpler
requirements do not incur the expense of the more complicated ones. The system size
determines in all cases precisely which types of validation of a given quality can be
performed. If the best search quality that can be realized for a given system is
insufficient, we can do two things:

Express the correctness requirement differently so that it can be checked more
efficiently
Express the system behavior differently in an effort to reduce its final size

We discuss the second method in more detail below.

1. Temporal claims could be used to express state properties, and even non-progress conditions, and could
therefore be used as a single default mechanism for specifying correctness requirements.

236 PROTOCOL VALIDATION CHAPTER 11

11.8 COMPLEXITY MANAGEMENT
The validation of protocol systems that generate up to a few hundred thousand states
is well within reach of of the automated validation systems we have described. The
validation of larger systems, however, can be a substantial challenge in the manage-
ment of complexity. It could well be claimed that complexity management itself is
the most important issue in the design of a validation strategy. In this section we
review some of the main issues.

The discussion of partial search techniques (page 224) was the primary motivation for
the complexity management technique that we have chosen as the basis of the super-
trace algorithm. Two other important issues remain to be discussed:

Reduction methods
Incremental composition

Both methods are applied before a state space search is started, instead of taking effect
during a search as in the partial searches. They therefore apply to all search methods,
from fully exhaustive searches to random walks. We discuss them in more detail
below.

REDUCTION METHODS
The design of a validation model trivially determines the complexity of the validation
that is to be performed. If protocol layering and structuring techniques are applied, it
is often possible to separate, without loss of generality, the validation of multiple
orthogonal protocol functions. An example of that is given in Chapter 14, where the
validation of the flow control protocol from Chapter 7 is separated from the validation
of the session control protocol.

In Chapter 8, Section 8.9, we discussed a technique to further reduce the complexity
of a validation model by systematic generalizations that do not affect the scope of a
validation. Similar ideas have been based on the notion of ‘‘protocol projections,’’ as
first described by Lam and Shankar.

In some cases, however, it may still be hard or impossible to find the ideal behavior
preserving reduction. In those cases we have one more complexity management
option. There are many modeling parameters that control the range of possible
behaviors defined by a model. The determining factors for the complexity of
PROMELA models, for instance, are the number of processes, message queues, and
variables, and the size of the message queues. Decreasing the number of slots in mes-
sage queues can reduce the maximum amount of asynchrony in a concurrent system
and dramatically decrease the number of reachable composite system states, without
necessarily decreasing its scope. A validation model often can be analyzed exhaus-
tively by restricting some of these parameters. The model, of course, becomes a par-
tial one when the parameter settings are decreased. This means that we often have a
choice between performing an exhaustive search for a partial model, or a partial
search for a full model. Which approach is the most appropriate naturally depends on
the problem being studied.

SECTION 11.9 BOUNDEDNESS OF F(CWOMELA(HB MODELS 237

INCREMENTAL COMPOSITION
In the reachability analysis algorithms we have discussed up to this point, we have
assumed that all asynchronous processes that contribute to the global behavior of the
protocol are combined in a single step in the generation of the global system state
space. In some cases, an incremental composition method can be used to reduce the
size of the state space that is being constructed. (See Algorithm 8.3, and see also
Chapter 8, Section 8.7.) With this method we first generate the set of all reachable
composite system states of two or more of the protocol processes. This partial state
space is then reduced by standard state machine minimization and then composed
with the remaining processes, again in an incremental fashion.

In a typical application of this method, at each step two separate state machines are
replaced by one state machine, which is reduced in size before it is combined with the
other machines. To work, this method obviously requires that the validation model
consist of more than two state machines (asynchronous processes). It further relies
crucially on the user’s ability to find precisely those combinations of state machines
that can produce the greatest reductions. The reduction is meant to remove behavior
that is internal to the machines that are combined. It reduces the combined machine
to the external behavior of the machines that were collapsed.

This means that the method works best if it is applied to machines that are tightly cou-
pled (that is, they exchange a lot of messages) and that are relatively independent of
the rest of the system. If the user, by mistake, combines two machines that are dis-
joint, the state space explosion problem is worsened: effectively the two machines
would be replaced by an irreducible composite state machine that defines the com-
plete Cartesian product of all states in the two individual state machines. A large frac-
tion of those states can be recognized as unreachable only when the remaining compo-
sition steps are taken.

Several researchers have implemented the incremental composition method and
applied it to validation models that only use rendezvous communications. The advan-
tage here is that the rendezvous points can disappear in the reduction steps. It is not
clear if the method can still be effective when it is applied to systems such as
PROMELA that allow asynchronous, buffered message exchanges. In these cases the
internal buffers may complicate the minimization process.

11.9 BOUNDEDNESS OF PROMELA MODELS
It is not immediately obvious that any given PROMELA model can be reduced to a
finite state system and validated with the algorithms we have discussed in this
chapter. A PROMELA validation model allows an arbitrary number of process instan-
tiations and an arbitrary number of message queues to be created. The following pro-
gram, for instance, is valid in PROMELA.

