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10.1 INTRODUCTION
One of the toughest open problems in protocol design is finding a discipline of pro-
gramming that can guarantee a priori the derivation of a functionally correct protocol
that is free of dynamic errors such as deadlock. A proper design discipline will lead
to a smaller and more effective product that is easier to maintain and modify. As yet,
little progress has been made in this area. This chapter is therefore necessarily tenta-
tive.

We briefly discuss three methods for interactively building correct protocol specifica-
tions. The first two of these methods focus on the functionality of a protocol design;
the third emphasizes structure.

Bear in mind that a protocol synthesis method cannot synthesize service specifica-
tions. No automated tool can determine the purpose of a new protocol. The design
problem is to find a protocol that (1) realizes a given service, and (2) does so in an
error-free manner. All three methods discussed below assume that a service specifica-
tion exists, either in a formalized form or informally in the mind of the user of the
synthesis tool.

In the next section we illustrate a protocol derivation method that allows us to syn-
thesize the protocol components from a formal specification. We do this by formaliz-
ing the service specification in such a way that a skeleton structure for the protocol
procedure rules of each communicating process can be extracted from it. The syn-
thesized processes can then be fine-tuned manually.

10.2 PROTOCOL DERIVATION
In protocol validation we may want verify assertions that the user makes about the
structure of possible dialogues between processes. A dialogue is a sequence of mes-
sage exchanges that can be observed at a given interface, e.g., a set of channels.

Consider the problem of designing a connection management protocol.
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Figure 10.1 — Interface
There are two processes, a and b, that share access to a full-duplex data link, indicated
with two arrows in Figure 10.1. Processes a and b have to coordinate the beginning
and the ending of data transfers across the link.

Typically, the designer is asked to supply two process specifications, one for each
side of the connection, in an attempt to constrain the possible dialogues to a well-
defined set. An assertion about these constraints can be formalized and verified by an
automated protocol validator. In protocol synthesis we can try to turn this problem
around by beginning with a specification of the set of allowable dialogues and deriv-
ing the processes from them so that, by construction, these processes will be unable to
exhibit any other than the stated behavior.

We provide a specification for two processes. Either side can initiate a connection; if
both processes try to do so at the same time the attempt fails. The behavior can be
specified as a six-state machine, as follows, in an informal notation resembling
PROMELA. The notation a->b informally encodes the direction in which a message
flows.

spec manager
{
idle:

if
:: b->a!connect -> goto b_opens
:: a->b!connect -> goto a_opens
fi;

a_opens:
if
:: b->a!accept -> goto connected
:: b->a!connect -> goto idle /* conflict */
fi;

b_opens:
if
:: a->b!accept -> goto connected
:: a->b!connect -> goto idle /* conflict */
fi;

connected:
if
:: b->a!disconnect -> goto b_closes
:: a->b!disconnect -> goto a_closes
fi;
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a_closes:
b->a!disconnect -> goto idle;

b_closes:
a->b!disconnect -> goto idle

}

This specification describes the message exchanges that are visible at the interface
between a and b, i.e., at the dotted line in Figure 10.1. There may be other messages
that are handled by a or b, and there may be many other tests and data manipulations
to be performed. The above specification is therefore partial.

Some of the messages are to be sent by process a and some are to be received by a.
We can derive a skeleton process description from the specification that describes pre-
cisely the constraints for process a. Mechanically, we can then derive the following
state machine for process a. We can say it is the derivative of specification manager
with respect to a.

proctype D_manager_D_a()
{
R0: if

:: b!connect -> goto R1
:: a?connect -> goto R2
fi;

R1: if
:: a?connect -> goto R0
:: a?accept -> goto R3
fi;

R2: if
:: b!connect -> goto R0
:: b!accept -> goto R3
fi;

R3: if
:: b!disconnect -> goto R4
:: a?disconnect -> goto R5
fi;

R4: a?disconnect -> goto R0;
R5: b!disconnect -> goto R0
}

The state machine for process b is similar, since the protocol specification is sym-
metric. The derivation is trivial in this case and can easily done by hand. In general,
though, the derivation is more subtle.

