
FLOW CHART LANGUAGE B

The flow chart language used in Part I is based on a small subset of the CCITT
Specification and Description Language SDL, CCITT [1988], Rockstrom and Saracco
[1982], SDL [1987], Saracco, Smith and Reed [1989]. There are a few deviations that
bring its semantics closer to that of the PROMELA language discussed in Chapters 5, 6
and Appendix C.

Each self-contained flow chart defines a process that, at least conceptually, is exe-
cuted concurrently with all other similarly defined processes. Each flow chart has one
entry point that is labeled either with a process name or with the symbol start.

As in a traditional flow chart, the actions of a process are specified with symbols of
various shapes linked by directed arcs. Six different types of symbols are used, as
illustrated in Figure B.1.

Statement Test Wait

Internal Input Output

Figure B.1 — Flow Chart Symbols
These symbols represent:

Statements, e.g, assignments
Boolean tests, e.g., expressions
Wait conditions, e.g., receives
Internal events, e.g., timeouts
Message inputs and outputs

The boolean tests are evaluated without delay. Wait conditions, however, are used to
model process synchronizations. They specify that the executing process does not
proceed beyond that point in the program unless a specific condition holds. The two
remaining flow chart elements, used for connecting the symbols from Figure B.1, are:

Directed arcs
Connectors

This gives us a total of eight basic building blocks to construct charts.

380



The directed arcs indicating the control flow can only converge in connectors, as illus-
trated in Figure B.2. They can diverge, without connectors, at wait conditions and at
boolean tests.

Figure B.2 — Connector and Arcs
Each flow chart process has associated with it an implicit message queue, theoreti-
cally of infinite capacity, that is used to store the incoming messages. Messages are
appended to the queues in output statements and they are retrieved from the queues in
input statements. Message names must uniquely identify the receiving process. Note
that a message name can always be extended with the name of a process to guarantee
this.

Outputs, statements, wait conditions, internal events, and boolean tests may appear
anywhere in a flow chart. Inputs may only follow a wait symbol labeled receive.
More than one input may appear.

receive

acktimeout

Figure B.3 — Inputs and Timeouts
A wait condition labeled receive will delay the executing process until the implicit
message queue of that process contains, in its first slot, a message of a type specified
in one of the inputs that follow the wait symbol in the flow chart. It is a protocol error
if the message in the first slot of the queue is of another type.

A timeout is an internal synchronizing condition that is represented as an internal
event. The corresponding condition will always eventually become true. If a timeout
event is specified following a wait symbol labeled receive, the executing process can
abort the wait for an incoming message and continue with the execution of the state-
ments following the timeout.

The wait symbol can also be labeled with an expression. In this case the executing
process will be delayed until the expression, when evaluated, yields the boolean value
true (or any non-zero integer value).



A boolean test must be labeled with an expression, but in this case the expression is
evaluated once and the resulting value is used to select an outgoing link with the
corresponding label. The process is not delayed. It is an error if the evaluation of the
expression yields a value for which there is no matching label on any of the outgoing
arcs. The effect of such an error is undefined.

next:a,b

msg:a,b

msg:a,b

accept:a,b

timeout

Figure B.4 — Internal Events
Two special internal actions modeling file access are predefined: next and accept.
The notation next:a,b indicates the internal retrieval of data items a and b from an
internal data base. Similarly, accept:a,b indicates the storage of the data items in an
internal data base. The two actions next and accept include all background processing
that is associated with the retrieval and storage of data items, respectively. Their
usage is illustrated in Figure B.4.

The use of variables and abstract data types is not restricted by the flow chart
language. Similarly, the contents of a statement box can be anything that does not
involve wait conditions, receiving or sending messages, timeouts and boolean tests.

For examples, refer to the flow charts in Chapters 2 and 4.


