Automata for Real-time Systems

B. Srivathsan

Chennai Mathematical Institute
Overview
Automata (*Finite State Machines*) are **good abstractions** of many real systems

hardware circuits, communication protocols, biological processes, ...
Automata can model many **properties** of systems

- Every request is followed by a response.

![Diagram showing the relationship between request and response.](image-url)
Does system satisfy property?

System
\Downarrow
Automaton \mathcal{A}

Property
\Downarrow
Automaton \mathcal{B}
Does system **satisfy** property?
System \downarrow Automaton A

Property \downarrow Automaton B

$L(A) \subseteq L(B)$?

Does system satisfy property?
Model-checking

System
↓
Automaton A

Property
↓
Automaton B

$L(A) \subseteq L(B)$?

Does system satisfy property?
In practice...

Huge system Property

Some model-checkers: SMV, NuSMV, SPIN, ...

Turing Awards: Clarke, Emerson, Sifakis and Pnueli
In practice...

Huge system

↓

Higher-level description

Property

↓

Higher-level description

Some model-checkers: SMV, NuSMV, SPIN, ...

Turing Awards: Clarke, Emerson, Sifakis and Pnueli
In practice...

Huge system

Higher-level description

Automaton A

Property

Higher-level description

Automaton B

Model-Checker

$\mathcal{L}(A) \subseteq \mathcal{L}(B)$?
In practice...

Huge system

 Higher-level description

 Automaton A

 translation

 Model-Checker

\[\mathcal{L}(A) \subseteq \mathcal{L}(B) ? \]

 Property

 Higher-level description

 Automaton B

 translation

 Some model-checkers: SMV, NuSMV, SPIN, …
In practice...

Huge system

Higher-level description

Automaton A

Property

Higher-level description

Automaton B

Model-Checker

$\mathcal{L}(A) \subseteq \mathcal{L}(B)$?

Some model-checkers: SMV, NuSMV, SPIN, ...
Automata are **good abstractions** of many real systems
Automata are **good abstractions** of many real systems

Our course: Automata for **real-time** systems

Picture credits: F. Herbreteau

pacemaker, vehicle control systems, air traffic controllers, ...
Timed Automata

R. Alur and D. Dill in early 90s
Timed Automata

R. Alur and D. Dill in early 90s

Some model-checkers: UPPAAL, KRONOS, RED, …
Goals of our course

Study *language theoretic* and *algorithmic* properties of timed automata
Lecture 7:
Timed languages and timed automata
\[\Sigma : \text{alphabet} \quad \{a, b\} \]

\[\Sigma^* : \text{words} \quad \{\varepsilon, a, b, aa, ab, ba, bb, aab, \ldots\} \]

\[L \subseteq \Sigma^* : \text{language} \quad \rightarrow \quad \text{property over words} \]

\[L_1 := \{\text{set of words starting with an “a”}\} \]
\[\{a, aa, ab, aaa, aab, \ldots\} \]

\[L_2 := \{\text{set of words with a non-zero even length}\} \]
\[\{aa, bb, ab, ba, abab, aaaa, \ldots\} \]
\[\Sigma \quad : \text{alphabet} \quad \{a, b\} \]

\[\Sigma^* \quad : \text{words} \quad \{\varepsilon, a, b, aa, ab, ba, bb, aab, \ldots\} \]

\[L \subseteq \Sigma^* \quad : \text{language} \quad \rightarrow \quad \text{property over words} \]

\[L_1 := \{\text{set of words starting with an “} a \text{”}\} \]
\[\{a, aa, ab, aaa, aab, \ldots\} \]

\[L_2 := \{\text{set of words with a non-zero even length}\} \]
\[\{aa, bb, ab, ba, abab, aaaa, \ldots\} \]

Finite automata, pushdown automata, Turing machines, \ldots
\[\Sigma \text{ : alphabet} \quad \{a, b\} \]

\[T\Sigma^* \text{ : timed words} \]

\begin{align*}
\text{(aa; 0.8, 2.5)} & \quad \text{(abb; } \pi, 203, 312.3) \\
\end{align*}
Σ : alphabet \{\textit{a}, \textit{b}\}

