
Database Management Systems

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Lecture 6, 27 October 2023

Queries in SQL — aggregate operations

Extract the average value in a column

select avg(salary)

from instructor

Other functions

count

sum

min

max

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 2 / 8

Queries in SQL — aggregate operations

Extract the average value in a column

select avg(salary)

from instructor

Other functions

count

sum

min

max

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 2 / 8

e I

salQuery to 2

restrict rows 3

O Can be encoded I

2

1

Queries in SQL — aggregate operations

Extract the average value in a column

select avg(salary)

from instructor

Other functions

count

sum

min

max

select count(distinct dept_name)

from instructor

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 2 / 8

Queries in SQL — grouping

Extract the average value in each
department

Group rows by department name

Report average in each group of rows

select dept_name,avg(salary)

from instructor

group by dept_name

Attributes in select must appear in
group by

Should be the same across the entire
group

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 3 / 8

Queries in SQL — grouping

Extract the average value in each
department

Group rows by department name

Report average in each group of rows

select dept_name,avg(salary)

from instructor

group by dept_name

Attributes in select must appear in
group by

Should be the same across the entire
group

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 3 / 8

Queries in SQL — filtering groups

Use having to specify a condtion on
groups

select dept_name,avg(salary)

from instructor

group by dept_name

having max(salary) > 80000

Condition is evaluated with respect to
groups

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 4 / 8

Queries in SQL — filtering groups

Use having to specify a condtion on
groups

select dept_name,avg(salary)

from instructor

group by dept_name

having max(salary) > 80000

Condition is evaluated with respect to
groups

instructorMadhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 4 / 8

-

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 7th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for some of
their attributes

 null signifies an unknown value or that a value does not exist.
 The result of any arithmetic expression involving null is null

• Example: 5 + null returns null
 The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.
select name
from instructor
where salary is null

 The predicate is not null succeeds if the value on which it is applied is
not null.

X
select sumsalary)
from instructor
where

Salary is
not null

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 7th Edition

Null Values (Cont.)

 SQL treats as unknown the result of any comparison involving a null
value (other than predicates is null and is not null).
• Example: 5 < null or null <> null or null = null

 The predicate in a where clause can involve Boolean operations (and,
or, not); thus the definitions of the Boolean operations need to be
extended to deal with the value unknown.
• and : (true and unknown) = unknown,

(false and unknown) = false,
(unknown and unknown) = unknown

• or: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

 Result of where clause predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 7th Edition

Set Membership

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 7th Edition

Set Membership

 Find courses offered in Fall 2017 and in Spring 2018

 Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id in (select course_id
from section
where semester = 'Spring' and year= 2018);

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id not in (select course_id
from section
where semester = 'Spring' and year= 2018);

-

E

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 7th Edition

Set Membership (Cont.)

 Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from instructor
where name not in ('Mozart', 'Einstein')

 Find the total number of (distinct) students who have taken course
sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

-

-

-

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 7th Edition

Set Comparison

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 7th Edition

Set Comparison – “some” Clause

 Find names of instructors with salary greater than that of some (at least
one) instructor in the Biology department.

 Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept name = 'Biology');

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology';

o

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 7th Edition

Definition of “some” Clause

 F <comp> some r ⇔ ∃ t ∈ r such that (F <comp> t)
Where <comp> can be: <, ≤, >, =, ≠

0
5
6

(5 < some) = true

0
5
0

) = false

5

0
5(5 ≠ some) = true (since 0 ≠ 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) ≡ in
However, (≠ some) ≡ not in

-

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 7th Edition

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the salary of
all instructors in the Biology department.

select name
from instructor
where salary > all (select salary

from instructor
where dept name = 'Biology');
0

©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 7th Edition

Definition of “all” Clause

 F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

0
5
6

(5 < all) = false

6
10
4

) = true

5

4
6(5 ≠ all) = true (since 5 ≠ 4 and 5 ≠ 6)

(5 < all

) = false(5 = all

(≠ all) ≡ not in
However, (= all) ≡ in

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 7th Edition

Test for Empty Relations

 The exists construct returns the value true if the argument subquery is
nonempty.

 exists r ⇔ r ≠ Ø
 not exists r ⇔ r = Ø

©Silberschatz, Korth and Sudarshan3.45Database System Concepts - 7th Edition

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in both the
Fall 2017 semester and in the Spring 2018 semester”

select course_id
from section as S
where semester = 'Fall' and year = 2017 and

exists (select *
from section as T
where semester = 'Spring' and year= 2018

and S.course_id = T.course_id);

 Correlation name – variable S in the outer query
 Correlated subquery – the inner query

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 7th Edition

Use of “not exists” Clause

 Find all students who have taken all courses offered in the Biology
department.

