
Database Management Systems

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Lecture 6, 27 October 2023

Queries in SQL — aggregate operations

Extract the average value in a column

select avg(salary)

from instructor

Other functions

count

sum

min

max

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 2 / 8

Queries in SQL — aggregate operations

Extract the average value in a column

select avg(salary)

from instructor

Other functions

count

sum

min

max

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 2 / 8

e I

salQuery to 2

restrict rows 3

O Can be encoded I

2

1

Queries in SQL — aggregate operations

Extract the average value in a column

select avg(salary)

from instructor

Other functions

count

sum

min

max

select count(distinct dept_name)

from instructor

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 2 / 8

Queries in SQL — grouping

Extract the average value in each
department

Group rows by department name

Report average in each group of rows

select dept_name,avg(salary)

from instructor

group by dept_name

Attributes in select must appear in
group by

Should be the same across the entire
group

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 3 / 8

Queries in SQL — grouping

Extract the average value in each
department

Group rows by department name

Report average in each group of rows

select dept_name,avg(salary)

from instructor

group by dept_name

Attributes in select must appear in
group by

Should be the same across the entire
group

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 3 / 8

Queries in SQL — filtering groups

Use having to specify a condtion on
groups

select dept_name,avg(salary)

from instructor

group by dept_name

having max(salary) > 80000

Condition is evaluated with respect to
groups

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 4 / 8

Queries in SQL — filtering groups

Use having to specify a condtion on
groups

select dept_name,avg(salary)

from instructor

group by dept_name

having max(salary) > 80000

Condition is evaluated with respect to
groups

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 4 / 8

-

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 7th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for some of
their attributes

 null signifies an unknown value or that a value does not exist.
 The result of any arithmetic expression involving null is null

• Example: 5 + null returns null
 The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.
select name
from instructor
where salary is null

 The predicate is not null succeeds if the value on which it is applied is
not null.

X
select sumsalary)
from instructor
where

Salary is
not null

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 7th Edition

Null Values (Cont.)

 SQL treats as unknown the result of any comparison involving a null
value (other than predicates is null and is not null).
• Example: 5 < null or null <> null or null = null

 The predicate in a where clause can involve Boolean operations (and,
or, not); thus the definitions of the Boolean operations need to be
extended to deal with the value unknown.
• and : (true and unknown) = unknown,

(false and unknown) = false,
(unknown and unknown) = unknown

• or: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

 Result of where clause predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 7th Edition

Set Membership

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 7th Edition

Set Membership

 Find courses offered in Fall 2017 and in Spring 2018

 Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id in (select course_id
from section
where semester = 'Spring' and year= 2018);

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id not in (select course_id
from section
where semester = 'Spring' and year= 2018);

-

E

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 7th Edition

Set Membership (Cont.)

 Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from instructor
where name not in ('Mozart', 'Einstein')

 Find the total number of (distinct) students who have taken course
sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

-

-

-

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 7th Edition

Set Comparison

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 7th Edition

Set Comparison – “some” Clause

 Find names of instructors with salary greater than that of some (at least
one) instructor in the Biology department.

 Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept name = 'Biology');

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology';

o

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 7th Edition

Definition of “some” Clause

 F <comp> some r ⇔ ∃ t ∈ r such that (F <comp> t)
Where <comp> can be: <, ≤, >, =, ≠

0
5
6

(5 < some) = true

0
5
0

) = false

5

0
5(5 ≠ some) = true (since 0 ≠ 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) ≡ in
However, (≠ some) ≡ not in

-

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 7th Edition

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the salary of
all instructors in the Biology department.

select name
from instructor
where salary > all (select salary

from instructor
where dept name = 'Biology');
0

©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 7th Edition

Definition of “all” Clause

 F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

0
5
6

(5 < all) = false

6
10
4

) = true

5

4
6(5 ≠ all) = true (since 5 ≠ 4 and 5 ≠ 6)

(5 < all

) = false(5 = all

(≠ all) ≡ not in
However, (= all) ≡ in

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 7th Edition

Test for Empty Relations

 The exists construct returns the value true if the argument subquery is
nonempty.

 exists r ⇔ r ≠ Ø
 not exists r ⇔ r = Ø

©Silberschatz, Korth and Sudarshan3.45Database System Concepts - 7th Edition

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in both the
Fall 2017 semester and in the Spring 2018 semester”

select course_id
from section as S
where semester = 'Fall' and year = 2017 and

exists (select *
from section as T
where semester = 'Spring' and year= 2018

and S.course_id = T.course_id);

 Correlation name – variable S in the outer query
 Correlated subquery – the inner query

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 7th Edition

Use of “not exists” Clause

 Find all students who have taken all courses offered in the Biology
department.