238 PROTOCOL VALIDATION CHAPTER 11

proctype A()
{ chan Ain = [1024] of { int, int };

do
:: run A()
od

}
init { run A() }

To simulate the execution of this model would require an infinite amount of memory
and an infinite length of time. Any real execution of the model, however, can only
take place on a finite machine. Most models are therefore finite by design, and it can
even be argued that the possibility of infinite growth is a design error.

PROMELA restricts the maximum number of processes and message queues that can be
created. The precise limit is not defined. At some point during the execution of the
example program above the run statement will become unexecutable and block the
last process that was created. Every PROMELA model is therefore by definition a finite
state system and can be analyzed with a standard reachability analysis algorithm.
Each process has a fixed number of states, each message queue has a fixed number of
slots, and the range of all variables used in the system is fixed. When the model is
executed, it can only reach a finite number of possible states. At some point in the
execution of process A() above, for instance, the run statement becomes unexecut-
able and prohibits further growth.

In Chapters 12 and 13 we discuss the implementation of a program that converts
PROMELA specifications into the required finite state models. The program imple-
ments all three basic search modes we have discussed: random simulation, bit state
space search, and the full state space search.

11.10 SUMMARY
Given a new, carefully designed protocol, how can we gain confidence that it will not
fail in some unexpected way? For instance, we may want to prove that the protocol is
robust under adverse channel behavior, or we may want to show that certain undesir-
able events, such as system deadlocks, cannot occur. The methods we have described
in this chapter are based on the verification of correctness requirements that can be
expressed as system invariants: properties that remain invariantly true for all possible
executions of the system.

The manual proof method we gave is based on an exhaustive inspection of state tran-
sitions, and the automated variant is based on an exhaustive inspection of system
states. The manual validation procedure can be expected to work for systems of up to
ten or twenty state transitions, but is largely independent of the number of reachable
states. The credibility of these manual proofs, however, is at best inversely propor-
tional to their length.

The automated procedure does not have this drawback, but its applicability depends
crucially on the number of reachable system states. For relatively small systems, up

CHAPTER 11 EXERCISES 239

to approximately 105 reachable system states, we can apply a fully exhaustive state
space search. The purpose of the exhaustive search is to show the absence of errors.
If it can be completed without reporting any errors, it is certain that the protocol can-
not violate any of the correctness criteria.

For larger systems, up to approximately 108 reachable system states, the best valida-
tion that can be performed is a controlled, partial search. The purpose of a partial
search is to show the presence of errors, not the absence. The partial search is
designed in such a way that if it is applied to a protocol that contains an error, it
optimizes our chances of exposing it within the constraints of the machine on which
the validation algorithm is run. We have discussed three different ways of achieving
this objective:

Using search heuristics to restrict the partial search to system states that are likely
to contain the errors.
Using a hashing technique that dramatically increases the number of system states
that can be manipulated.
Using reduction methods to simplify validation models before they are subjected
to a search.

The first method has the disadvantage that it tries to predict where the errors are likely
to be, an inherently dangerous strategy. The second strategy does not have this prob-
lem, and turns out to be the only one that allows us to match the scope of the analysis
to the constraints of the system on which the validation algorithm is executed, what-
ever they may be. The application to PROMELA is elaborated in the next two chapters.

For exceptionally large validation problems, finally, the only workable validation
method is a random simulation that tries to explore as many system states as possible,
trying to home in on those states that can violate the system invariants.

EXERCISES

11-1. 11-1. Use the manual proof technique to show that the alternating bit protocol preserves the
correctness of the window protocol invariant for a window size of one.

11-2. 11-2. Modify the partial search algorithm to include a maximum or fair state space exploration
heuristic.

11-3. 11-3. The following solution to Dijkstra’s mutual exclusion problem (see Chapter 2, and Dijks-
tra [1965]) appeared in the Communications of the ACM , Hyman [1966]. It is repro-
duced here as it was published (in pseudo Algol).

1 Boolean array b(0;1) integer k, i, j,
2 comment process i, with i either 0 or 1;
3 C0: b(i) := false;
4 C1: if k != i then begin
5 C2: if not (b(j) then go to C2;
6 else k := i; go to C1 end;
7 else critical section;
8 b(i) := true;
9 remainder of program;
10 go to C0;

240 PROTOCOL VALIDATION CHAPTER 11

11 end

Show that the solution is incorrect by modeling the solution in PROMELA, and performing
an automated validation with one of the reachability analysis algorithms discussed in this
chapter.

11-4. 11-4. The reachability analysis algorithms we have considered verify the observance of system
state invariants. Consider possible extensions to the basic full-search algorithm to check
for properties of system state sequences: paths through the global state space. What
extensions are necessary, for instance, to be able to prove or disprove for the alternating
bit protocol that there is no infinite sequence of transitions in which the 1-bit sequence
number remains unchanged?

11-5. 11-5. There are algorithms that can find all strongly connected components in a directed cyclic
graph, e.g., Aho, Hopcroft & Ullman [1974, p. 192]. Consider how such an algorithm
could be used to extend the capabilities of the reachability analyzers, what the cost in
added time and space complexity would be, and how these extensions would be affected
by partial searching.

