
On the Language Inclusion Problem for Timed Automata:
Closing a Decidability Gap

Joël Ouaknine
Computer Science Department, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA 15213, USA

Email: joelo@andrew.cmu.edu

James Worrell
Department of Mathematics, Tulane University

6823 St. Charles Ave., New Orleans LA 70118, USA

Email: jbw@math.tulane.edu

Abstract
We consider the language inclusion problem for timed automata:

given two timed automata A and B, are all the timed traces accepted
by B also accepted by A? While this problem is known to be un-
decidable, we show here that it becomes decidable if A is restricted
to having at most one clock. This is somewhat surprising, since it is
well-known that there exist timed automata with a single clock that
cannot be complemented. The crux of our proof consists in reducing
the language inclusion problem to a reachability question on an infi-
nite graph; we then construct a suitable well-quasi-order on the nodes
of this graph, which ensures the termination of our search algorithm.

We also show that the language inclusion problem is decidable if
the only constant appearing among the clock constraints of A is zero.
Moreover, these two cases are essentially the only decidable instances
of language inclusion, in terms of restricting the various resources of
timed automata.

1. Introduction

Timed automata were introduced by Alur and Dill in [5] and
have since become a standard modeling formalism for real-time
systems. Unfortunately, the algorithmic analysis of timed au-
tomata is limited by the undecidability of the language inclu-
sion problem (given two timed automata A and B, are all the
timed traces accepted byB also accepted byA?) [5]. In spite of
this hindrance, there has been much research in the last decade
on various aspects of timed language inclusion—see, e.g., [29],
[20], [18], [10], [13], [24], [6], [27], [12], [7], [22], [26], [25].
In this paper, we show that, if the timed automaton A is re-
stricted to having a single clock, the language inclusion ques-
tion of whether L(B) ⊆ L(A) becomes decidable.

This is somewhat surprising, since the vast majority of decid-
able instances of language inclusion among both timed and un-
timed computational models proceed by complementation and
emptiness checking of the intersection [16]: L(B) ⊆ L(A)
iff L(B) ∩ L(A) = ∅. However, it is well-known that there

This research was sponsored by the Semiconductor Research Corporation
(SRC) under contract no. 99-TJ-684, the National Science Foundation (NSF)
under grants no. CCR-9803774 and CCR-0121547, the Office of Naval Re-
search (ONR) and the Naval Research Laboratory (NRL) under contract no.
N00014-01-1-0796, and the Army Research Office (ARO) under contract no.
DAAD19-01-1-0485. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of SRC, NSF, ONR, NRL, ARO, the
U.S. Government or any other entity.

exist timed automata with a single clock that cannot be comple-
mented, which precludes any (direct) use of the above equiva-
lence.

We solve the timed automaton language inclusion problem
L(B) ⊆ L(A), in which A is assumed to have at most one
clock, by converting it to a reachability problem on an infinite
‘joint state space’ ofA andB. This procedure requires us to de-
terminize and complement A on-the-fly, creating an unbounded
object. Fortunately, we are able to construct a suitable well-
quasi-order on the state space, which ensures termination.

We also show that the timed automaton language inclusion
problem L(B) ⊆ L(A) is decidable if the only constant ap-
pearing among the clock constraints of A is zero (in this case,
of course, both timed automata are allowed arbitrarily many
clocks). Interestingly, no other set of ‘reasonable’ restrictions
on the resources of timed automata (number of clocks, number
of locations, magnitude of clock constraints, and size of alpha-
bet) yields a decidable language inclusion problem.

The results presented in this paper paint a fairly complete
theoretical picture of the language inclusion problem for timed
automata. We believe that they also have promising practical
applications, as we now argue.

