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Abstract—This paper introduces GRASP (Generic seaRch Algorithm for the Satisfiability Problem), a new search algorithm for
Propositional Satisfiability (SAT). GRASP incorporates several search-pruning techniques that proved to be quite powerful on a wide
variety of SAT problems. Some of these techniques are specific to SAT, whereas others are similar in spirit to approaches in other
fields of Artificial Intelligence. GRASP is premised on the inevitability of conflicts during the search and its most distinguishing feature is
the augmentation of basic backtracking search with a powerful conflict analysis procedure. Analyzing confiicts to determine their
causes enables GRASP to backtrack nonchronologically to earlier levels in the search tree, potentially pruning large portions of the
search space. In addition, by “recording” the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts
later on in the search. Finally, straightforward bookkeeping of the causality chains leading up to conflicts aliows GRASP to identify
assignments that are necessary for a solution to be found. Experimental results obtained from a large number of benchmarks indicate
that application of the proposed conflict analysis techniques to SAT algorithms can be extremely effective for a large number of

representative classes of SAT instances.

Index Terms—Satisfiability, search algorithms, conflict diagnosis, conflict-directed nonchronological backtracking, conflict-based

equivalence, failure-driven assertions, unique implication points.

1 Introduction

HE Boolean satisfiability problem (SAT) appears in

many contexts in the field of computer-aided design
of integrated circuits, including automatic test pattern
generation (ATPG), timing analysis, delay fault testing,
and logic verification, to name just a few. Though well-
researched and widely investigated, it remains the focus of
continuing interest because efficient techniques for its
solution can have great impact. SAT belongs to the class
of NP-complete problems whose algorithmic solutions are
currently believed to have exponential worst case complex-
ity [13]. Over the years, many algorithmic solutions have
been proposed for SAT, the most well-known being the
different variations of the Davis-Putnam procedure [7]. The
best known version of this procedure is based on a
backtracking search algorithm that, at each node in the
search tree, elects an assignment and prunes subsequent
search by iteratively applying the unit clause and the pure
literal rules [39]. Iterated application of the unit clause rule is
commonly referred to as Boolean Constraint Propagation
(BCP) [39] or as derivation of implications in the electronic
CAD literature [1].

Most of the recently proposed improvements to the basic
Davis-Putnam procedure [3], [6], [11], {12], [22], [30], [36],
[39] can be distinguished based on their decision making
heuristics or their use of preprocessing or relaxation
techniques. Common to all these approaches, however, is
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the chronological nature of backtracking. Only in [28] is a
nonchronological backtracking procedure outlined for sol-
ving problems in Logic Truth Maintenance Systems
(LTMS), but it is only sketched and no experimental results
are presented. Nevertheless, nonchronological backtracking
techniques have been extensively studied and applied to
different areas of Artificial Intelligence, particularly Truth
Maintenance Systems (TMS) [9], [35], Constraint Satisfac-
tion Problems (CSP) [8], [14], [15], [31], and Logic Program-
ming [4], in some cases with very promising experimental
results [8], [15]. In recent years, extensive research work has
been dedicated to the development of local search algo-
rithms for SAT [33]. These algorithms are, in general,
incomplete, i.e., they may not find a solution and cannot
prove unsatisfiability. Nevertheless, local search algorithms
have been shown to be extremely effective on specific
classes of satisfiable instances of SAT.

Interest in the direct application of SAT algorithms to
electronic design automation (EDA) problems has been on
the rise recently [5], [22], [29], [36]. In addition, improve-
ments to the traditional structural (path sensitization)
algorithms for some EDA problems, such as ATPG, include
search-pruning techniques that are also applicable to SAT
algorithms in general [16], [21], [25].

This paper introduces a new procedure for conflict
analysis in satisfiability algorithms and describes its use in a
configurable algorithmic framework for solving SAT pro-
blems. Titled GRASP' (Generic seaRch Algorithm for the
Satisfiability Problem), this framework is premised on the
inevitability of conflicts during search. By noting that
conflicts arise when certain clauses are missing from the
problem specification, GRASP views conflict occurrence as
an opportunity to augment the problem description with
such conflict-induced clauses. The addition of these clauses
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helps to prune the search for a solution in three comple-
mentary ways. First, annotation of the literals in a conflict-
induced clause by the decision level at which their values
were assigned enables GRASP to backtrack nonchronologi-
cally to earlier levels in the search tree. Second, by
“recording” these clauses, GRASP can recognize: and
preempt the occurrence of similar conflicts later on.
search. And third, straightforward bookkeeping o

causality chains leading up to conflicts allows GRASP to -

identify assignments that are necessary for a solution to be
found. Experimental results obtained from a large number
of benchmarks [18] provide ample evidence that application
of the proposed conflict analysis techniques to SAT
algorithms can be extremely effective for a large number
of representative classes of SAT instances.

The remainder of this paper is organized in four sections.
In Section 2, we introduce the basics of backtracking search,
particularly our implementation of BCP, and describe the
overall architecture of GRASP. This is followed, in Section 3,
by a detailed discussion of the procedures for conflict
analysis and how they are implemented. (In the Appendix,
we prove that the GRASP SAT algorithm is both correct and
complete.) Extensive experimental results on a wide range
of benchmarks are presented and analyzed in Section 4. In
particular, GRASP is shown to outperform several state-of-
the-art SAT algorithms [2], [6], [10], [11], [30], [33], [36], {19]
on most, but not all, benchmarks. Furthermore, the
experimental results strongly suggest that, for several
practical classes of SAT instances, local search algorithms
may be inadequate. This is particularly significant when-
ever the SAT instances are likely to be unsatisfiable, as is
typical in Automated Theorem Proving and in several
Electronic Design Automation tasks. The paper concludes
in Section 5 with some suggestions for further research.

2 Backtrack Search for CNF Satisfiability

2.1 Basic Definitions and Notation

A conjunctive normal form (CNF) formula ¢ on n binary
variables 1, --,z, is the conjunction (AND) of m clauses
w1, +,wm each of which is the disjunction (OR) of one or
more literals, where a literal is the occurrence of a variable
or its complement. A formula ¢ denotes a unique n-variable
Boolean function f(z1,---,z,) and each of its clauses
corresponds to an implicate of f [17, p. 288]. Clearly, a
function f can be represented by many equivalent CNF
formulas. A formula is complete if it consists of the entire
set of prime implicates [17, p. 288] for the corresponding
function. In general, a complete formula will have an
exponential number of clauses. We will refer to a CNF
formula as a clause database and use “formula,” “CNF
formula,” and “clause database” interchangeably. The
satisfiability problem (SAT) is concerned with finding an
assignment to the arguments of f(xz,- - -, z,) that makes the
function equal to 1 or proving that the function is equal to
the constant 0.

1. The GRASP software is available for downloading from http://
andante.eecs.umich.edu/grasp-1-0.tar.gz or http://algos.inesc.pt/grasp/
grasp.tar.gz.

