Database Management Systems

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Lecture 7, 3 November 2023

Constraints on a Single Relation

- not null
- primary key
- unique
- check (P), where P is a predicate

Not Null Constraints

- not null
- Declare name and budget to be not null name varchar(20) not null budget numeric $(12,2)$ not null

Unique Constraints

- unique $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$
- The unique specification states that the attributes $A_{1}, A_{2}, \ldots, A_{\mathrm{m}}$ form a candidate key.
- Candidate keys are permitted to be null (in contrast to primary keys).

The check clause

- The check (P) clause specifies a predicate P that must be satisfied by every tuple in a relation.
- Example: ensure that semester is one of fall, winter, spring or summer

create table section

(course_id varchar (8), sec_id varchar (8), semester varchar (6), year numeric $(4,0)$, building varchar (15), room_number varchar (7), time slot id varchar (4), primary key (course_id, sec_id, semester, year), check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))

Referential Integrity

- Ensures that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation.
- Example: If "Biology" is a department name appearing in one of the tuples in the instructor relation, then there exists a tuple in the department relation for "Biology".
- Let A be a set of attributes. Let R and S be two relations that contain attributes A and where A is the primary key of S. A is said to be a foreign key of R if for any values of A appearing in R these values also appear in S .

Referential Integrity (Cont.)

- Foreign keys can be specified as part of the SQL create table statement
foreign key (dept_name) references department
- By default, a foreign key references the primary-key attributes of the referenced table.
- SQL allows a list of attributes of the referenced relation to be specified explicitly.
foreign key (dept_name) references department (dept_name)

Cascading Actions in Referential Integrity

- When a referential-integrity constraint is violated, the normal procedure is to reject the action that caused the violation.
- An alternative, in case of delete or update is to cascade
create table course (
(...
dept_name varchar(20),
foreign key (dept_name) references department on delete cascade on update cascade, , .)

- Instead of cascade we can use :
- set null,
- set default

Built-in Data Types in SQL

- date: Dates, containing a (4 digit) year, month and date
- Example: date '2005-7-27'
- time: Time of day, in hours, minutes and seconds.
- Example: time '09:00:30' time '09:00:30.75'
- timestamp: date plus time of day
- Example: timestamp '2005-7-27 09:00:30.75'
- interval: period of time
- Example: interval '1' day
- Subtracting a date/time/timestamp value from another gives an interval value
- Interval values can be added to date/time/timestamp values

Advanced SQL

■ Many other features

- Transactions
- Assertions and triggers

Advanced SQL

■ Many other features

- Transactions
- Assertions and triggers
- Can call SQL from other programming languages
- Almost every language has library functions to invoke SQL
- Transfer data between online forms and databases

Security — SQL injection attacks

- User input can be malicious commands to corrupt database
- Always validate data entered in a form before passing on to SQL

Security - SQL injection attacks

- User input can be malicious commands to corrupt database
- Always validate data entered in a form before passing on to SQL

Relational database design

- Set of attributes that one needs to keep track of

Relational database design

- Set of attributes that one needs to keep track of

■ Why not combine into a single table?

Relational database design

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

Relational database design

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

■ Combine these into a single table?

Relational database design

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Relational database design

- Redundant storage

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Relational database design

- Redundant storage
- Maintaining consistency
- Updates

■ Inserts and deletes

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	E1 Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Decomposition and information

■ (customer_name,regd_phone,regd_email)

Decomposition and information

■ (customer_name,regd_phone,regd_email)
■ Decompose as (customer_name,regd_phone) and (customer_name,regd_email)

Decomposition and information

■ (customer_name,regd_phone,regd_email)
■ Decompose as (customer_name, regd_phone) and (customer_name,regd_email)
■ Name is not unique - loss of information

Decomposition and information

■ (customer_name,regd_phone,regd_email)
■ Decompose as (customer_name, regd_phone) and (customer_name,regd_email)

- Name is not unique - loss of information

■ Recombining decomposed relation should not add tuples

Decomposition and information

■ (customer_name,regd_phone,regd_email)
■ Decompose as (customer_name,regd_phone) and (customer_name,regd_email)