 Note that X – Y = Ø ⇔ X ⊆ Y
 Note: Cannot write this query using = all and its variants

select distinct S.ID, S.name
from student as S
where not exists ((select course_id

from course
where dept_name = 'Biology')

except
(select T.course_id

from takes as T
where S.ID = T.ID));

• First nested query lists all courses offered in Biology
• Second nested query lists all courses a particular student took

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 7th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate tuples
in its result.

 The unique construct evaluates to “true” if a given subquery contains no
duplicates .

 Find all courses that were offered at most once in 2017
select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2017);

Joins in SQL

Join — cartesian product combined with selection

Three specific types of join

Natural join

Outer join

Inner join

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 5 / 8

ro(xs)

~YoS

Studentreme takecourse-id

Joins in SQL

Join — cartesian product combined with selection

Three specific types of join

Natural join

Outer join

Inner join

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 5 / 8

I
Dame name colum has equal value

©Silberschatz, Korth and Sudarshan4.3Database System Concepts - 7th Edition

Joined Relations

 Join operations take two relations and return as a
result another relation.

 A join operation is a Cartesian product which requires
that tuples in the two relations match (under some
condition). It also specifies the attributes that are
present in the result of the join

 The join operations are typically used as subquery
expressions in the from clause

 Three types of joins:
• Natural join
• Inner join
• Outer join

©Silberschatz, Korth and Sudarshan4.4Database System Concepts - 7th Edition

Natural Join in SQL

 Natural join matches tuples with the same values for all
common attributes, and retains only one copy of each
common column.

 List the names of instructors along with the course ID of
the courses that they taught
• select name, course_id

from students, takes
where student.ID = takes.ID;

 Same query in SQL with “natural join” construct
• select name, course_id

from student natural join takes;

(Stadxtal)
- Estudent ID= take ID

-

©Silberschatz, Korth and Sudarshan4.5Database System Concepts - 7th Edition

Natural Join in SQL (Cont.)

 The from clause in can have multiple relations combined
using natural join:

select A1, A2, … An
from r1 natural join r2 natural join .. natural join rn
where P ;

©Silberschatz, Korth and Sudarshan4.6Database System Concepts - 7th Edition

Student Relation

O

©Silberschatz, Korth and Sudarshan4.7Database System Concepts - 7th Edition

Takes Relation

O

©Silberschatz, Korth and Sudarshan4.8Database System Concepts - 7th Edition

student natural join takes
*select

eStudent,takes
student . ID

oe

g -take
.
D

copy

ofEs

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 7th Edition

Dangerous in Natural Join

 Beware of unrelated attributes with same name which get
equated incorrectly

 Example -- List the names of students instructors along with
the titles of courses that they have taken
• Correct version

select name, title
from student natural join takes, course
where takes.course_id = course.course_id;

• Incorrect version
select name, title
from student natural join takes natural join course;

 This query omits all (student name, course title) pairs where
the student takes a course in a department other than the
student's own department.

 The correct version (above), correctly outputs such pairs.

student ID
, dept_nam-08takes ID
, course-d
-

⑧course
.

courseid
, dept- name

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 7th Edition

Outer Join

 An extension of the join operation that avoids loss of
information.

 Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

 Uses null values.
 Three forms of outer join:

• left outer join
• right outer join
• full outer join

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 7th Edition

Outer Join Examples

 Relation course

 Relation prereq

 Observe that
course information is missing for CS-437
prereq information is missing for CS-315

-

⑧

? ↳ -d?
04 :

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 7th Edition

Left Outer Join

 course natural left outer join prereq

 In relational algebra: course ⟕ prereq

-
-

00
h

World Cp-

Teams (Prayer ID , Name , Country)
Scores (Match No , PlayerID , Runs)
↳ Group by Playuld to Get Total(Player li,Total Runs

↑

left outer
Teams natural goin Tutal--

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 7th Edition

Right Outer Join

 course natural right outer join prereq

 In relational algebra: course ⟖ prereq

I

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 7th Edition

Full Outer Join

 course natural full outer join prereq

 In relational algebra: course ⟗ prereq

- left
- right

I

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 7th Edition

Joined Types and Conditions

 Join operations take two relations and return as a result
another relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 7th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.20Database System Concepts - 7th Edition

Joined Relations – Examples

 course inner join prereq on
course.course_id = prereq.course_id

 What is the difference between the above, and a natural
join?

 course left outer join prereq on
course.course_id = prereq.course_id

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 7th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 6 / 8

rert- -

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 6 / 8

Views in SQL

Views are virtual tables

Hide sensitive information from some users — hide salary

select ID, name, dept_name

from instructor

Create convenient “intermediate tables”

select instructor.name, course.title

from instructor,course natural join teaches

Madhavan Mukund Database Management Systems RDBMS-SQL, Lecture 6, 27 Oct 2023 6 / 8

©Silberschatz, Korth and Sudarshan4.24Database System Concepts - 7th Edition

View Definition and Use

 A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

 Find all instructors in the Biology department

select name
from faculty
where dept_name = 'Biology'

 Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as
select dept_name, sum (salary)
from instructor
group by dept_name;

my(me, deptra)
S Zuri fixed over time
⑧

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 7th Edition

Views Defined Using Other Views

 One view may be used in the expression defining another
view

 A view relation v1 is said to depend directly on a view
relation v2 if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if
either v1 depends directly to v2 or there is a path of
dependencies from v1 to v2

 A view relation v is said to be recursive if it depends on
itself.

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 7th Edition

Views Defined Using Other Views

 create view physics_fall_2017 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id

and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2017';

 create view physics_fall_2017_watson as
select course_id, room_number
from physics_fall_2017
where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.27Database System Concepts - 7th Edition

View Expansion

 Expand the view :
create view physics_fall_2017_watson as

select course_id, room_number
from physics_fall_2017
where building= 'Watson'

 To:
create view physics_fall_2017_watson as

select course_id, room_number
from (select course.course_id, building, room_number

from course, section
where course.course_id = section.course_id

and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2017')

where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.28Database System Concepts - 7th Edition

View Expansion (Cont.)

 A way to define the meaning of views defined in terms of other
views.

 Let view v1 be defined by an expression e1 that may itself
contain uses of view relations.

 View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1
Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will
terminate

©Silberschatz, Korth and Sudarshan4.29Database System Concepts - 7th Edition

Materialized Views

 Certain database systems allow view relations to be
physically stored.
• Physical copy created when the view is defined.
• Such views are called Materialized view:

 If relations used in the query are updated, the
materialized view result becomes out of date
• Need to maintain the view, by updating the view

whenever the underlying relations are updated.⑧

©Silberschatz, Korth and Sudarshan4.30Database System Concepts - 7th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier
insert into faculty

values ('30765', 'Green', 'Music');
 This insertion must be represented by the insertion into the

instructor relation
• Must have a value for salary.

 Two approaches
• Reject the insert
• Inset the tuple

('30765', 'Green', 'Music', null)
into the instructor relation

©Silberschatz, Korth and Sudarshan4.31Database System Concepts - 7th Edition

Some Updates Cannot be Translated Uniquely

 create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

 insert into instructor_info
values ('69987', 'White', 'Taylor');

 Issues
• Which department, if multiple departments in Taylor?
• What if no department is in Taylor?

©Silberschatz, Korth and Sudarshan4.32Database System Concepts - 7th Edition

And Some Not at All

 create view history_instructors as
select *
from instructor
where dept_name= 'History';

 What happens if we insert
('25566', 'Brown', 'Biology', 100000)

into history_instructors?

©Silberschatz, Korth and Sudarshan4.33Database System Concepts - 7th Edition

View Updates in SQL

 Most SQL implementations allow updates only on simple
views
• The from clause has only one database relation.
• The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates,
or distinct specification.

• Any attribute not listed in the select clause can be set to
null

• The query does not have a group by or having clause.