In software engineering, it is common to have several repre-
sentations of a system under development, at different levels of
abstraction. One of the most widespread abstraction and spec-
ification formalisms is that of finite-state machines—see, e.g.,
[11], [19], [21], [8]. The intention is that more concrete repre-
sentations of the system, including in particular any proposed
implementation, should always conform to the abstract specifi-
cation. A standard notion of conformance is that of (untimed)
language inclusion: every trace of the system should also be a
trace of the specification. Unfortunately, finite-state machines
are time-abstract, in that they do not incorporate timing details.
However, for many systems (such as communication protocols
or plant controllers), timing considerations can be crucial to en-
sure correctness. For this reason, many researchers advocate the
use of timed finite-state machines to represent specifications,
with timed language inclusion as the conformance relation be-
tween implementation and specification—see, e.g., [29], [10],
[6], [25], [18].

Although this notion of conformance between an imple-
mentation and a timed specification is easy to state, verifying

whether it holds, as discussed above, is in general undecid-
able. The main result of this paper, which provides an algo-
rithm to check timed language inclusion between implementa-
tions and single-clock timed specifications, opens the way to
the formal hierarchical modeling and automated verification of
a large class of systems; one such example is the protocol TCP,
used to transmit information over the Internet, whose functional
specification can be given as a finite-state machine equipped
with a single clock [17, pages 15–23].

Related work. The first paper to consider the timed au-
tomaton language inclusion question L(B) ⊆ L(A) was [5],
in which the undecidability of the general case was established.
Although the proof was only sketched, it clearly showed that
the problem is undecidable even if A is restricted to having two
clocks. On the other hand, the paper’s region automaton con-
struction, drawing on earlier work [4], showed that the problem
is decidable if A is not permitted the use of any clock. The re-
maining case—A having a single clock—has, to the best of our
knowledge, never been studied before.

Several researchers have investigated timed automaton lan-
guage inclusion under various other assumptions. Among oth-
ers, we note the use of (i) topological restrictions and digiti-
zation techniques: [12], [7], [26], [22], [25]; (ii) fuzzy seman-
tics: [10], [13], [24]; (iii) determinizable subclasses of timed
automata: [6], [27]; and (iv) timed simulation relations and ho-
momorphisms: [29], [20], [18].

Most decision algorithms for timed automata are based on
clock region constructions [4], [5]. Clock regions partition the
dense (infinite) state space of clocks into finitely many pieces,
in such a way that the resulting quotient exhibits the same qual-
itative behavior as the original system. Unfortunately, this rela-
tionship is not strong enough to preserve quantitative properties
such as timed language inclusion.

Although the constructions we use in this paper rely in part
on clock regions, they give rise in general to objects that are
intrinsically infinite. We are able to ensure termination of our
algorithm by carefully manufacturing and exploiting a suitable
well-quasi-order (wqo) on our state space. The use of wqos to
provide termination guarantees for algorithms that operate on
infinite structures is certainly not new: other decidability re-
sults include questions of reachability, maintainability, termi-
nation, coverability/sub-coverability of markings (in Petri nets),
and simulation by/of finite-state machines. We refer the reader
to the excellent surveys [3], [9] for more details on these mat-
ters. To our knowledge, however, our work is the first to apply
the theory of wqos to a language inclusion problem.

The wqo we use in this paper relies on Higman’s lemma [15]
and is obtained through an elaborate process in which, among
others, we demonstrate the wqo’s compatibility with the deci-
sion problem at hand. Other applications of wqos based on Hig-
man’s lemma include reachability algorithms for lossy channel
systems [1] and parameterized networks of timed processes [2];
additional examples can be found in the two surveys cited ear-
lier.

Structure of the paper. The next section briefly reviews the
necessary material on well-quasi-orders and Higman’s lemma.
Section 3 then carefully presents the model of timed automata
we shall use in this paper, along with related definitions and
conventions. We also give an example of a single-clock timed
automaton that cannot be complemented. In Section 4, we state
and prove both of our language inclusion decidability results.
Section 5 then presents a number of undecidability results about
the universality problem, a special case of language inclusion.
Together, Sections 4 and 5 essentially characterize the decid-
able instances of the language inclusion problem as a function
of the resources allocated to timed automata. Lastly, Section 6
offers conclusions and discusses future work.