Consider the following example that describes the behavior of a simple alternating bit
protocol. The interface is the same as shown in Figure 10.1. The specification for the
messages that cross the interface at the dotted line, however, is now formalized as fol-
lows.

spec abp
{ do

:: a->b!msg0;
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do
:: b->a!ack0; break
:: b->a!ack1; a->b!msg0
od;

a->b!msg1;
do
:: b->a!ack0; a->b!msg1
:: b->a!ack1; break
od

od
}

This single specification completely describes the behavior of two protocol machines,
the sender a and the receiver b. The two derivations produce the following results.

proctype D_abp_D_a()
{
R0: b!msg0 -> goto R1;
R1: if

:: a?ack0 -> goto R2
:: a?ack1 -> goto R0
fi;

R2:
b!msg1 -> goto R1

}
proctype D_abp_D_b()
{
R0: b?msg0 -> goto R1;
R1: if

:: a!ack0 -> goto R2
:: a!ack1 -> goto R0
fi;

R2: b?msg1 -> goto R1
}

According to this specification the wrong acknowledgment may be repeated by the
receiver and will be ignored by the sender. As a result, the skeleton state machine for
b includes behavior that is permissible, but not desirable. To avoid this, we must
rewrite the derived process, manually, as follows, splitting state R1 into two halves:

proctype D_abp_D_b()
{
R0: b?msg0 -> goto R11;
R11: if

:: a!ack0 -> goto R2
fi;

R12: if
:: a!ack1 -> goto R0
fi;

R2: b?msg1 -> goto R12
}

which can be simplified via
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proctype D_abp_D_b()
{
R0: b?msg0 -> goto R11;
R11: a!ack0 -> goto R2;
R12: a!ack1 -> goto R0;
R2: b?msg1 -> goto R12
}

to its final form:

proctype D_abp_D_b()
{
R0: b?msg0 -> a!ack0;

b?msg1 -> a!ack1;
goto R0

}

Now let us see how the derivation is affected if we expand the specification with a
message to a third process c that logs all correctly transmitted and acknowledged mes-
sages with sequence number zero.

spec abp2
{

do
:: a->b!msg0;

do
:: b->a!ack0; a->c!log; break
:: b->a!ack1; a->b!msg0
od;
a->b!msg1;
do
:: b->a!ack0; a->b!msg1
:: b->a!ack1; break
od

od
}

The derivative of the specification for c is simply

proctype D_abp2_D_c()
{
R0: c?log -> goto R0
}

The derivative for b remains unchanged, but the derivative for a becomes

proctype D_abp2_D_a()
{
R0: b!msg0 -> goto R1;
R1: if

:: a?ack0 -> goto R2
:: a?ack1 -> goto R0
fi;

R2: c!log -> goto R3;
R3: b!msg1 -> goto R4;
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R4: if
:: a?ack0 -> goto R3
:: a?ack1 -> goto R0
fi

}

10.3 DERIVATION ALGORITHM
The skeleton machine can be derived from a specification in two steps. First, if we
derive a machine for process p, all messages in the specification that are not either
sent or received by p are replaced by skip. Next, all specifications of the type

q->p!message

are translated into

p?message

and, similarly, all specifications

p->q!message

become

q!message

The last step is to handle cases such as these

R0: if
:: p?message0 -> goto R1
:: skip -> goto R2
fi

where the skip was inserted in the first step. In this case, an event outside the derived
process can make the system change state, presumably changing the future behavior
of the environment of the derived process. The derived process does not, and cannot,
know when or if this invisible transition takes place. It must, however, be capable of
accepting any incoming messages that may arrive after the invisible transition takes
place. Therefore, for the above example, state R0 of the derived process inherits all
receive operations from state R2, together with the corresponding transitions.
If state R2 is specified

R2: p?message1 -> goto R3

the new state R0 becomes

R0: if
:: p?message0 -> goto R1
:: p?message1 -> goto R3
fi

If state R2 offers a choice
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R2: if
:: p?message1 -> goto R3
:: q!message2 -> goto R0
:: p?message3 -> goto R0
fi

we inherit only the receive operations and write

R0: if
:: p?message0 -> goto R1
:: p?message1 -> goto R3
:: p?message3 -> goto R0
fi

The only remaining possibility is if state R2 specifies only a send operation:

R2: q!message2 -> goto R0

In this case the skip transition is omitted, and we write

R0: if
:: p?message0 -> goto R1
fi

which simplifies to

R0: p?message0 -> goto R1

This last case may be flagged as a potential inconsistency in the specification. The
specification in this case requires a process to wait for an event that it cannot observe.