A backtracking search algorithm for SAT is implemen-
ted by a search process that implicitly traverses the space
of 2" possible binary assignments to the problem
variables. During the search, a variable whose binary
value has already been determined is considered to be
assigned; otherwise, it is unassigned with an implicit value
of X = {0,1}. A truth assignment for a formula ¢ is a set

- of assigned variables and their corresponding binary

values. It will be convenient to represent such assign-
ments as sets of variable/value pairs; for example
A ={(z1,0), (z7,1), (213,0)}. Alternatively, assignments
can be denoted as A = {z; = 0,27 = 1,213 = 0}. Sometimes
it is convenient to indicate that a variable z is assigned
without specifying its actual value. In such cases, we will
use the notation v(z) to denote the binary value assigned to
. An assignment A is complete if [A| = n; otherwise, it is
partial. Evaluating a formula ¢ for a given a truth
assignment A yields three possible outcomes: ¢|, = 1 and
we say that ¢ is satisfied and refer to A as a satisfying
assignment; ¢|, = 0, in which case ¢ is unsatisfied and A4 is
referred to as an unsatisfying assignment; and |, = X,
indicating that the value of ¢ cannot be resolved by the
assignment. This last case can only happen when A is a
partial assignment. An assignment partitions the clauses of
¢ into three sets: satisfied clauses (evaluating to 1);
unsatisfied clauses (evaluating to 0); and unresolved clauses
(evaluating to X). The unassigned literals of a clause are
referred to as its free literals. A clause is said to be unit if it is
unresolved and the number of its free literals is one.

2.2 Formula Satisfiability

Formula satisfiability is concerned with determining if a
given formula ¢ is satisfiable and with identifying a
satisfying assignment for it. Starting from an empty truth
assignment, a backtrack search algorithm traverses the
space of truth assignments implicitly and organizes the
search for a satisfying assignment by maintaining a decision
tree. Each node in the decision tree specifies an elective
assignment to an unassigned variable; such assignments are
referred to as decision assignments. A decision level is
associated with each decision assignment to denote its
depth in the decision tree; the first decision assignment at
the root of the tree is at decision level 1. The search process
iterates through the steps of:

1. Extending the current assignment by making a
decision assignment to an unassigned variable. This
decision process is the basic mechanism for exploring
new regions of the search space. The search
terminates successfully if all clauses become satis-
fied; it terminates unsuccessfully if some clauses
remain unsatisfied and all possible assignments
have been exhausted.

2. Extending the current assignment by following the
logical consequences of the assignments made thus
far. The additional assignments derived by this
deduction process are referred to as implication assign-
ments or, more simply, implications. The deduction
process may also lead to the identification of one or
more unsatisfied clauses implying that the current
assignment is not a satisfying assignment. Such an
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occurrence is referred to as a conflict and the
associated unsatisfying assignment is called a con-
flicting assignment.

3. Undoing the current assignment, if it is conflicting,
so that another assignment can be tried. This
backtracking process is the basic mechanism for
retreating from regions of the search space that'do
not correspond to satisfying assignments.

The decision level at which a given variable z is either
electively assigned or forcibly implied will be denoted by
6(z). When relevant to the context, the assignment notation
introduced earlier may be extended to indicate the decision
level at which the assignment occurred. Thus, z =v@d
would be read as “z becomes equal to v at decision level d.”

The average complexity of the above search process
depends on how decisions, deductions, and backtracking
are made. It also depends on the formula itself. The
implications that can be derived from a given partial
assignment depend on the set of available clauses. In
general, a formula consisting of more clauses will enable
more implications to be derived and will reduce the number
of backtracks due to conflicts. The limiting case is the
complete formula that contains all prime implicates. For
such a formula, no conflicts can arise since all logical
implications for a partial assignment can be derived.” This,
however, may not lead to shorter execution times since the
size of such a formula may be exponential.

2.3 Function Satisfiability

Given an initial formula ¢, a search system can attempt to
augment it with additional implicates to increase the
deductive power during the search process. We propose a
search mechanism that identifies additional implicates by
diagnosing the causes of conflicts. Our approach considers
the occurrence of a conflict, which is unavoidable for an
unsatisfiable instance unless the formula is complete, as an
opportunity to “learn from the mistake that led to the
conflict” and introduces additional implicates to the clause
-database only when it stumbles. Conflict diagnosis produces
three distinct pieces of information that can help speed up
the search:

1. New implicates that did not exist in the clause
database and that can be identified with the
occurrence of the conflict. These clauses may be
added to the clause database to avert future
occurrence of the same conflict and represent a form
of conflict-based equivalence (CBE).

2. Anindication of whether the conflict was ultimately
due to the most recent decision assignment or to an
earlier decision assignment.

a. If that assignment was the most recent (i.e., at
the current decision level), the opposite assign-
ment (if it has not been tried) is immediately
implied as a necessary consequence of the
conflict; we refer to this as a failure-driven
assertion (FDA).

b. If the conflict resulted from an earlier decision
assignment (at a lower decision level), the search

2. This assertion is proven in Theorem 3 in the Appendix.
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can backtrack to the corresponding level in the
decision tree since the subtree rooted at that
level corresponds to assignments that will yield
the same conflict. The ability to identify a
backiracking level that is much earlier than the
current decision level is a form of nonchronolo-
gical backtracking that we refer to as conflict-
directed backtracking (CDB),® and has the poten-
tial of significantly reducing the amount of
search.

These conflict diagnosis techniques are discussed further
in Section 3.

2.4 Structure of the Search Process

The basic mechanism for deriving implications from a given
clause database is Boolean constraint propagation (BCP)
[11], [39]. Consider a formula ¢ containing the clause w =
(z 4+ —y) and assume y = 1. For any satisfying assignment to
¢, w requires that  be equal to 1, and we say that y =1
implies x = 1 due to w. In general, given a unit clause (I; +
-++ 4+ i) of ¢ with free literal /;, consistency requires [; =1
since this represents the only possibility for the clause to be
satisfied. If I; = z, then the assignment = = 1 is required; if
lj=-z, then x =0 is required. Such assignments are
referred to as logical implications (implications, for short)
and correspond to the application of the unit clause rule
proposed by Davis and Putnam [7]. BCP refers to the
iterated application of this rule to a clause database until the
set of unit clauses becomes empty or one or more clauses
become unsatisfied.

Let the assignment of a variable z be implied due
to a clause w=(l; +---+ ). The antecedent assignment
of z, denoted as A“(z), is defined as the set of
assignments to variables other than z with literals in
w. Intuitively, A“(z) designates those variable assign-
ments that are directly responsible for implying the
assignment of z due to w. For example, the ante-
cedent assignments of z, y, and z due to the clause
w=(z+y+z) are, respectively, A“(z) ={y=0,z2=1},
A°(y) ={x=0,z2=1}, and A¥(z) = {x =0,y = 0}. Note
that the antecedent assignment of an electively
assigned variable is empty.

The sequence of implications generated by BCP is
captured by a directed implication graph I defined as follows
(see Fig. 1):

1. Each vertex in I corresponds to a variable assign-
ment z = v(z).

2. The predecessors of vertex z =v(x) in I are the
antecedent assignments A“(z) corresponding to the
unit clause w that led to the implication of z. The
directed edges from the vertices in A“(z) to vertex
z = v(z) are all labeled with w. Vertices that have no
predecessors correspond to decision assignments.