2. Well-Quasi-Orders and Higman’s Lemma
Given a set Q, a quasi-order1 on Q is a reflexive and transi-

tive relation 4 ⊆ Q×Q.
An infinite sequence 〈q1, q2, . . . 〉 inQ is said to be saturating

if there exist indices i < j such that qi 4 qj . A quasi-order
4 is a well-quasi-order (wqo for short) on Q if every infinite
sequence in Q is saturating.

Let v be a quasi-order on Λ. Define the induced monotone
domination order 4 on Λ∗, the set of finite words over Λ, as
follows: a1 . . . am 4 b1 . . . bn if there exists a strictly increas-
ing function f : {1, . . . ,m} → {1, . . . , n} such that, for all
1 6 i 6 m, ai v bf(i).

The following result is known as Higman’s lemma [15]:
Lemma 1: If v is a wqo on Λ, then the induced monotone

domination order 4 is also a wqo on Λ∗.
Example 2: Let Λ = {A,B, . . . , Z} be the standard Ro-

man alphabet, and define the relation v on Λ to be equal-
ity: x v y iff x = y. v is clearly a wqo since Λ is
finite. The induced monotone domination order 4 on Λ∗

is then none other than the ‘subword’ order. For example,
HIGMAN 4 HIGHMOUNTAIN since HIGMAN is a sub-
word of HIGHMOUNTAIN. Higman’s lemma states that 4 is a
wqo: if one starts writing down an unending sequence of words,
one will eventually write down a superword of an earlier word
in the sequence.

3. Timed Automata
Let C be a finite set of clocks, denoted x, y, z, etc. We de-

fine the set ΦC of clock constraints over C via the following
grammar, where k ∈ N stands for any non-negative integer,
and ./ ∈ {=, <,>,6,>} is a comparison operator:

φ ::= true | x ./ k | ¬φ | φ ∧ φ | φ ∨ φ.

Definition 3: A timed automaton is a six-tuple
(Σ, S, S0, Sf , C,E), where
• Σ is a finite set (alphabet) of events,
• S is a finite set of locations,

1Also sometimes called a preorder.

• S0 ⊆ S is a set of start locations,
• Sf ⊆ S is a set of accepting locations,
• C is a finite set of clocks, and
• E ⊆ S×S×Σ×ΦC ×P(C) is a finite set of transitions.

A transition (s, s′, a, φ,R) allows a jump from location s
to s′, communicating event a ∈ Σ in the process, provided
the constraint φ on clocks is met. Afterwards, the clocks
in R are reset to zero, while all other clocks remain un-
changed.

Remark 4: One finds many variants of the definition of timed
automaton in the literature: allowing diagonal clock constraints
(of the form x − y ./ k); allowing rational, rather than inte-
ger, bounds in clock constraints; adding invariant clock con-
straints to locations. It is however not difficult to verify that
our main results extend straightforwardly to any combination
of these variants.

For the remainder of this section, we are assuming a fixed
timed automaton A = (Σ, S, S0, Sf , C,E).

A clock valuation is a function ν : C → R+, where R+

stands for the non-negative real numbers. If t ∈ R+, we let
ν+ t be the clock valuation such that (ν+ t)(x) = ν(x) + t for
all x ∈ C.

A state of A is a pair (s, ν), where s ∈ S is a location and ν
is a clock valuation.

A run of A is a finite alternating sequence of states and de-

layed transitions e = (s0, ν0)
t1,θ1−→ (s1, ν1)

t2,θ2−→ . . .
tn,θn−→

(sn, νn), where ti ∈ R+ and θi = (si−1, si, ai, φi, Ri) ∈ E,
subject to the conditions:

1) for all 0 6 i 6 n− 1, νi + ti+1 satisfies φi+1, and
2) for all 0 6 i 6 n − 1, νi+1(x) = νi(x) + ti+1 for all

x ∈ C \Ri+1, and νi+1(x) = 0 for all x ∈ Ri+1.