 Note that X – Y = Ø ⇔ X ⊆ Y
 Note: Cannot write this query using = all and its variants

select distinct S.ID, S.name
from student as S
where not exists ((select course_id

from course
where dept_name = 'Biology')

except
(select T.course_id

from takes as T
where S.ID = T.ID));

• First nested query lists all courses offered in Biology
• Second nested query lists all courses a particular student took

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 7th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate tuples
in its result.

 The unique construct evaluates to “true” if a given subquery contains no
duplicates .

 Find all courses that were offered at most once in 2017
select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2017);

Joins in SQL

Join — cartesian product combined with selection

Three specific types of join

Natural join

Outer join

Inner join

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 5 / 8

ro(xs)

~YoS

Studentreme takecourse-id

Joins in SQL

Join — cartesian product combined with selection

Three specific types of join

Natural join

Outer join

Inner join

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 5 / 8

I
Dame name colum has equal value

©Silberschatz, Korth and Sudarshan4.3Database System Concepts - 7th Edition

Joined Relations

 Join operations take two relations and return as a
result another relation.

 A join operation is a Cartesian product which requires
that tuples in the two relations match (under some
condition). It also specifies the attributes that are
present in the result of the join

 The join operations are typically used as subquery
expressions in the from clause

 Three types of joins:
• Natural join
• Inner join
• Outer join

©Silberschatz, Korth and Sudarshan4.4Database System Concepts - 7th Edition

Natural Join in SQL

 Natural join matches tuples with the same values for all
common attributes, and retains only one copy of each
common column.

 List the names of instructors along with the course ID of
the courses that they taught
• select name, course_id

from students, takes
where student.ID = takes.ID;

 Same query in SQL with “natural join” construct
• select name, course_id

from student natural join takes;

(Stadxtal)
- Estudent ID= take ID

-

©Silberschatz, Korth and Sudarshan4.5Database System Concepts - 7th Edition

Natural Join in SQL (Cont.)

 The from clause in can have multiple relations combined
using natural join:

select A1, A2, … An
from r1 natural join r2 natural join .. natural join rn
where P ;

©Silberschatz, Korth and Sudarshan4.6Database System Concepts - 7th Edition

Student Relation

O

©Silberschatz, Korth and Sudarshan4.7Database System Concepts - 7th Edition

Takes Relation

O

©Silberschatz, Korth and Sudarshan4.8Database System Concepts - 7th Edition

student natural join takes
*select

eStudent,takes
student . ID

oe

g -take
.
D

copy

ofEs

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 7th Edition

Dangerous in Natural Join

 Beware of unrelated attributes with same name which get
equated incorrectly

 Example -- List the names of students instructors along with
the titles of courses that they have taken
• Correct version

select name, title
from student natural join takes, course
where takes.course_id = course.course_id;

• Incorrect version
select name, title
from student natural join takes natural join course;

 This query omits all (student name, course title) pairs where
the student takes a course in a department other than the
student's own department.

 The correct version (above), correctly outputs such pairs.

student ID
, dept_nam-08takes ID
, course-d
-

⑧course
.

courseid
, dept- name

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 7th Edition

Outer Join

 An extension of the join operation that avoids loss of
information.

 Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

 Uses null values.
 Three forms of outer join:

• left outer join
• right outer join
• full outer join

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 7th Edition

Outer Join Examples

 Relation course

 Relation prereq

 Observe that
course information is missing for CS-437
prereq information is missing for CS-315

-

⑧

? ↳ -d?
04 :

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 7th Edition

Left Outer Join

 course natural left outer join prereq

 In relational algebra: course ⟕ prereq

-
-

00
h

World Cp-

Teams (Prayer ID , Name , Country)
Scores (Match No , PlayerID , Runs)
↳ Group by Playuld to Get Total(Player li,Total Runs

↑

left outer
Teams natural goin Tutal--

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 7th Edition

Right Outer Join

 course natural right outer join prereq

 In relational algebra: course ⟖ prereq

I

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 7th Edition

Full Outer Join

 course natural full outer join prereq

 In relational algebra: course ⟗ prereq

- left
- right

I

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 7th Edition

Joined Types and Conditions

 Join operations take two relations and return as a result
another relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 7th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.20Database System Concepts - 7th Edition

Joined Relations – Examples

 course inner join prereq on
course.course_id = prereq.course_id

 What is the difference between the above, and a natural
join?

 course left outer join prereq on
course.course_id = prereq.course_id

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 7th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 6 / 8

rert- -

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 6 / 8

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 6 / 8

©Silberschatz, Korth and Sudarshan4.24Database System Concepts - 7th Edition

View Definition and Use

 A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

 Find all instructors in the Biology department

select name
from faculty
where dept_name = 'Biology'

 Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as
select dept_name, sum (salary)
from instructor
group by dept_name;

my(me, deptra)
S Zuri fixed over time
⑧

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 7th Edition

Views Defined Using Other Views

 One view may be used in the expression defining another
view

 A view relation v1 is said to depend directly on a view
relation v2 if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if
either v1 depends directly to v2 or there is a path of
dependencies from v1 to v2

 A view relation v is said to be recursive if it depends on
itself.

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 7th Edition

Views Defined Using Other Views

 create view physics_fall_2017 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id

and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2017';

 create view physics_fall_2017_watson as
select course_id, room_number
from physics_fall_2017
where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.27Database System Concepts - 7th Edition

View Expansion

 Expand the view :
create view physics_fall_2017_watson as

select course_id, room_number
from physics_fall_2017
where building= 'Watson'

 To:
create view physics_fall_2017_watson as

select course_id, room_number
from (select course.course_id, building, room_number

from course, section
where course.course_id = section.course_id

and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2017')

where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.28Database System Concepts - 7th Edition

View Expansion (Cont.)

 A way to define the meaning of views defined in terms of other
views.

 Let view v1 be defined by an expression e1 that may itself
contain uses of view relations.

 View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1
Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will
terminate

©Silberschatz, Korth and Sudarshan4.29Database System Concepts - 7th Edition

Materialized Views

 Certain database systems allow view relations to be
physically stored.
• Physical copy created when the view is defined.
• Such views are called Materialized view:

 If relations used in the query are updated, the
materialized view result becomes out of date
• Need to maintain the view, by updating the view

whenever the underlying relations are updated.⑧

©Silberschatz, Korth and Sudarshan4.30Database System Concepts - 7th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier
insert into faculty

values ('30765', 'Green', 'Music');
 This insertion must be represented by the insertion into the

instructor relation
• Must have a value for salary.

 Two approaches
• Reject the insert
• Inset the tuple

('30765', 'Green', 'Music', null)
into the instructor relation

©Silberschatz, Korth and Sudarshan4.31Database System Concepts - 7th Edition

Some Updates Cannot be Translated Uniquely

 create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

 insert into instructor_info
values ('69987', 'White', 'Taylor');

 Issues
• Which department, if multiple departments in Taylor?
• What if no department is in Taylor?

©Silberschatz, Korth and Sudarshan4.32Database System Concepts - 7th Edition

And Some Not at All

 create view history_instructors as
select *
from instructor
where dept_name= 'History';

 What happens if we insert
('25566', 'Brown', 'Biology', 100000)

into history_instructors?

©Silberschatz, Korth and Sudarshan4.33Database System Concepts - 7th Edition

View Updates in SQL

 Most SQL implementations allow updates only on simple
views
• The from clause has only one database relation.
• The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates,
or distinct specification.

• Any attribute not listed in the select clause can be set to
null

• The query does not have a group by or having clause.