3. Special conflict vertices are added to I to indicate the
occurrence of conflicts. The predecessors of a conflict
vertex K correspond to variable assignments that
force a clause w to become unsatisfied and are
viewed as the antecedent assignment A“(x). The

3. The designation CDB is used instead of dependency-directed backtracking [35]
because the backtracking procedure is tightly associated with BCP.
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directed edges from the vertices in A“(z) to K are all
labeled with w.
The decision level of an implied variable x is related to
those of its antecedent variables according to:

6(z) = max{5(y)|(y, v(y)) € A“(2)}. @

2.5 Search Algorithm Template

The general structure of the GRASP search algorithm is
shown in Fig. 2. We assume that an initial clause database ¢
and an initial assignment A, at decision level 0, are given.
This initial assignment, which may be empty, may be
viewed as an additional problem constraint and causes the
search to be restricted to a subcube of the n-dimensional
Boolean space. As the search proceeds, both ¢ and A are
modified. The recursive Search () function consists of four
major operations:

1. Decide (), which chooses a decision assignment at
each stage of the search process. Decision proce-
dures are commonly based on heuristic knowledge.
For the results given in Section 4, the following
greedy heuristic is used:

At each node in the decision tree evaluate the number
of clauses directly satisfied by each assignment to each
variable. Choose the variable and the assigninent that
directly satisfies the largest number of clauses.

Other decision making procedures have been im-
plemented in the GRASP algorithmic framework,
particularly those described in [11], [26]. For most of
these heuristics, preference is given to assignments
that simplify the clauses the most and can lead to
more implications due to BCP. This is in explicit
contrast with our heuristic which always attempts to
satisfy the largest number of clauses. We chose to
employ this heuristic in our experimental evaluation
because of its simplicity and to highlight the
effectiveness of conflict analysis.

2. Deduce (), which implemernits BCP and (implicitly)
maintains the resulting implication graph. The
pseudocode for this procedure is shown in Fig. 3.
The algorithm repeatedly applies the unit clause rule
[71 while unit clauses exist. It returns with a
SUCCESS indication unless one or more clauses
become unsatisfied. In that case, a conflict vertex is
added to the implication graph and a CONFLICT
indication is returned.

3. Diagnose (), which identifies the causes of conflicts
and can augment the clause database with addi-
tional implicates. Realization of different conflict
diagnosis procedures is the subject of Section 3.

4. Erase(), which deletes the assignments at the
current decision level.

The Search() function starts by calling Decide () to
choose a variable assignment at decision level d. It then
determines the consequences of this elective assignment by
calling Deduce (). If this assignment does not cause any
clauses to become unsatisfied, Search() is called recur-
sively at decision level d + 1. If, on the other hand, a conflict
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arises due to this assignment, the Diagnose () function is
called to analyze this conflict and to determine an
appropriate decision level for backtracking the search.
When Search{() encounters a conflict, it returns with a
CONFLICT indication and causes the elective assignment
made on entry to the function to be erased. We refer to
Decide (), Deduce (), and Diagnose() as the Decision,
Deduction, and Diagnosis engines, respectively. Different
realizations of these engines lead to different SAT algo-
rithms. For example, the Davis-Putnam procedure can be
emulated with the above algorithm by defining a decision
engine, requiring the deduction engine to implement BCP
and the pure literal rule, and organizing the diagnosis
engine to implement chronological backtracking.

~3 Conflict Analysis Procedures

When a conflict arises during BCP, the structure of the
implication sequence converging on a conflict vertex K is
analyzed to determine those (unsatisfying) variable assign-
ments that are directly responsible for the conflict. The
conjunction of these conflicting assignments is an implicant
that represents a sufficient condition for the conflict to arise.
Negation of this implicant, therefore, yields an implicate of
the Boolean function f (whose satisfiability we seek) that
does not exist in the clause database . This new implicate,
referred to as a conflict-induced clause,* provides the primary
mechanism for implementing failure-driven assertions,
nonchronological conflict-directed backtracking, and con-
flict-based equivalence (see Section 2.3).

We denote the conflicting assignment associated with a
conflict vertex K by A“(k) and the associated conflict-
induced clause by we(k). The conflicting assignment is
determined by a backward traversal of the implication
graph starting at K. Besides the decision assignment at the
current decision level, only those assignments that occurred
at previous decision levels are included in A“ (k). This is
justified by the fact that the decision assignment at the
current decision level is directly responsible for all implied
assignments at that level. Thus, along with assignments
from previous levels, the decision assignment at the current
decision level is a sufficient condition for the conflict. To
facilitate the computation of A“c(x), we partition the
antecedent assignments of K, as well as those for variables
assigned at the current decision level into two sets. Let z
denote either K or a variable that is assigned at the current
decision level. The partition of A(z) is then given by:®

A@) = {(y,v(y)) € A(2)[é(y) < 6(=)}

Z(z) = {(3:v(y)) € A(2)l6(y) = 6(2)}.
For example, referring to the implication graph of Fig. 1,
A(Z’G) = {xn =0@Q 3} and 2(1176) = {1124 =1@Q 6} Determi-
nation of the conflicting assignment A“¢(k) can now be
expressed as:

(2)

A“¢(k) = causes-of(k)
where causes_of{(.) is defined by:

4. Conditions similar to these implicates are referred to as “nogoods” in
TMS [9], [35] and in some algorithms for CSP [31]. Nevertheless, the basic
mechanism for creating conflict-induced clauses differs.



510

Current Truth Assignment:

Current Decision Assignment: {x; = 1@6}

®; = (=X +Xy)

W, = (—X + X3+ Xg)

W3 = (—Xy + =3+ Xy)

0y = (X4 + X5+ X50)

W5 = (X +Xg+ X)) X, =1@6
Wg = (—x5+—Xg)

W7 = (X +X7+—Xp,)

Wg = (X, +Xg)

Wg = (—Xy+—Xg + —Xq3)

Clause Database

Fig. 1. Example of clause database and partial implication graph.

causes_of(k) =

(z,v(z))
Alz)U U

(y(y))€L(z)

if A(z) =0
(z) @)

causes_of(y)| otherwise.

The conflict-induced clause corresponding to A“¢(k) is now
determined according to:

we(k) = @, 4)
(z,v(x))€A“C ()

where, for a binary variable z, 2=z and z! = -z

Application of (2)-(4) to the conflict depicted in Fig. 1
yields the following conflicting assignment and conflict-
induced clause at decision level 6:

AWC(K) = {:tl =1 @6,.19 =0@ 1,1‘10 =0@3,$11 20@3}
we(k) = (—x1 + o + T10 + T11)-
(5)

We note that our method for deriving implicates by
analyzing the causes of conflicts has its foundations in
[26]. 1t is also similar in spirit to the approaches of Freeman
[11, chapter 8] and McAllester [28]. However, unlike the
precise computations of the conflicting assignment A“c (k)
in (3) and conflict-induced clause wc(k) in (4), the
procedures in these related works were only informally
described.