$T\Sigma^*$: timed words

Word $w = a_1 \ldots a_n$
$a_i \in \Sigma$

Time sequence $\tau = \tau_1 \ldots \tau_n$
$\tau_i \in \mathbb{R}_{\geq 0}$
$\tau_1 \leq \cdots \leq \tau_n$

$(aa; 0.8, 2.5)$

$(abb; \pi, 203, 312.3)$
$L \subseteq T\Sigma^*$: Timed language \rightarrow property over timed words

$L_1 := \{ (ab(a + b)^*, \tau) \mid \tau_2 - \tau_1 = 1 \}$

$\begin{array}{cccc}
a & b & ab & b \\
0 & 1 & 2 & \\
\end{array}$

$L_2 := \{ (w, \tau) \mid \tau_{i+1} - \tau_i \geq 2 \text{ for all } i < |w| \}$

$\begin{array}{cccc}
a & a \\
0 & 1.2 & 3.5 & 6 \\
\end{array}$
$L \subseteq T\Sigma^*$: Timed language → property over timed words

$L_1 := \{(ab(a + b)^*, \tau) \mid \tau_2 - \tau_1 = 1\}$

$L_2 := \{(w, \tau) \mid \tau_{i+1} - \tau_i \geq 2 \text{ for all } i < |w|\}$

Timed automata
Timed automaton: Finite automaton + Finite no. of Clocks

Clock

\[\begin{align*}
\text{Clock} & \quad \text{time} \\
0 & \quad \tau
\end{align*} \]
Timed automaton: Finite automaton + Finite no. of *Clocks*

\[\{ (ab(a + b)^*, \tau) \mid \tau_2 \leq 2 \} \]
Timed automaton: Finite automaton + Finite no. of Clocks

\[\{ (ab(a+b)^*, \tau) \mid \tau_2 \leq 2 \} \]
Timed automaton: Finite automaton + Finite no. of Clocks

\[\{ (ab(a + b)^*, \tau) \mid \tau_2 \leq 2 \} \]

\[
\begin{array}{c}
\begin{array}{c}
q_0 \\
q_1 \\
q_2
\end{array}
\end{array}
\begin{array}{c}
a \\
x \leq 2, b
\end{array}
\begin{array}{c}
a, b
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
0 \\
1 \\
2
\end{array}
\end{array}
\begin{array}{c}
a \\
b
\end{array}
\begin{array}{c}
q_0 \\
q_1 \\
q_2
\end{array}
\]

accept

\[
\begin{array}{c}
\begin{array}{c}
0 \\
1 \\
2
\end{array}
\end{array}
\begin{array}{c}
a \\
b
\end{array}
\begin{array}{c}
q_0 \\
q_1 \\
\times
\end{array}
\]

reject
Timed automaton: Finite automaton + Finite no. of *Clocks*

 Guards

\[\phi := x \leq c \mid x \geq c \mid \neg \phi \mid \phi \land \phi \]

\[x \in \text{Clocks}, \ c \in \mathbb{Q}_{\geq 0} \]

\[\{ (ab(a + b)^*, \tau) \mid \tau_2 \leq 2 \} \]

![Diagram of a timed automaton with states and transitions](image)

- **Accept:** Path from \(q_0 \) through \(q_1 \) to \(q_2 \) with inputs \(a, b \) accepted.
- **Reject:** Path from \(q_0 \) through \(q_1 \) to \(q_0 \) with inputs \(a, b \) rejected.
Timed automaton: Finite automaton + Finite no. of *Clocks*

- **Clock**
 - Clock time
 - 0
 - \uparrow
 - \rightarrow time

- **Guards**
 - $\phi := x \leq c \mid x \geq c \mid \neg \phi \mid \phi \land \phi$
 - $x \in \text{Clocks}, \ c \in \mathbb{Q}_{\geq 0}$

- **Transitions**
 - $\{(ab(a + b)^*, \tau) \mid \tau_2 - \tau_1 \leq 2\}$

- **Diagram**
 - $q_0 \rightarrow a \rightarrow q_1 \rightarrow x \leq 2, b \rightarrow q_2 \rightarrow a, b$
Timed automaton: Finite automaton + Finite no. of Clocks