Each ti is interpreted as the time delay between the firing of
transitions, and each state (si, νi), for i > 1, records the data
immediately following transition θi. We often abuse notation

and write runs in the form (s0, ν0)
t1,a1−→ (s1, ν1)

t2,a2−→ . . .
tn,an−→

(sn, νn) to highlight the run’s events.
An A-configuration is a finite set of states of A. Given an

A-configuration G, a G-initialized run is a run whose first state
belongs to G. An accepting run, on the other hand, is a run
whose last state belongs to Sf .

A timed event is a pair (t, a), where t ∈ R+ is a delay and
a ∈ Σ is an event. A timed trace is a finite sequence of timed
events, in which each delay represents the time elapsed since
the occurrence of the previous event (or since time 0 in the case
of the first event). We write TT to denote the set of all timed
traces.

Given a run e = (s0, ν0)
t1,a1−→ (s1, ν1)

t2,a2−→ . . .
tn,an−→

(sn, νn), we produce an associated timed trace tt(e) =̂
〈(t1, a1), (t2, a2), . . . , (tn, an)〉.

Let G be an A-configuration. We define the G-initialized
timed language of A to be the set

L(A[G]) =̂ {tt(e) | e is an accepting G-initialized run of A}

of dense-time timed traces accepted by A, when started in con-
figuration G. A very important special case is that in which
G = S0 × {0}, where 0 is the clock valuation mapping every
clock to 0. In that case, we write

L(A) =̂ L(A[S0 × {0}])

to denote the timed language accepted by A (from its standard
initial configuration). Another notable instance is that of a sin-
gleton A-configuration G = {(s, ν)}, in which case we write
L(A[(s, ν)]) rather than L(A[{(s, ν)}]). Lastly, observe that
L(A[∅]) = ∅.

Remark 5: The reader will have noticed that our timed trace
semantics is weakly monotonic, in that multiple events are al-
lowed to occur ‘simultaneously’ (i.e., with no delay between
them). None of the results of Section 4 are affected if one
adopts instead a strongly monotonic semantics, in which all de-
lays are required to be strictly positive. The effects of a strongly
monotonic semantics on Theorem 21 in Section 5 are listed in
a footnote attached to the statement of the theorem.

Example 6: We reproduce below from [5] an example of a
timed automaton2 A, equipped with a single clock, that cannot
be complemented: there does not exist a timed automaton A′

such that L(A′) = TT \ L(A).

A : //ONMLHIJK@GF ECDa

��
a

x:=0
//ONMLHIJK a

x=1?
//

@GF ECDa

�� ONMLHIJKGFED@ABC@GF ECDa

��

.

The complement of L(A) contains all timed traces in which no
pair of a’s is separated by exactly one time unit. Intuitively,
since there is no bound on the number of a’s that can occur in
any unit-duration time interval, any timed automaton capturing
the complement of L(A) would require an unbounded number
of clocks to keep track of the times of all the a’s within the past
one time unit. A formal proof that A cannot be complemented
is given in [14].

4. Decidable Cases of Language Inclusion

We now present two decidable instances of the language in-
clusion problem L(B) ⊆ L(A), where A and B are two timed
automata. The main result is Theorem 17 in Section 4.1, which
asserts that the problem is decidable provided that A is re-
stricted to having at most one clock. Theorem 20 in Section 4.2,
on the other hand, states that the problem is also decidable if A
does not make use of constants other than 0 in its clock con-
straints.

2Our representation of timed automata follows standard practice: start lo-
cations are depicted with an incoming arrow not originating from any other
location, and accepting locations are doubly circled. Clock constraints are dec-
orated with question marks (?), whereas clock resets use assignment symbols
(:=). The rest of the notation is self-explanatory.