3.1 Standard Conflict Diagnosis Engine

The identification of a conflict-induced clause w¢(x) enables
the derivation of further implications that help prune the
search. Immediate implications of w¢ (k) include asserting

5. To reduce clutter, we omit the superscripts denoting the clauses that
lead to these antecedent assignments and assume them to be understood
from context.
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{xg = 0@1, xlo = 0@3, xll = 0@3, x12 = 1@2, X13 = 1@2, ...}

Implication Graph for Current Decision Assignment

the current decision variable to its opposite value and
determining a backtracking level for the search process.
Such immediate implications do not require that wc(x) be
added to the clause database. Augmenting the clause
database with w¢{k), however, has the potential of
identifying future implications that are not derivable
without we(x). In particular, adding  wc(x) to the clause
database ensures that the search engine will not regenerate
the conflicting assignment that led to the current conflict.

3.1.1 Failure-Driven Assertions

If we(k) involves the current decision variable, erasing the
implication sequence at the current decision level makes
wg(k) a unit clause and causes the immediate implication of
the decision variable to its opposite value. We refer to such
assignments as failure-driven assertions (FDAs) to empha-
size that they are implications of conflicts and not decision
assignments. We note further that their derivation is
automatically handled by our BCP-based deduction engine
and does not require special processing. This is in contrast
with most search-based SAT algorithms that treat a second
branch at the current decision level as another decision
assignment. Using our running example (see Fig. 1) as an
illustration, we note that after erasing the conflicting
implication sequence at level 6, the conflict-induced clause
we (k) in (5) becomes a unit clause with —z; as its free literal.
This immediately implies the assignment z; =0 and z; is
said to be asserted.

3.1.2 Conflict-Directed Backtracking

If all the literals in we (k) correspond to variables that were
assigned at decision levels that are lower than the current
decision level, we can immediately conclude that the search
process needs to backtrack. This situation can only take
place when the conflict in question is produced as a direct
consequence of diagnosing a previous conflict and is
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// Global variables:

//

// Return value:

// Auxiliary variables:

// Input argument:
// output argument:
// Return value:

/1

GRASP () e

{ .
if (Search (0, P) != SUCCESS) return FAILURE;
else return SUCCESS;

}

Current decision level d
Backtracking decision level [3
CONFLICT or SUCCESS

Clause database @

Partial variable assignment A

FAILURE or SUCCESS
Backtracking decision level P

I
Search (d, B)
{
if (Decide (d) == SUCCESS)
return SUCCESS;
while (TRUE) {
if (Deduce (d) '= CONFLICT) {
if (Search (d + 1, P) == SUCCESS) return SUCCESS; |
else 1f (B != d) { Erase(); return CONFLICT;}
}
if (Diagnose (d, B) == CONFLICT) {Erase(); return CONFLICT;} |
Erase(); ‘
) |
} ]

Fig. 2. Description of GRASP.

illustrated in Fig. 4a for our working example. The
implication sequence generated after asserting z; = 0 due
to conflict K leads to another conflict . The conflicting
assignment and conflict-induced clause associated with this
new conflict are easily determined to be

A (k) =
{2 =0Q@1,20=0Q@3,z; =0Q 3,
z12=1@2,x13=1@2}

we(k) = (z¢ + 10 + T11 + ~Z12 + —T13)

(6)

and clearly show that the assignments that led to this
second conflict were all made prior to the current decision
level. :

In such cases, it is easy to show that no satisfying
assignments can be found until the search process back-
tracks to the highest decision level at which assignments in
Av“e (k') were made. Denoting this backtrack level by S, it is
simply calculated according to:

B8 = max{§(z)|(z, v(z)) € A°(x)}. ™

When 8 = d — 1, where d is the current decision level, the
search process backtracks chronologically to the immediately
preceding decision level. When § < d—1, however, the
search process may backtrack nonchronologically by jumping
back over several levels in the decision tree. It is worth
noting that all truth assignments that are made after

- decision level 8 will force the just-identified conflict-

induced clause wc(x') to be unsatisfied. A search engine
that backtracks chronologically may, thus, waste a signifi-
cant amount of time exploring a useless region of the search
space only to discover, after much effort, that the region
does not contain any satisfying assignments. In contrast, the
GRASP search engine jumps directly from the current
decision level back to decision level 3. At that point,
we (k') is used to either derive an FDA at decision level 3 or
to calculate a new backtracking decision level.

For our example, after occurrence of the second conflict,
the backtrack decision level is calculated, from (7) applied
to (6), to be 3. Backtracking to decision level 3, the deduction
engine creates a conflict vertex corresponding to wg(x').
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/l Global variables:
!/l Input argument:
/l Return value:

!l
Deduce
{

(d)

while (unit clauses in @® or clauses unsatisfied) {
(exists unsatisfied clause ®) {
add conflict vertex K to [;

if

record Am(l();

return CONFLICT;
}
if (exists unit clause @
record Am(x);

d(x) = d;

}
return SUCCESS;

setx =14ifl =x or x =

Implication graph /
Current decision level d
CONFLICT or SUCCESS

with free literal | = x or | = —x) {

0 if I = —x;

Fig. 3. Description of the deduction engine.

/ {
antecedent assighment of X127

x; due to ®-(X) in (5)

(@)

N
\\ 4
\
|
|
5
1
/}
)6
1/ 0 : // d -
s - CC1S101

(b)

Fig. 4. Implication sequence and backtracking due to asserting z; = 0. (a) Conflicting implication sequence. (b) Decision tree.

Diagnosis of this conflict leads to an FDA of the decision

variable at level 3 (see Fig. 4b).
The pseudocode for the diagnosis engine in GRASP is

shown in Fig. 5 and illustrates the main features of standard
conflict diagnosis described above. The procedure starts
with an analysis of what caused the conflict and the creation
of a new conflict-induced clause. This clause is added to the
clause database and used to calculate the backtracking
decision level 3. If backtracking is necessary (indicated by
B # d), a new conflict vertex K is added to the implication
graph and its antecedent assignments A(x) are recorded.

3.2 Variations on the Standard Diagnosis Engine
This section describes two improvements to the standard
diagnosis engine described above. The first is concerned
with ways of controlling the growth of the clause database.
The second provides techniques that utilize the structure of
the implication sequences to reduce the size of identified
implicates. Both of these improvements represent novel
contributions to search-based SAT algorithms.

3.2.1 Space-Bounded Diagnosis Engines

Standard conflict diagnosis, described in the previous
section, suffers from two drawbacks. First, conflict analysis
introduces significant overhead which, for some instances
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|/

1
I
I

1
1

Global variables:

Input variable:
Output wvariable:
Return value:

Implication graph [/

Clause database @

Current decision level d
Backtracking decision level f3
CONFLICT or SUCCESS

Diagnose (d, lj)
{
®-(K) = Create_Conflict_Induced_Clause();
Update Clause Database (0c(K)) ;

/l Using

B =

Compute_ Max_Level();

// Using

(4)

(7)

if B l=d) {

record A(K);
return CONFLICT;
}
return SUCCESS;

add new conflict vertex K to I;

Fig. 5. Description of the standard diagnosis engine.

of SAT, can lead to large run times. Second, the size of the
clause database grows with the number of backtracks; in the
worst case, such growth can be exponential in the number
of variables.