The last derivation step above is repeated until all the ‘‘hidden’’ transitions have been
removed. Note that if the target state R2 has its own skip transitions the last deriva-
tion step may require the inspection of still more states.

R2: if
:: p?message1 -> goto R3
:: skip -> goto R0
:: skip -> goto R4
fi

The derivation algorithm can produce skeleton state machines for the target processes
that adhere to the constraints of the specification. It illustrates one of the purposes of
a protocol synthesis procedure: offering automated assistance to a protocol designer.
The designer can concentrate on defining just one central item: the protocol
specification itself.

Unfortunately, this design procedure gives no guarantee that the interaction of the
derived processes will not lead to dynamic errors, such as deadlocks. Concentrating
on that aspect of the design problem leads to a different type of design procedure,
which we discuss next.
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10.4 INCREMENTAL DESIGN
The following design method, originally published in 1980, is often used as a guide-
line for attempts to build protocol synthesis procedures. The procedure is interactive,
and assumes the existence of an independent service specification that the designer
will follow while developing the protocol processes.

The user specifies only message transmissions. The system deduces where in the pro-
tocol the corresponding receive actions are required. Initially, all processes, i.e., the
‘‘skeleton state machines’’ from the first method, are assigned a dummy initial state.
The designer can now select one of the states in the system and extend it with a mes-
sage transmission. The designer must specify the name of the message, its parame-
ters, and its destination. For the process that is to transmit the message, the designer
must also specify a successor state for the send action: either an existing or a newly
created process state.

For each transmission edge added to one of the processes in this way, the synthesis
software traces all possible states of the destination process in which the message can
be received, and updates the state machine for that process automatically. The user
has to name the successor states for all message receptions events that are added.

After each update, the incremental design procedure can warn the designer which
stable state tuples have been created. A stable state tuple is defined as a composite
system state in which no messages are in transit or stored in buffers. If such a compo-
site system state is reachable, the state must persist until one of the processes sends a
message. If none of the processes can transmit a message, the reachable stable state
tuple corresponds to a deadlock.

The designer in this method can only specify send actions. The place where the
corresponding receive actions are required is deduced by the synthesis software. This
avoids unspecified receptions and certain types of deadlock, but it cannot guarantee
the functional correctness of the protocol. That is, the synthesis method cannot
guarantee that a protocol synthesized in this way will realize a given service.

10.5 PLACE SYNCHRONIZATION
The third approach can be considered a compromise between the first two methods
discussed above. This method starts with a service specification written as a regular
expression of synchronization requirements. The symbols in the service expression
are the names of service primitives. The operators of the expression determine how
the execution of these primitives is to be synchronized. In the expression

a 1 ; (b 2 c 3 ) (1)

the superscripts denote service access points, the physical places where the service
primitives are executed. The semicolon is used to indicate a sequential execution: the
execution of service primitive a, at the place represented by 1, must have been com-
pleted before the primitives b or c can be executed at places 2 or 3, respectively. The
parallel bars are used to indicate that the two subexpressions can be executed
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simultaneously. Parentheses are used for grouping. A single bar between two subex-
pressions implies alternation, either one of the two subexpressions can be executed,
but not both.

To enforce the synchronization requirements formalized in the service expression, the
synthesis algorithm can derive a protocol that controls the execution of the service
primitives. The sequential execution in expression (1), for instance, can be enforced
by having the first primitive a 1 complete by transmitting a unique message from place
1 to places 2 and 3, and by delaying the execution of primitives b 2 and c 3 until that
message has arrived.

The synthesis method is appealing, but it also has drawbacks. The method can derive
protocols for only a limited class of global synchronization requirements. Not all pro-
tocol specifications can easily be expressed in those terms. Consider a reader/writer
protocol for a data base shared between multiple processes. One method to secure the
integrity of the data is to allow multiple readers to be active, but to allow access to at
most one writer process at a time, and then only when no reader processes are active.