4.1. Single-clock restriction
The main result of this section is Theorem 17, which we

present after some preliminaries. We shall assume through-
out two fixed timed automata A = (ΣA, SA, SA0 , S

A
f , C

A, EA)

and B = (ΣB , SB , SB0 , S
B
f , C

B , EB), with A having a single
clock x. Let us moreover postulate, without loss of generality,
that A and B share the same alphabet Σ = ΣA = ΣB , and do
not have any other data in common.

The overall strategy for deciding whether L(B) ⊆ L(A) is
to explore a certain ‘joint state space’ of A and B, either mak-
ing sure throughout that whenever B can accept a particular
timed trace then so can A, or otherwise answering the language
inclusion query in the negative. As described, this procedure re-
quires that A be determinized, and therefore involves exploring
a potentially infinite state space. We ensure termination both
by determinizing A on-the-fly, as needed, and by constructing
a suitable well-quasi-order which forces us only to explore a
finite portion of the entire state space.

Since A has only one clock, states of A are simply pairs
(s, u), with s ∈ SA, and u ∈ R+ representing the value of
clock x. Define an A/B-configuration to be a pair (G, (q, ν)),
where G is an A-configuration (a finite set of states of A), and
(q, ν) is a single state of B.

Intuitively, an A/B-configuration will be used to represent a
particular state that B can be in having performed some timed
trace π, together with the set of all states that A can be in hav-
ing performed the same timed trace π. A/B-configurations can
therefore be viewed as states of the ‘synchronous parallel com-
position’ of A and B, in which A has been determinized.

For (q, ν) a state of B, t ∈ R+, and a ∈ Σ, let

SuccB((q, ν), t, a) =̂ {(q′, ν′) | (q, ν)
t,a−→ (q′, ν′)}

be the set of (t, a)-successor states of (q, ν). A similar defini-
tion yields a function SuccA for the timed automaton A, which
we lift to A-configurations in the obvious way:

SuccA(G, t, a) =̂ {(s′, u′) | ∃(s, u) ∈ G � (s, u)
t,a−→ (s′, u′)}.

Note that SuccA(G, t, a) is again an A-configuration, albeit
possibly empty.

Let Γ1 = (G1, (q1, ν1)) and Γ2 = (G2, (q2, ν2)) be two
A/B-configurations, and let a ∈ Σ be an event. Postulate an
a-transition from Γ1 to Γ2 (written Γ1

a−→ Γ2) if there ex-
ists t ∈ R+ such that G2 = SuccA(G1, t, a) and (q2, ν2) ∈
SuccB((q1, ν1), t, a); moreover, if t = 0 is a valid such witness,
we say that the a-transition is immediate. In this way, we view
the collection of all A/B-configurations as an infinite labeled
transition system G. For Γ and Γ′ two A/B-configurations,
we say that Γ′ is reachable from Γ if there exists a finite path
Γ

a1−→ . . .
an−→ Γ′ from Γ to Γ′ in G. We include paths of length

0 in this definition, so that any A/B-configuration is reachable
from itself.

Let (G, (q, ν)) be an A/B-configuration. We say that
(G, (q, ν)) is bad if both q is accepting (q ∈ SBf), and none

of the states in G are accepting (for all (s, u) ∈ G, s /∈ SAf).
We also say that (G, (q, ν)) is doomed if some bad A/B-
configuration is reachable from (G, (q, ν)). In particular, every
bad A/B-configuration is doomed. An A/B-configuration is
safe if it is not doomed.

Lemma 7: For any A/B-configuration Γ = (G, (q, ν)),
L(B[(q, ν)]) ⊆ L(A[G]) iff Γ is safe.

Proof: Suppose first that Γ is safe, and let
〈(t1, a1), . . . , (tn, an)〉 ∈ L(B[(q, ν)]). There is then a corre-
sponding path Γ

a1−→ Γ1
a2−→ . . .

an−→ Γn = (Gn, (qn, νn))
in G, where qn ∈ SBf . Since Γ is safe, Γn cannot be bad,
and therefore there must be some (s, u) ∈ Gn with s ∈ SAf .
We conclude that A must have a G-initialized run ending in
(s, u) that yields the timed trace 〈(t1, a1), . . . , (tn, an)〉, which
shows that L(B[(q, ν)]) ⊆ L(A[G]) as required.