The first drawback is inherent to the algorithmic frame-
work we propose. Fortunately, the experimental results
presented in Section 4 clearly suggest that, for specific SAT
instances, the performance gains far outweigh the proce-
dure’s additional overhead.

One solution to the second drawback is a simple
modification to the conflict diagnosis engine that guaran-
tees the worst case growth of the clause database to be
polynomial in the number of variables. The main idea is to
be selective in the choice of clauses to add to the clause
database. Assume that we are given an integer parameter £.
Conflict-induced clauses whose size (number of literals) is
no greater than k are marked green and handled as
described earlier by the standard diagnosis engine. Con-
flict-induced clauses of size greater than k are marked red
and kept around only while they are satisfied, unsatisfied,
or are unit clauses. Red clauses are used for defining
failure-driven assertions and are deleted as soon as they
become unresolved with more than one free literal, since, in
such a situation, these clauses no longer define failure-
driven assertions. Implementation of this scheme requires a
simple modification to procedure Erase (), which must
now delete unresolved red clauses with more than one free
literal, and to the diagnosis engine, which must attach a
color tag to each conflict-induced clause. With this mod-
ification, the worst case growth becomes polynormnial in the
number of variables as a function of the fixed integer k. The
major drawback of the proposed solution is that the ability
to apply conflict-based equivalence decreases, since some
large conflict-induced clauses can now be deleted as the
search proceeds.

3.2.2 Unique Implication Points

Further enhancements to the conflict diagnosis engine
involve generating stronger implicates (containing fewer
literals) by more careful analysis of the structure of the
implication graph I. An implication sequence at a given
decision level d corresponds to the subgraph in I whose
vertices are all annotated by d. Assuming a conflict is
detected, let U = {(u1, v(u1)), -, (uk, ¥(uk))} denote the set
of dominators [37] of K which are defined with respect to the
variable assignment at decision level d. Each (u;,v(w;)) is
referred to as a unique implication point (UIP) and can be
viewed as triggering an implication sequence at decision
level d that leads to the same conflict. To illustrate the
application of UIPs, consider again the implication se-
quence of Fig. 1. The set of dominators of K with respect to
z1 is {(z1,1),(z4,1)}. Together with the earlier assign-
ments z19 = 0 and z1; = 0, the assignment z, =1 is, thus,
a sufficient condition for triggering an implication
sequence leading to the same conflict. Hence, the clause
(—x4 + x10 + x11) is an implicate of the function that did
not exist in the clause database. Moreover, since
(xy = 1) A (g = 0) = (x5 = 1), the clause® (- + g + z4)
is another implicate of the function. Both of these implicates
are stronger than the single conflict-induced clause identi-
fied earlier in (5) and can potentially provide additional
implications in the presence of partial assignments. It is also
interesting to note that neither implicate can be identified
from the original clause database with just BCP.

This procedure for constructing strong implicates can be
generalized for an arbitrary number of UIPs. Given a set of
UIPs U = {(u1, (1)), -+, (ur, »{ux))} and a conflict vertex
K, replace (3) with:
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causes_of(z,u;) =

(wi, v(wi))
Alz)U [ U

(y.v(y)ex(z)

ifx= U
®)

causes.of(y,u;)| otherwise,

where (u;, v(u;)) € U and causes.of(z,u;) are now inter-
preted as the set of antecedent assignments of = due to u;
and any other relevant assignments from earlier decision
levels. Conflict-induced clauses can now be created for
every pair of adjacent UIPs (u;_y,u;) for i =2,--- k as well
as for the last UIP u; and the conflict vertex K:

we(ui1,u;) = 2@ | f )
(z,v(z))Ecauses_of (u;_1 ;)
@),

9
we (uk, K) =

(z,v(zx))€causes_of (ux,x)

Clearly, the size of each of these conflict-induced clauses
will be less than or equal to the size of the single conflict-
induced clause created without identification of UIPs.
Furthermore, the diagnosis engine of Fig. 5 can easily
identify UlPs in linear time with one traversal of the
implication graph.

4 Experimental Results

In this section, we present experimental results for GRASP.
Several benchmarks are used and GRASP is compared with
other state-of-the-art and publicly available SAT programs.
In particular, we compare GRASP with POSIT [11], C-SAT
[10], H2R [30], 2CL [38], TABLEAU {6] (whose latest version
is named NTAB), SATO [19], TEGUS [36], a recent
implementation of the Davis-Putnam procedure, DPL [2],
and GSAT [33]. For all these algorithms, either the source
code or the executable was provided by the respective
author.” :

GRASP is implemented in the C++ programming
language and was compiled with GCC 2.7.2. The CPU
times for all programs were scaled to the equivalent CPU
times on a SUN SPARC 5/85 machine.® In order to evaluate
the different programs, two different sets of benchmarks
were tested:

¢ The DIMACS challenge benchmarks, available from
[18], that include instances of SAT from several
authors and from different application areas.

e The UCSC benchmarks, also available from [18], that
include instances of SAT commonly encountered in
test pattern generation of combinational switching
circuits. These benchmarks represent one practical
application of SAT algorithms to the field of

6. Note that (z = y) < (-z + y).

7. These comparisons were conducted in 1995 and 1996 [26], {27] and do
not reflect enhancements (some adapted from GRASP) that were made to
several of these programs since then. In particular, conflict-directed
backtracking was only available in GRASP at the time.

8. We deployed all available computing resources in order to complete
this experiment in a reasonable amount of time and used the test programs
explicitly provided in [18] to normalize the results obtained from different
machine architectures. The other machines that were used included SUN
Sparc2/40 and SUN Sparc20/50. All machines had 64MB of physical
memory. :
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Electronic Design Automation, thus being of key
significance for experimentally evaluating SAT
algorithms.

While GRASP has a large number of configuration
options, for the experimental results given below, it was
configured to use the decision engine described in
Section 2.5, to allow the generation of clauses based on
UIPs, and to limit the size of clauses added to the clause
database to 20 or fewer literals. All SAT programs were run
with a CPU time limit of 10,000 seconds.

For the tables of results presented below the following
definitions apply. A benchmark suite is partitioned into
classes of related benchmarks, e.g., for the DIMACS:
benchmarks, class AIM-100 includes all benchmarks with
name aim-100-*. In each class, #M denotes the total number
of class members. Some tables of results contain CPU times
in seconds, whereas the remaining tables contain the
number of class members for which the program terminates
in less than 10,000 CPU seconds, being referred to as the
number of successes. Ideally, an algorithm should have a
number of successes equal to the number of class members
for all classes of benchmarks.