- Name is not unique - loss of information

■ Recombining decomposed relation should not add tuples
■ Lossless decomposition

- Decompose R as R_{1} and R_{2}

■ Want $R=R_{1} \bowtie R_{2}$

Functional dependencies

- $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B_{1}, B_{2}, \ldots B_{m}$
- LHS atributes uniquely fix RHS attributes
- Must hold for every instance - semantic property of attributes

$I D$	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Faitior	120000

Functional dependencies

- $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B_{1}, B_{2}, \ldots B_{m}$
- LHS atributes uniquely fix RHS attributes
- Must hold for every instance - semantic property of attributes
- Need not correspond to superkeys
- dept_name \rightarrow building

■ dept_name \rightarrow budget

$I D$	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Functional dependencies

- $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B_{1}, B_{2}, \ldots B_{m}$
- LHS atributes uniquely fix RHS attributes
- Must hold for every instance - semantic property of attributes
- Need not correspond to superkeys
- dept_name \rightarrow building

■ dept_name \rightarrow budget

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

■ Use to identify sources of redundancy, guide decomposition

Lossless decomposition and functional dependencies

- Decompose R as R_{1} and R_{2}

Lossless decomposition and functional dependencies

- Decompose R as R_{1} and R_{2}

■ Decomposition is lossless if at least one of the following functional dependencies hold

- $R_{1} \cap R_{2} \rightarrow R_{1}$
- $R_{1} \cap R_{2} \rightarrow R_{2}$

Lossless decomposition and functional dependencies

- Decompose R as R_{1} and R_{2}
- Decomposition is lossless if at least one of the following functional dependencies hold
- $R_{1} \cap R_{2} \rightarrow R_{1}$
- $R_{1} \cap R_{2} \rightarrow R_{2}$

■ Decompose Instructor-Department as Instructor and Department

- Instructor \cap Department is dept_name

■ dept_name is primary key for Department

Lossless decomposition and functional dependencies

- Decompose R as R_{1} and R_{2}
- Decomposition is lossless if at least one of the following functional dependencies hold
- $R_{1} \cap R_{2} \rightarrow R_{1}$
- $R_{1} \cap R_{2} \rightarrow R_{2}$

7
 To achere lossless decomp

■ Decompose Instructor-Department as Instructor and Department
■ Instructor \cap Department is dept_name
■ dept_name is primary key for Department

- In general need to compute all implied dependencies
- From $A \rightarrow B$ and $B \rightarrow C$, conclude that $A \rightarrow C$

\downarrow 个?
$A \rightarrow B, C$

■ Closure of a set of dependencies F - denoted F^{+}

Lossless decomposition and functional dependencies

- Decompose R as R_{1} and R_{2}
- Decomposition is lossless if at least one of the following functional dependencies hold
- $R_{1} \cap R_{2} \rightarrow R_{1}$
- $R_{1} \cap R_{2} \rightarrow R_{2}$

■ Decompose Instructor-Department as Instructor and Department
■ Instructor \cap Department is dept_name

- dept_name is primary key for Department
- In general need to compute all implied dependencies
- From $A \rightarrow B$ and $B \rightarrow C$, conclude that $A \rightarrow C$
- Closure of a set of dependencies F - denoted F^{+}

Computing the closure of a set of attributes

- Given $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and B, does $A_{1}, A_{2}, \ldots, A_{k} \rightarrow B$?

Gwen some functonal dependenes

Computing the closure of a set of attributes

```
- Given \(\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}\) and \(B\), does \(A_{1}, A_{2}, \ldots, A_{k} \rightarrow B\) ?
- Iterative algorithm - check if \(B\) is in closure \(\mathcal{A}^{+}\)
    Initialize \(\mathcal{A}^{+}\)to \(\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}\)
    repeat
                    \(A_{3,} A_{7} \rightarrow C\)
        for each \(\beta \rightarrow \gamma\) in \(F\)
            if \(\beta \subseteq \mathcal{A}^{+}\), add \(\gamma\) to \(\mathcal{A}^{+}\)
        end
    until no change in \(\mathcal{A}^{+}\)
                \(v^{t}=A \cup\left\{B_{1}, B_{2}, \ldots, b_{m}\right\}\)
            \(A \rightarrow B_{i}\) for each \(i\)
            \(A \rightarrow B\) for ans \(B \subseteq\left\{B_{1}-\operatorname{rin}\right\} \quad A q_{1} B \rightarrow C\)
```