Guards

\[\phi := x \leq c \mid x \geq c \mid \neg \phi \mid \phi \land \phi \]

\[x \in \text{Clocks} \ , \ c \in \mathbb{Q}_{\geq 0} \]

Resets

\[\{ (ab(a + b)^*, \tau) \mid \tau_2 - \tau_1 \leq 2 \} \]
Timed automaton: Finite automaton + Finite no. of Clocks

Clocks

 Guards

\[\phi := x \leq c \mid x \geq c \mid \neg \phi \mid \phi \land \phi \]

\[x \in \text{Clocks}, \ c \in \mathbb{Q}_{\geq 0} \]

 Resets

\[\{ (ab(a + b)^*, \tau) \mid \tau_2 - \tau_1 \leq 2 \} \]

\[
\begin{array}{c}
q_0 \xrightarrow{a} q_1 \\
\{x\} \xrightarrow{x \leq 2, b} q_2
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

\[q_0 \]
\[x:0 \]
\[x \leq 2 \]

accept

\[
\begin{array}{c}
q_0 \xrightarrow{a} q_1 \\
\xrightarrow{x:0} q_2 \xrightarrow{\times} q_1
\end{array}
\]

reject

\[q_0 \xrightarrow{bb} q_1 \xrightarrow{x:0} q_2 \xrightarrow{x > 2} q_1 \]
$L_3 := \{ (a^k, \tau) \mid k > 0, \tau_i = i \text{ for all } i \leq k \}$

An “a” occurs in every integer from 1, \ldots, k
\[L_3 := \{ (\, a^k, \tau \,) \mid k > 0, \, \tau_i = i \text{ for all } i \leq k \} \]

An “\(a \)” occurs in every integer from 1, \ldots, \(k \)
\[L_4 := \{ (a^k, \tau) \mid \text{exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \} \]

There are 2 “a”s which are at distance 1 apart.
\[L_4 := \{ (a^k, \tau) \mid \text{exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \} \]

There are 2 “a”s which are at distance 1 apart
Three mechanisms to exploit:

- **Reset**: to start measuring time
- **Guard**: to impose time constraint on action
- **Non-determinism**: for existential time constraints
\[A = (Q, \Sigma, X, T, Q_0, F) \]

\[T \subseteq Q \times \Sigma \times \text{guard} \times \text{reset} \times Q \]

The diagram shows a transition system with states \(s_0, s_1, s_2, s_3 \) and transitions labeled with input symbols and conditions:

- \(s_0 \) to \(s_1 \): \(a, (y < 1), \{y\} \)
- \(s_1 \) to \(s_2 \): \(c, (x < 1) \)
- \(s_2 \) to \(s_3 \): \(c, (x < 1) \)
- \(s_1 \) to \(s_3 \): \(a, (y < 1), \{y\} \)
- \(s_2 \) to \(s_3 \): \(d, (x > 1) \)
- \(s_0 \) to \(s_1 \): \(b, (y = 1) \)
\(A = (Q, \Sigma, X, T, Q_0, F) \)

\[T \subseteq Q \times \Sigma \times \text{guard} \times \text{reset} \times Q \]
\(A = (Q, \Sigma, X, T, Q_0, F) \)

\(T \subseteq Q \times \Sigma \times \text{guard} \times \text{reset} \times Q \)

Run of \(A \) over \((a_1a_2 \ldots a_k; \tau_1\tau_2 \ldots \tau_k)\)

\[(q_0, v_0) \xrightarrow{\delta_1} (q_0, v_0 + \delta_1) \xrightarrow{a_1} (q_1, v_1) \xrightarrow{\delta_2} (q_1, v_1 + \delta_2) \cdots \xrightarrow{a_k} (q_k, v_k) \]

\((w, \tau) \in \mathcal{L}(A) \) if \(A \) has an accepting run over \((w, \tau)\)
\[L_5 := \{ (abcd.\Sigma^*, \tau) \mid \tau_3 - \tau_1 \leq 2 \text{ and } \tau_4 - \tau_2 \geq 5 \} \]