4.1 DIMACS Benchmark Results

The CPU times of running GRASP and the other algorithms
on the DIMACS benchmarks are shown in Table 1.° The
number of successes for each algorithm are shown in
Table 2. For GSAT, which cannot be used to prove
unsatisfiability, experimental results are only available for
benchmark classes for which all members are satisfiable;
entries corresponding to benchmark classes that have
unsatisfiable instances are indicated with n/a. From the
results, it can be concluded that GRASP performs better
than any of the other programs for the AIM-100, AIM-200,
BF, DUBOIS, PRET, and SSA benchmark classes, whereas

POSIT performs better than GRASP for the II-8, JNH, PAR-

8, PAR-16, and HANOI benchmarks classes. It can also be
concluded that, for benchmarks where GRASP performs
better, the other programs either take a very long time to
find a solution or are unable to find a solution in less than
10,000 seconds. We have also observed that most bench-
marks, for which POSIT performs better than GRASP, are
also handled by GRASP with a similar amount of search;’
only the overhead inherent to GRASP becomes apparent.
Among the other tools, POSIT performs better in four
classes of benchmarks, whereas SATO performs better on
two, TEGUS on one, and GSAT on one. Even though GSAT
has been shown to be extremely effective on random
instances of SAT [33], for specific benchmark classes, it
performs significantly worse than deterministic algorithms
(e.g., 118, 1116, 1132, HANOI). Still, GSAT is the most efficient
tool for the class of benchmarks G. Finally, none of the
evaluated algorithms was able to find a solution to any
problem instance of the benchmark classes F and PAR32.
It is also interesting to measure how well conflict
analysis works in practice. For this purpose, statistics
regarding some DIMACS benchmarks are shown in

9. For H2R, entries with § indicate benchmark classes where segmenta-
tion faults occurred for some problem instances; in these cases and for each
such instance, the CPU time assumed is 10,000 seconds.
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TABLE 1
CPU Times for the DIMACS Benchmarks
Be“cc;sms”k #M | GRASP | POSIT | H2R | C-SAT | 2CL | NTAB | SATO TTEGUS DPL | GSAT
AIM-100 24 18] 1,200 21,571 40| 5791 39,569 60,390 107.9) 58,510 n/a
AIM-200 24| 108] 117,991] 150,004 42| 53266] 69.410( 150,095 14,059 156,196]  wal
BF 4 72| 20037| 10,2000 30,634] 246| 27900| 35,695 26,654] 40,000 n/a
DUBOILS 18] 344 77.189] §73,729| 95485 21,005| 47.952] 71,528] 90333 96977 n/a
32 17| 70| 650.1] §36029| 4547] 10803| 697.0] 10004| 1231] 21,520 83814
PRET 182] 40,601| 40342 41398) 40,035| 80,000 40430] 42,579 41,429 n/a
SSA 8 65| 853 20006] 15781| 6685 20024 30,092 20230| 80,000 n/a
AIM-50 2 0.4 04 23| 472 24| 243] 127 22| 107 n/a
18 14] 234 23] §30,005] 18,119] 58049| 11,411 04|  11.8] 84,189| 27.647
INH sol 213 0.8 58| 103] 134] 109] 110] 6055 400 n/a
PARS 10 0.4 0.1 0.6 32 20 07/ 02 1.5 08| 50,005
PAR16 10] 9844 721] 2648 8244| 3514 5915 10447| 9983] 11,741] 100,000
116 10] 10311] 10,120/ 75940 50545] 62,849 10,126| 85522 269.6] 83,933 11,670
HANOI 14,480 10,117 §10,733| 16,550] 20,175| 15.840| 20,000| 11,641 20,000| 20,000
HOLE 12,704  9379] 11,082] 1,025| 1270 1.244] 3622| 21301| 11,404 n/a
F 3] 30,000/ 30,000 §30,000 30,000/ 30,000{ 30,000/ 30,000 30,000/ 30,000 30,000
G 4] 40000] 40,000/ 40,000] 40,000] 40,000 40,000] 40,0000 40,000[ 40,000/ 20,079
PAR32 10] 100,000 100,000] 100,000 100,000 100,000| 100,000 100,000 100,000] 100,000] 100,000

Table 3 for GRASP and for POSIT, which is the next best
performing SAT algorithm besides GRASP. In this table, #B
denotes the number of backtracks, #NCB denotes the
number of nonchronological backtracks, Largest jump is
the size of the largest nonchronological backtrack, #UIP
indicates the number of unique implication points found,
%Growth denotes the variation in size of the clause
database, and Time is the CPU time in seconds. For these
examples, several conclusions can be drawn. First, the
number of nonchronological backtracks can be a significant
percentage of the total number of backtracks. Second, the
jumps in the decision tree can save a large amount of search
work. As can be observed, in some cases, the jumps taken
potentially save searching millions of nodes in the decision
tree. Third, the growth of the clause database is not
necessarily large. Fourth, UIPs do occur in practice and,
for some benchmarks, a reasonable number is found given
the number of backtracks. Finally, for most of these
examples, conflict analysis causes GRASP to be much more
efficient than POSIT. Nevertheless, POSIT can be more
efficient for specific benchmarks, as the examples of the last
two rows indicate.

4.2 UCSC Benchmark Results

The results obtained for the UCSC benchmarks are shown
~ in Table 4 and in Table 5. The BF and SSA benchmark
classes denote, respectively, CNF formulas for bridging and
stuck-at faults. These results are divided into benchmark
classes according to each benchmark circuit number.
GRASP performs significantly better than any other

program on these benchmarks. With the exception of 2CL,
all other algorithms abort on a large number of problem
instances, whereas GRASP aborts on none. Moreover, the
CPU times of GRASP are extremely small when compared
with the CPU times of the other programs. The UCSC
benchmarks are characterized by extremely sparse CNF
formulas for which the BCP-based conflict analysis proce-
dure of GRASP works particularly well. In addition, it
should be noted that a direct comparison of the results of
each algorithm with the results of DPL illustrates how
effective search-pruning techniques can be for these classes
of instances of SAT. Finally, it should be emphasized the
performance difference between GRASP and TEGUS, a very
efficient test-pattern generation tool [36], that further
illustrates the power of the search-pruning techniques
included in GRASP.

4.2.1 Database Growth Versus CPU Time

It is interesting to evaluate how the growth of the clause
database affects the amount of search and the CPU time. For
this purpose, the UCSC benchmark suites are used. The
same decision making procedure is used and GRASP is run
allowing clauses of size at most 0, 5, 10, 15, 20, 30, 40, 60, 80,
and 100 to be added to the clause database in each
experiment. The CPU time and the number of backtracks
for the SSA and BF benchmarks are shown in Fig. 6.