The other direction proceeds similarly and is left to the
reader.

Let us call any A/B-configuration of the form (SA0 ×
{0}, (q,0)), with q ∈ SB0 , an initial A/B-configuration. (Re-
call that 0 stands for the clock valuation that maps all of B’s
clocks to 0). We now have:

Corollary 8: L(B) ⊆ L(A) iff all initial A/B-configura-
tions are safe.

Proof: Follows immediately from Lemma 7.
Corollary 8 therefore reduces our language inclusion ques-

tion L(B) ⊆ L(A) to a reachability query on the infinite la-
beled transition system G. We now construct an equivalence
relation on G by encoding A/B-configurations as words over a
certain alphabet. This will enable us to define a suitable well-
quasi-order on the resulting quotient labeled transition system.

Let K be the largest constant appearing in any of the clock
constraints of A and B. We partition R+ into a finite collection
of one-dimensional regions REG =̂ {r0, r1, . . . , r2K+1}, as
follows: for 0 6 i 6 K, r2i =̂ {i} and r2i+1 =̂ (i, i + 1), and
r2K+1 =̂ (K,∞).

Let Λ =̂ P
(
(SA × REG) ∪ (SB × CB × REG)

)
be an al-

phabet: the ‘letters’ it contains are finite sets of pairs (s, r) and
triples (q, y, r), where s and q are locations of A and B re-
spectively, y is a clock of B, and r is a region. Since Λ, be-
ing finite, is clearly well-quasi-ordered by set inclusion, Hig-
man’s lemma states that the set Λ∗ of finite words over Λ is
well-quasi-ordered by the induced monotone domination or-
der 4: ρ1 . . . ρm 4 γ1 . . . γn if there exists a strictly increas-
ing function f : {1, . . . ,m} → {1, . . . , n} such that, for all
1 6 i 6 m, ρi ⊆ γf(i). Note that this order is different from
the ‘subword’ order seen in Example 2.

We now explain how to associate to any A/B-configuration
Γ = (G, (q, ν)) a canonical word H(Γ) ∈ Λ∗. Let us assume
that the timed automaton B has M clocks y1, . . . , yM . If G =
{(s1, u1), . . . , (sk, uk)}, we can first equivalently represent Γ
as the set

{(si, reg(ui), ui) | 1 6 i 6 k} ∪
{(q, yj , reg(ν(yj)), ν(yj)) | 1 6 j 6M},

where reg(t) ∈ REG denotes the region to which the real num-
ber t ∈ R+ belongs, and t ∈ [0, 1) represents the fractional part
of t.

Since every pair (si, reg(ui)) and every triple
(q, yj , reg(ν(yj))) corresponds to a (singleton) letter of
Λ, we can instead write Γ as

{(µl, vl) | 1 6 l 6 k +M},

where each µl is one of the Λ-letters in question (of the form
{(si, reg(ui))} or {(q, yj , reg(ν(yj)))}), and each vl is its as-
sociated fractional part (of the form ui or ν(yj)).

Finally, let us group together Λ-letters whose associated frac-
tional parts are identical, yielding a new set of Λ-letters paired
with fractional parts

{(ρi, wi) | 1 6 i 6 p}

as representation of Γ. Here each ρi is a union of µl’s, and the
fractional parts wi are all distinct; formally: ρi =

⋃{µl | vl =
wi}, and p is the number of such new pairs, i.e., the total num-
ber of distinct fractional parts in Γ. Note that some of the ρi’s
may well still be singletons. We then let

H(Γ) =̂ ρiz1ρiz2 . . . ρizp ,

where z1 . . . zp is the permutation of 1 . . . p that puts
wz1 . . . wzp in ascending order.