Interleaving distances
\[L_5 := \{ (abcd.\Sigma^*, \tau) \mid \tau_3 - \tau_1 \leq 2 \text{ and } \tau_4 - \tau_2 \geq 5 \} \]

Interleaving distances
n interleavings \Rightarrow need n clocks

$n + 1$ clocks more expressive than n clocks
Timed automata

Runs
1 clock < 2 clocks < …
\[L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \} \]
$L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$

Claim: **No timed automaton** can accept L_6
Step 1: *Suppose* $L_6 = \mathcal{L}(A)$

Let c_{max} be the maximum constant appearing in a guard of A.
Step 1: Suppose $L_6 = \mathcal{L}(A)$

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock x,

$$x = \lceil c_{\text{max}} \rceil + 1 \text{ and } x = \lceil c_{\text{max}} \rceil + 1.1$$

satisfy the same guards
Step 1: Suppose $L_6 = \mathcal{L}(A)$

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock x,

$x = \lceil c_{\text{max}} \rceil + 1$ and $x = \lceil c_{\text{max}} \rceil + 1.1$

satisfy the same guards

Step 3: $(a; \lceil c_{\text{max}} \rceil + 1) \in L_6$ and so A has an accepting run

$$(q_0, v_0) \xrightarrow{\delta = \lceil c_{\text{max}} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$$
Step 1: Suppose $L_6 = \mathcal{L}(A)$
Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock x,

\[x = \lceil c_{\text{max}} \rceil + 1 \quad \text{and} \quad x = \lceil c_{\text{max}} \rceil + 1.1 \]

satisfy the same guards

Step 3: $(a; \lceil c_{\text{max}} \rceil + 1) \in L_6$ and so A has an accepting run

\[
(q_0, v_0) \xrightarrow{\delta = \lceil c_{\text{max}} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)
\]

Step 4: By Step 2, the following is an accepting run

\[
(q_0, v_0) \xrightarrow{\delta' = \lceil c_{\text{max}} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v'_F)
\]
Step 1: *Suppose* $L_6 = \mathcal{L}(A)$

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock x,

$x = \lceil c_{\text{max}} \rceil + 1$ and $x = \lceil c_{\text{max}} \rceil + 1.1$

satisfy the same guards

Step 3: $(a; \lceil c_{\text{max}} \rceil + 1) \in L_6$ and so A has an accepting run

$$(q_0, v_0) \xrightarrow{\delta = \lceil c_{\text{max}} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$$

Step 4: By Step 2, the following is an accepting run

$$(q_0, v_0) \xrightarrow{\delta' = \lceil c_{\text{max}} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v'_F)$$

Hence $(a; \lceil c_{\text{max}} \rceil + 1.1) \in \mathcal{L}(A) \neq L_6$

Therefore **no timed automaton** can accept L_6
Timed automata

Runs

1 clock < 2 clocks < ...

Role of max constant
Timed automata

Runs

1 clock < 2 clocks < ...

Role of max constant

Timed regular lngs.
A timed language is called **timed regular** if it can be **accepted** by a timed automaton.
Timed regular languages are closed under union.
Timed regular languages are **closed** under intersection

\[
A = (Q, \Sigma, X, T, Q_0, F)
\]

\[
A' = (Q', \Sigma, X', T', Q'_0, F')
\]

\[
A \cap = (Q \times Q', \Sigma, X \cup X', T \cap, Q_0 \times Q'_0, F \times F')
\]

\[
T \cap : \quad (q_1, q'_1) \xrightarrow{a, g \land g'}_{R \cup R'} (q_2, q'_2) \text{ if } q_1 \xrightarrow{a, g}_{R} q_2 \in T \text{ and } q'_1 \xrightarrow{a, g'}_{R'} q'_2 \in T'
\]
\(L \) : a timed language over \(\Sigma \)

\[
\text{Untime}(L) \equiv \{ w \in \Sigma^* \mid \exists \tau. (w, \tau) \in L \}
\]

Untiming construction

For *every* timed automaton \(A \) there is a finite automaton \(A_u \) s.t.