As the maximum size of added clauses grows, the
number of backtracks decreases and the CPU time
decreases accordingly. Eventually, this tendency is reversed
and, even though the number of backtracks continues to



516

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.5, MAY 1999

TABLE 2
Number of Successes on the DIMACS Benchmarks

-
Be"(‘:’l':::rk #M |GRASP | POSIT | H2R | C-SAT | 2CL | NTAB | SATO |TEGUS| DPL GSATW
AIM-100 24 24 24 23 2 24 18 20 2% 21 na
[AIM-200 24 2 13 9 2 20 1 9 23 9 na
BF 4 4 2 3] 1 4 2 1 2 0 nha
DUBOIS 13 13 7 7 4 1 5 7 5 5 o/a
132 17 17 17 14 17 16 17 16 17 15 9
PRET 4 4 4 al
SSA 8 8 8 6 7 8 6 6 0 na
AIM-50 2 2% 2u 2 24 2 2% 2% 24 2% na
18 14 14 14 1 13 10 13 14 14 7 12
INH 50 50 50 50 50 50 50 50 50 50 na
PARS 10 10 10 10 10 10 10 10 10 10 5
PAR16 10 10 10 10 10 10 10 10 10 10 0
me6 10 9 9 3 5 4 6 7 10 2 9
HANOI 1 1 1 1 1 1 0 1 0 0
HOLE 4 5 4 5 5 5 5 3 4 nfa
F 3 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0

'PAR32 10 0 0 0 0 0 0 0 of o

decrease, the CPU time begins to increase. We can thus
conclude that adding larger clauses leads to additional
overhead for conducting the search process and, hence, it
eventually costs more than what it saves in terms of
backtracks. These results also suggest that it may possible to
experimentally identify optimal growth rates for different
classes of problem instances. For example, for the SSA and
BF benchmarks the optimal bound is near 30.

5 Conclusions and Research Directions

This paper introduces a procedure for conflict analysis in
satisfiability algorithms and describes a configurable
algorithmic framework for solving SAT. Experimental
results indicate that conflict analysis and its by-products,
nonchronological backtracking and identification of equiva-
lent conflicting conditions can contribute decisively for
efficiently solving a large number of classes of instances of
SAT. As a result, the proposed SAT algorithm is shown to
be more efficient than other state-of-the-art algorithms for a
large number of SAT instances.

The natural evolution of this research work is to apply
GRASP to different EDA applications, in particular, test
pattern generation, timing analysis, delay fault testing, and
logic verification, among others. Despite being a fast SAT
algorithm, GRASP introduces noticeable overhead that can
become a liability for some of these applications. Conse-
quently, besides the algorithmic organization of GRASP,
special attention must be paid to the implementation
details. One envisioned compromise is to use GRASP as

the second choice SAT algorithm for the hard instances of
SAT whenever other simpler, but with less overhead,
algorithms fail to find a solution in a small amount of
CPU time.

Future research work will emphasize heuristic control of
the rate of growth of the clause database. Another area for
improving GRASP is related with the deduction engine.
Improvements to the BCP-based deduction engine are
described in [26] and consist of different forms of probing
the CNF formula for creating new clauses. This approach
naturally adapts and extends other deduction procedures,
e.g., recursive learning [21] and transitive closure [5], since
it completes the clause database with additional implicates,
in addition to being able to identify as many necessary
assignments. _

The actual practical usefulness of improved deduction
engines needs to be experimentally validated. Finally, we
propose to undertake a comprehensive experimental char-
acterization of the instances of SAT for which conflict
analysis provides significant performance gains.

APPENDIX
CORRECTNESS AND COMPLETENESS OF GRASP

The purpose of this appendix is to prove that the GRASP
SAT algorithm finds a solution to a given instance of SAT if
and only if a solution exists. In particular, the standard
conflict analysis procedure described in Section 3.1 is
assumed. (A more thorough discussion and proof of the
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Statistics of Running GRASP oI\AIE(-IJ-;Freasentative DIMACS Benchmarks
Benchmark #B | #NCB F‘j“:mge:t HUIP | %Growth | GRASP | FOSIT
aim-200-2_0-yes1-2 109 50 13 254 . 152.63 0.38 7,990.71
aim-200-2_0-yes1-3 74 35 16 15 99.67 0.31 > 10,000
aim-200-2_0-no-1 29 20 12 5 229 0.13 > 10,000
aim-200-2_0-no-2 39 20 37 4 43.6 0.19 > 10,000
bf0432-007 335 124 17 32 47.99 5.18 11.79
bf1355-075 40 20 24 2 6.50 1.25 > 10,000
bf1355-638 11 7 8 4 1.11 0.32 > 10,000
bf2670-001 16 8 22 2 3.02 0.40 25.64
dubois30 233 72 16 21 465.83 0.68 > 10,000
dubois50 - 485 175 26 51 631.92 2.80 > 10,000
dubois100 1438 639 | - 67 150 1033.54 26.22 > 10,000
pret60_40 147 98 17 8 407.08 0.41 175.49
pret60_60 131 83 16 10 353.54 0.35 173.12
pret150_25 428 313 38 35 588.17 484 > 10,000
pret150_75 388 257 49 20 446.75 385 >10,000
ssa0432-003 37 6 5 1 30.80 0.15 0.01
$5a2670-130 130 45 34 » 10 17.26 207 14.23
$5a2670-141 377 97 16 28 65.71 342 70.82
1i16b2 2664 120 9 39 63.46 175.85 16.38
ii16b1 88325 2588 41 624 131.94 | > 10,000 16.73
TABLE 4

CPU Times for the UCSC Benchmarks

Be“él';‘;“k #M| GRASP | POSIT | H2R | C-SAT | 2CL TNTAB SATO | TEGUS | DPL

BF0432 21 416 558  101.4] 1,861 467|  1,863| 28,174] 53,852| 210,000
BF1355 9] 1257] 946127] 352,175 914863  3555| 975862| 1286,584] 993915] 1490000
BF2670 53 683|  2971] 143357| 154,565  8.408] 253336 360,009| 295410/ 530,000
SSA0432 7 11 02 22 320 180 1039 6515  1,593] 70,000
SSA2670 12 515]  2.826] 120,000 95355|  6,735] 120000 120000 120,000 120,000]
SSA6288 3 0.2 0.0 79] 159 39.7 133 0.7 17.5] 30,000
SSA7552 80 19.8 60.0 975 20217 53.0 166.0| 242250 3406 800,000

correctness and completeness of the algorithm and its Definition 1. Given an instance of SAT, a complete assignment

variations can be found.in [26]) We shall start by is said to be a solution to that instance if no clauses are
introducing a few basic definitions and by proving that unsatisfied.

GRASP is correct. Afterward, we will establish a few Definition 2. A SAT algorithm is said to be correct if, for each
preliminary formal results, which will be used for proving instance of SAT, any assignment identified as solution is
that GRASP is complete. Finally, for completeness, we indeed a solution to that instance.

prove, in Theorem 3, the assertion that conflicts do not arise ~Definition 3. A SAT algorithm is said to be complete if, for
when the clause database contains all of the function’s each instance of SAT, a solution is found if a solution exists.

prime implicates. Theorem 1. The GRASP SAT algorithm is correct.