Normal forms

- Criteria to determine if the collection of tables is "good"

Normal forms

■ Criteria to determine if the collection of tables is "good"

- Normalization - decompose tables till they achieve a normal form

Normal forms

- Criteria to determine if the collection of tables is "good"

■ Normalization - decompose tables till they achieve a normal form

- Guided by functional dependencies

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

■ Write α, β to represent sequences of attributes $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{m}$

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

■ Write α, β to represent sequences of attributes $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{m}$

- R is in BCNF if, for every $\alpha \rightarrow \beta \subset F^{+}$one of the following holds
- $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$)
- α is a superkey for R

C closure

Boyce-Codd Normal Form (BCNF)

■ Relational schema R, set of functional dependencies F
■ Write α, β to represent sequences of attributes $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{m}$
■ R is in BCNF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

■ InstructorDepartment(ID, name, salary, dept_name, building, budget not in BCNF

Boyce-Codd Normal Form (BCNF)

- Relational schema R, set of functional dependencies F

■ Write α, β to represent sequences of attributes $A_{1}, A_{2}, \ldots, A_{k}, B_{1}, B_{2}, \ldots, B_{m}$
■ R is in BCNF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

■ InstructorDepartment(ID, name, salary, dept_name, building, budget not in BCNF

- Instructor (ID, name, dept_namg, salary) and Department dept name building, budget) are in BCNF

Achieving BCNF

- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

Achieving BCNF

- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds

■ $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$)

- α is a superkey for R
sept-name \rightarrow Bully, Budget α β
- To fix this, decompose R as

Achieving BCNF

- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R
- To fix this, decompose R as
- $\alpha \cup \beta$
- $R \backslash(\beta \backslash \alpha)$
- Example: dept_name \rightarrow building, budget is a BCNF violation for InstructorDepartment (ID, name, salary, dept_name, building, budget

Achieving BCNF

- $\alpha \rightarrow \beta \in F^{+}$is a BCNF violation for R if neither of the following holds
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R
- To fix this, decompose R as

■ $\alpha \cup \beta$

- $R \backslash(\beta \backslash \alpha)$

■ Example: dept_name \rightarrow building, budget is a BCNF violation for InstructorDepartment (ID, name, salary, dept_name, building, budget

- Decompose as

■ Department (dept_name, building, budget)

- Instructor (ID, name, dept_name, salary)

$$
\begin{aligned}
& \alpha \cup \beta \\
& R, \beta
\end{aligned}
$$

Dependency preservation

■ Advisor (student_id,faculty_id,dept_name)

- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

Dependency preservation
■ Advisor (student_id, faculty_id, dept_name)
■ Each faculty member is in only one department
■ Students can be across multiple departments
■ Each student has at most one advisor in each department
sid, dept \rightarrow fid
■ BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name) $R-\beta \quad \alpha \cup \beta$

Dependency preservation

■ Advisor (student_id,faculty_id,dept_name)

- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

■ BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)

- Functional dependencies
- faculty_id \rightarrow dept_name

■ student_id,dept_name \rightarrow faculty_id

Dependency preservation

■ Advisor (student_id,faculty_id, dept_name)

Key

- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

■ BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)

- Functional dependencies

■ faculty_id \rightarrow lept_nam
■ student_id, dept_Yame \rightarrow faculty_id
■ Need join to check second dependency

Third normal form (3NF)

- R is in 3NF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds
- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R
- Each attribute A in $\beta \backslash \alpha$ is contained in some candidate key for R

Third normal form (3NF)

- R is in 3NF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds$\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$
- α is a superkey for R
- Eatratribute A in $\beta \backslash \alpha$ is contained in some candidate key for R

■ BCNF is a stricter condition than 3NF

R in $B C N F$
 $\Rightarrow R$ in $3 N E$

Third normal form (3NF)

- R is in 3NF if, for every $\alpha \rightarrow \beta \in F^{+}$, one of the following holds
- $\alpha \rightarrow \beta$ is trivial (ie., $\beta \subseteq \alpha$
- α is a superkey for R
- Each attribute A in $\beta \backslash \alpha$ is contained in some candidate key for R

■ BCNF is a stricter condition than 3NF

- Priorities
- Lossless decomposition
- BCNF Lack
- Dependency preservation

Lamont be compronaned