BIBLIOGRAPHIC NOTES
The manual proof technique based on system invariants is due to Krogdahl [1978] and
Knuth [1981]. The proof of the window invariant discussed here was also first given
in Knuth [1981]. The method was also used more recently in Brown, Gouda, and
Miller [1989]. Gouda’s manual validation method based on state invariants and
well-founded formulas is inspired by the seminal paper Floyd [1967].

Several other attempts have been made to develop automated protocol validation tools
that are not based on reachability analysis. Early experience with some automated
versions of these tools was reported in Schwabe [1981] and Sunshine and Smallberg
[1982]. A promising new manual proof theory is based on the Oxford specification
language Z. See for instance Duke, Hayes, King and Rose [1988], Duke, Hayes and
Rose [1988], and Hayes, Mowbray and Rose [1989].

Work on automated protocol validation methods was pioneered by Brand and Joyner
[1978], Hajek [1978], West and Zafiropulo [1978], West [1978], Zafiropulo [1978],
and Razouk and Estrin [1980]. The work of Colin West and Pitro Zafiropulo [1978]
provided a first demonstration that with automated tools even protocols that have
withstood the scrutiny of years of development in an international standardization
organization can, within a few seconds of computer time, be shown to be flawed. In
this case, the protocol was the CCITT Recommendation X.21, and the validation tool
was a straightforward implementation of the validation theory developed in
Zafiropulo [1978]. Important subsequent work was reported in Zafiropulo et al.
[1980], Rubin and West [1982]. Excellent surveys of the work on protocol validation
can be found in IFIP conference proceedings such as IFIP [1983], or the April 1980
special issue on ‘‘Computer Network Architectures and Protocols’’ of the IEEE Tran-
sactions on Communications , which contains the standard reference Bochmann and
Sunshine [1980].

There are many results on the computational complexity of the validation task of a

CHAPTER 11 BIBLIOGRAPHIC NOTES 241

communicating finite state machine model, see for instance Cunha and Maibaum
[1981], Brand and Zafiropulo [1983], Apt and Kozen [1986], Reif and Smolka [1988].
In general, the problem of finding deadlocks in a system of communicating finite state
machines is PSPACE complete at best, and becomes formally undecidable when the
message channels are unbounded.

This result, of course, does not mean that any further analysis of finite state machine
models is pointless. It does mean that the complexity of a protocol validation algo-
rithm is a main concern. These algorithms can carry no more overhead than strictly
necessary to solve the problem. Though it can be tempting to extend a search algo-
rithm to capture more subtle features, it is generally ill-advised to do so if the method
is to survive application to problems of a realistic size.

The necessity of partial search techniques was first described in West [1986b] and in
Holzmann [1985, 1987a]. An overview of a range of search heuristics that have since
been invented for partial searches can be found in Lin, Chu and Liu [1987]. The ran-
dom state space exploration method as first studied by Colin West [1986b, 1989].
Probabilistic partial search techniques were described by Maxemchuck and Sabnani
[1987]. A scatter search technique with guiding expressions was introduced in Pageot
and Jard [1988]. A heuristic for partial orders was first suggested in Holzmann
[1985]. Several more formal approaches have been investigated in the last few years,
e.g., Probst [1990], Valmari [1990] and Godefroid [1990]. The fair progress state
exploration heuristic was first suggested in Rubin and West [1982], and further
explored in Gouda and Han [1985]. Maximum progress state exploration was
described in Gouda and Yu [1984]. The concept of ‘‘protocol projections’’ was intro-
duced in Lam and Shankar [1984].

The bit state space technique was first described in Holzmann [1987b] and elaborated
in Holzmann [1988]. The hashing technique is based on a much older technique
called ‘‘scatter storage,’’ described in Morris [1968], and applied in McIlroy [1982].
The bit state space search technique can easily be applied to all FSM based models,
e.g., Rafiq and Ansart [1983], Estelle, e.g., Richier et al. [1987], the S/R model,
Aggarwal, Kurshan and Sharma [1983], and Petri Net models, e.g., Bourguet [1986],
to name just a few.

The extension of the exhaustive search algorithm with assertion proving capabilities
was described in Holzmann [1987a]. An comparison of search algorithms based on
reachability analysis appeared in Holzmann [1990].

The algorithm for the detection of non-progress cycles has not been published before.
The algorithm for the detection of acceptance cycles, for instance in the context of a
temporal claim, is due to Mihalis Yannakakis of AT&T Bell Laboratories. It was first
described in Courcoubetis, Vardi, Wolper, and Yannakakis [1990]. A standard algo-
rithm for detecting strongly connected components in a graph can be found in Aho,
Hopcroft and Ullman [1974].

The application of pure finite state models to the protocol validation problem can be

242 PROTOCOL VALIDATION CHAPTER 11

found in, for instance, Brand and Zafiropulo [1983], Bochmann [1983], or Knudsen
[1983].

Many interesting approaches to the protocol validation problem could not be dis-
cussed here. In particular this goes for the work on the S/R model and omega regular
languages, Aggarwal, Kurshan and Sharma [1983], Har’El and Kurshan [1990], and
model checking systems for circuit verification, e.g., Clarke [1982], Browne, Clarke,
Dill, and Mishra [1986].