518

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 5, MAY 1999

TABLE 5
Number of Successes on the UCSC Benchmarks

Be“é;‘::rk #M | GRASP | POSIT | H2R | CSAT | 2CL | NTAB | SATO | TEGUS | DPL

BFO432 2 T 21 21 21 21 o 2 T 0
BF1355 149) 129 64 121 61 149 58 2 53 0
BF2670 53 53 53 a 23 53 30 17 25 0|
SSA0432 1 7 7 7 7 7 0
SSA2670 12 12 12 6 12 0

—

ssa2ss | 3 3 3 3 3 3 0
SSA7552 %0 80 80 80 78 80 %0 57 80 0

Proof. GRASP, as described in Fig. 2, terminates with a
SUCCESS indication whenever function Decide ()
eventually returns itself a SUCCESS indication, which
signifies that all variables are assigned. Since this
situation can only occur whenever no unsatisfied clause
is found with BCP, then the complete assignment thus
defined is indeed a solution to the given instance of SAT.
Hence, GRASP is correct. O

Lemma 1. A deduction engine based on BCP (as described in

Fig. 3) only identifies assignments necessary for a partial
assignment to be contained in a solution of a given instance of
SAT. '

Proof. BCP, as described in Fig. 3, is solely based on the
unit-clause rule, which identifies assignments that are
necessary to guarantee that unit clauses will not become
unsatisfied. Hence, BCP only identifies those assign-
ments that are necessary for a partial assignment to be
extended to a complete assignment representing a
solution of a given instance of SAT. 0

Before establishing the next few formal results, we need

to define failure-driven assertions (FDAs).

Definition 4. An assignment ¢ = v, @ & is said to be a failure-
driven assertion whenever §(y) < &, for all (y,v,) € A“(x).

Lemma 2. Let the conflict assignment A“c(k) be computed
according to (3). Then, the following holds:

1.  Any partial assignment A, such that A D A“(k)

cannot be contained in a solution to the given instance

of SAT.

2. Each conflict-induced clause wc(x) (given by (4))
identifies an implicate of the Boolean function
f(z1,-+-,zn) associated with the initial CNF
Sformula .

Proof. There are only two situations under which a conflict

K can be identified. Either a decision assignment yields a
conflict or a set of existing failure-driven assertions
(FDAs) at a given decision level d yields a conflict. We
analyze each case separately and, for each case, we prove
that no partial assignment A, such that A D A4*¢(k), can
be extended to a solution of the given instance of SAT.

First, consider the case of a decision assignment that
yields a conflict with conflicting assignment A“c(k).
Since conflict analysis of the conflict computes A“°(x),
then BCP applied to a the clause database under any
assignment A D A“?(x) necessarily yields a conflict.
Since f(zi,:--,x,) assumes value 0 for any assignment
A D A¥(k), then we(x) is an implicate of f(z1,---,2,).

Suppose now the situation under which j FDAs yield
the conflict K. For each FDA i, 1 < i < j, we can associate
a variable z;, a definition of the assertion z; = v; @ d and
the antecedent of z;, A(z;). In addition, each FDA i is
necessarily the result of a given conflict ; such that

AwC(K,i) = A(ﬁl) U {(a:i, 1- 1/1)}

Let us now assume a partial assignment A, with
A D A¥¢ (k). Then, we must also necessarily have,

AD A (k) = {(xi, 1 —v)} i=1,--- 7.

Hence, given A and the assignment z; =1 —1;, BCP
necessarily yields a conflict for i =1,---, 5. On the other
hand, the assignment (z; =) A(za =) A---A(z; =
v;) necessarily yields conflict K by hypothesis. There-
fore, given an assignment A O A“¢(x), for any combina-
tion of assignments to variables x;,x,, - -, x;, BCP yields
a conflict. Thus, A cannot be extended to a solution to the
given instance of SAT and wc(x) is necessarily an
implicate of f(z1,---,x,). ]

Lemma 3. Let 3 be the backtracking decision level computed with

(7). Furthermore, let Ag denote the partial assignment
containing all variable assignments with decision levels no
greater than (3. In this situation, a solution cannot be found for
any assignment A such that A 2 Ag.

Proof. From Lemma 2 we know that w¢ (k) is an implicate of

the Boolean function being evaluated. Since this conflict-
induced clause is now included in the clause database, it
will remain unsatisfied for any assignment A 2 A and,
so0, a solution will not be found. a

Corollary 1. Let d be the current decision level and [3 be the

computed backtracking decision level. In this situation, a
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Fig. 6. UCSC benchmarks with different growths of the clause database.

solution to the given instance of SAT cannot be found until the
search process backtracks to decision level 3.

Theorem 2. The GRASP SAT algorithm is complete.

Proof. It is well-known that chronological backtracking is a
complete search procedure [20]. Backtracking search
extends partial assignments until either a solution is
found or an inconsistent assignment is identified. In the

event of an inconsistent assignment being found, the
~ most recent decision assignment yet untried is consid-
ered and the search proceeds. Hence, if a solution exists,
it will eventually be enumerated. Furthermore, for the
case of SAT, and since BCP only identifies necessary
assignments (from Lemma 1), then backtracking search
with BCP is also a complete search procedure. Given
these facts, we just have to prove that nonchronological
backtracks do not jump over partial assignments that can
be extended to solutions of the given instance of SAT. Let
us suppose that the current decision level is d and the

computed backtracking decision level is 3. Then, by
Lemma 3 and Corollary 1, we can conclude that a
solution cannot be found by extending the partial
assignment defined by decision levels no greater than
B, i.e., Ag. It then follows that if a solution exists, it will
eventually be enumerated and, consequently, the algo-
rithm is complete. O

Theorem 3. The GRASP SAT algorithm does not generate

inconsistent assignments (conflicts) when applied to a
complete formula, i.e., a formula that contains all the prime
implicates of the underlying function, unless the formula is
unsatisfiable.

Proof. Let ¢ be an arbitrary CNF formula and let P(yp) be its

complete product. Viewed as a clause database, P(y) is,
thus, the set of all of ¢’s prime implicates. Let w € P(y).
Then, by definition [17, p. 288], ¢ implies w but does not
imply any clause v that in turn implies w. Consider two
cases.
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1. ¢ is unsatisfiable. In this case, the set P(yp)
consists of a single empty clause (a clause with
no literals): The constant 0 function has no prime
implicates. To show this, assume otherwise, i.e.,
letw=(l; +1p +---,l;), where each ; is a literal,
be a prime implicate of 0, and let v=1;. Thus,
0=>w 0=v, and v=w, ie, w is not prime.
When the GRASP SAT algorithm is applied to a
clause database consisting of a single empty
clause, it returns immediately with a FAILURE
indication proving unsatisfiability.

2. ¢ is satisfiable. Without loss of generality,
suppose that the sequence of decision assign-
ments z; =1,z =1,---,2, =1 was taken and
that it led to a conflict. GRASP’s conflict diagnosis
procedure would then yield the conflict-induced
clause v = (=1 + —x2 + - - - + ~zx) as an implicate
of ¢ that is not in the set P(y), i.e., vis a nonprime
implicate of ¢ (GRASP may actually generate a
clause that is “stronger” than v, i.e., one that does
not involve all k literals.) Let v = w, where
w € P(p). In particular, assume, without loss of
generality, that w= (—z; 4+ 22+ -+ =z_1).
Then, at decision level k& —2, when the partial
assignment is {z; =122 =1,---, 73 2=1}, w
becomes a unit clause and BCP causes z;_; to
be implied to 0. In other words, the assignment
{z1=1,29=1, -+, 241 = 1,2, = 1} would never
be generated and the conflict corresponding to it

- would never arise. n]
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