\[
\text{Untime}(\mathcal{L}(A)) = \mathcal{L}(A_u)
\]

more about this later . . .
Complementation

\[\Sigma : \{a, b\} \]

\[L = \{ (w, \tau) \mid \text{there is an } a \text{ at some time } t \text{ and no action occurs at time } t + 1 \} \]

\[\overline{L} = \{ (w, \tau) \mid \text{every } a \text{ has an action at a distance 1 from it} \} \]
Complementation

\[\Sigma : \{a, b\} \]

\[L = \{ (w, \tau) \mid \text{there is an } a \text{ at some time } t \text{ and no action occurs at time } t + 1 \} \]

\[\bar{L} = \{ (w, \tau) \mid \text{every } a \text{ has an action at a distance } 1 \text{ from it} \} \]

Claim: **No timed automaton** can accept \(\bar{L} \)

Decision problems for timed automata: A survey

Alur, Madhusudhan. *SFM'04: RT*
Step 1: \(\overline{L} = \{ (\omega, \tau) \mid \text{every } a \text{ has an action at a distance 1 from it} \} \)

Suppose \(\overline{L} \) is timed regular
Step 1: \(\overline{L} = \{ (w, \tau) \mid \text{every } a \text{ has an action at a distance 1 from it} \} \)

Suppose \(\overline{L} \) is timed regular

Step 2: Let \(L' = \{ (a^* b^*, \tau) \mid \text{all } a's \text{ occur before time 1 and no two } a's \text{ happen at same time} \} \)

Clearly \(L' \) is timed regular
Step 1: \(\overline{L} = \{ (w, \tau) \mid \text{every } a \text{ has an action at a distance 1 from it} \} \)

Suppose \(\overline{L} \) is timed regular

Step 2: Let \(L' = \{ (a^*b^*, \tau) \mid \text{all } a's \text{ occur before time 1 and no two } a's \text{ happen at same time} \} \)

Clearly \(L' \) is timed regular

Step 3: \(\text{Untime}(\overline{L} \cap L') \) should be a regular language

\(\frac{30}{35} \)
Step 1: $\overline{L} = \{ (w, \tau) \mid \text{every } a \text{ has an action at a distance 1 from it } \} $

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^* b^*, \tau) \mid \text{all } a's \text{ occur before time 1 and no two } a's \text{ happen at same time } \} $

Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime($\overline{L} \cap L'$) = $\{ a^n b^m \mid m \geq n \}$, *not regular!*
Step 1: \(\bar{L} = \{ (w, \tau) \mid \text{every } a \text{ has an action at a distance 1 from it} \} \)

Suppose \(\bar{L} \) is timed regular

Step 2: Let \(L' = \{ (a^*b^*, \tau) \mid \text{all } a's \text{ occur before time 1 and no two } a's \text{ happen at same time} \} \)

Clearly \(L' \) is timed regular

Step 3: Untime(\(\bar{L} \cap L' \)) should be a regular language

Step 4: But, Untime(\(\bar{L} \cap L' \)) = \(\{a^n b^m \mid m \geq n\} \), not regular!

Therefore \(\bar{L} \) cannot be timed regular
Timed regular languages are not closed under complementation
Timed automata

- Runs
- 1 clock $<$ 2 clocks $<$ \ldots
- Role of max constant

Timed regular lns.

- Closure under \cup, \cap
- Non-closure under complement
Timed automata

Runs
1 clock < 2 clocks < …
Role of max constant

Timed regular lns.

Closure under \cup, \cap
Non-closure under complement

ε-transitions
Claim: No timed automaton can accept L_6
\[L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \} \]
$L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$

\[
\begin{array}{cccccccc}
\text{a} & \varepsilon & \text{a} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \text{a} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

Claim: No timed automaton can accept L_6.

\[x = 1, \varepsilon, \{x\}\]

\[x = 1, a, \{x\}\]
ε-transitions

ε-transitions add expressive power to timed automata.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. *Fundamenta Informaticae*’98
ε-transitions

ε-transitions add expressive power to timed automata. However, they add power only when a clock is reset in an ε-transition.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae’98
Timed automata

Runs
1 clock < 2 clocks < ...
Role of max constant

Timed regular lngs.

Closure under \cup, \cap
Non-closure under complement

ε-transitions

More expressive

$\varepsilon \rightarrow$ without reset \equiv TA