If a reader process i, requiring access to item n, is represented by the symbol r n i , and
the corresponding writer process is represented by w n i , the design problem is now to
write a regular expression on these symbols, using the operators ;, , and . To prop-
erly describe the solution, we must count the number of active processes of each type
and express the synchronization requirement as conditions on those counts. But the
regular expression does not allow us to do that. If a synchronizing expression can be
found, it may not be easier to find it than to invent the final protocol directly.

10.6 SUMMARY
An ideal method for protocol design would be to build a model from scratch that can
be proven correct by construction. No such method exists, although many interesting
attempts have been made. In this chapter we have given an overview of three such
attempts. The first method allows one to extract skeleton state machines from a sin-
gle, formalized statement of a correctness requirement. The method has drawbacks,
the most important of which are:

The method does not provide any help in the correct formalization of the protocol
specification itself.
The derived processes must, in some cases, be tuned to remove permissible but
undesirable behavior. The method offers no help here, nor can it help us to verify
that the alterations preserve the correctness of the derivations.

The second method interactively guides the protocol designer to a complete design
and issues warnings on potential deadlocks. The most important drawbacks of this
approach are:

The method does not guarantee that the protocol constructed realizes a given ser-
vice.
The method does not guarantee absence of dynamic errors such as deadlocks. It
can only warn for the possibility of a deadlock. When the number of possible



212 PROTOCOL SYNTHESIS CHAPTER 10

deadlock states rises, as it does in a design of a realistic size, it quickly becomes
impossible for a human designer to verify manually that all potential deadlock
states are effectively unreachable.

The third method derives protocols from concise expressions of global synchroniza-
tion requirements. Its main drawback is:

Only a restricted class of protocol design problems can be expressed in the regular
expression language on which the method is based.

All three methods share one other drawback that is perhaps of even greater impor-
tance: they do not really seem to facilitate the design process.

EXERCISES

10-1. 10-1. Try to derive Lynch’s protocol (Chapter 2) and parts of the file server protocol (Chapter
7) with a protocol synthesis method.

10-2. 10-2. Some protocol synthesis methods that have been described in the literature guarantee
‘‘correctness by construction’’ with the help of an exhaustive reachability analysis algo-
rithm that is run over partial specifications during the design. Consider the possible
drawbacks of this method.

10-3. 10-3. Compare the place synchronization method with the protocol derivation method. Both
start out with an abstract ‘‘service specification’’ from which a protocol is derived. How
do the two types of service specifications differ? Do they have the same expressive
power?

10-4. 10-4. Develop a workable protocol synthesis method and mail the solution to the author for the
next edition of this book.

BIBLIOGRAPHIC NOTES
This chapter has given only a brief overview of synthesis methodologies since, alas,
none exist that can adequately solve the protocol design problem.

The best known method for protocol synthesis is the incremental method from Sec-
tion 10.4. It was first described in Brand and Zafiropulo [1980]. The method has
many variations and has even been applied in protocol validation algorithms. The
place synchronization method from Section 10.5 is a formal method to derive parts of
a lower-level protocol from a higher-level service specification. The method is fully
developed in Gotzheim and Bochmann [1986]. A variant can also be found in Chu
and Liu [1988].

The derivation method from Section 10.2 can be seen as an extension of earlier work
on methods to derive the description of a protocol entity from a specification of its
communication partner, see Zafiropulo et al. [1980], Gouda [1983], Merlin and Boch-
mann [1983].

Not studied here is a potentially interesting, recent application of control theory to the
protocol synthesis problem that was reported in Rudie and Wonham [1990]. In this
approach, the original protocol system is first described as an uncontrolled process in
which all feasible actions, such as message transfers, happen chaotically. A high-
level service specification details the constraints for the system. Assuming that the



CHAPTER 10 BIBLIOGRAPHIC NOTES 213

process contains a sufficient number of control points, a protocol can then be derived
as a minimal restriction of the chaotic process behavior that satisfies the system con-
straints.

Several methods have also been studied for partitioning a sequential program into a
distributed program, preserving functionality and correctness, e.g., Moitra [1985], Pri-
noth [1982]. These algorithms require an initial solution to the problem, through the
derivation of a sequential program, before the synthesis method itself can be applied.

A general overview of protocol synthesis methods can be found in Chu [1989].