Example 9: Let s1, s2 be two locations of the timed au-
tomaton A, and let q be a location of the timed automa-
ton B. Suppose that B has two clocks, y1 and y2. Let
G = {(s1, 0.0), (s1, 0.3), (s1, 1.2), (s2, 0.4), (s2, 1.0)} be an
A-configuration, and let (q, ν) be a state of B, where ν(y1) =
0.8 and ν(y2) = 1.3. Finally, let Γ = (G, (q, ν)) be an A/B-
configuration.

Write r0 to represent the region {0}, r1
0 to represent the re-

gion (interval) (0, 1), r1 to represent the region {1}, and r2
1 to

represent the region (interval) (1, 2). Then H(Γ) is the 5-letter
word

{
(s1, r0), (s2, r1)

}{
(s1, r

2
1)
}

{
(s1, r

1
0), (q, y2, r

2
1)
}{

(s2, r
1
0)
}{

(q, y1, r
1
0)
}
.

We say that twoA/B-configurations Γ and Γ′ are equivalent,
written Γ ∼ Γ′, if H(Γ) = H(Γ′). We also say that Γ is domi-
nated by Γ′, written Γ 4 Γ′, if (writing Γ′ = (G, (q, ν))) there
exists G′ ⊆ G such that Γ ∼ (G′, (q, ν)). The overloading of
4 is justified in view of the following:

Proposition 10: For any A/B-configurations Γ and Γ′, Γ 4
Γ′ iff H(Γ) 4 H(Γ′).

Proof: By straightforward inspection of the relevant defi-
nitions.

We earlier showed that the assertion L(B) ⊆ L(A) is equiv-
alent to showing that no bad A/B-configuration is reachable

in G. Unfortunately, since there are uncountably many A/B-
configurations, it is necessary to reason in terms of Λ-words
instead. In the next few propositions, we develop the required
machinery to do this.

We begin by showing that ∼ is a bisimulation relation:
Proposition 11: For any A/B-configurations Γ1,Γ

′
1 and

event a ∈ Σ, if Γ1 ∼ Γ′1 then

1) for any Γ2 such that Γ1
a−→ Γ2, there exists Γ′2 with

Γ′1
a−→ Γ′2 and Γ2 ∼ Γ′2,

2) for any Γ′2 such that Γ′1
a−→ Γ′2, there exists Γ2 with

Γ1
a−→ Γ2 and Γ2 ∼ Γ′2.

Proof: Let Γ1,Γ
′
1 be A/B-configurations such that Γ1 ∼

Γ′1, and let Γ2 be an A/B-configuration with Γ1
a−→ Γ2. We

must show that there exists an A/B-configuration Γ′2 such that
Γ′1

a−→ Γ′2 and Γ2 ∼ Γ′2.

The transition Γ1
a−→ Γ2 can be decomposed into a time

evolution from Γ1 to Γ1 + t (for some t ∈ R), followed by an
immediate transition Γ1 + t

a−→ Γ2. Here Γ1 + t represents the
result of adding t to all clock valuations (of both A and B) in
Γ1.

Write Γ1 = (G, (q, ν)) and Γ′1 = (G′, (q′, ν′)). Since Γ1 ∼
Γ′1, we have q = q′. Moreover, ν and ν ′ must agree on (i) the
integer parts of all clocks (if no greater than K), (ii) whether
or not clocks have null fractional part, and (iii) the ordering of
the fractional parts of all clocks. It easily follows that there
must exist t′ ∈ R+ such that ν + t and ν ′ + t′ are also in
similar agreement; moreover, since the relationship Γ1 ∼ Γ′1
also requires the global matching of the integer and fractional
parts of the clock valuations in both G and ν with those in G′

and ν′, we can in fact find t′ such that Γ1 + t ∼ Γ′1 + t′.
The agreement described above between ν+ t and ν ′+ t′ en-

tails that, for any clock constraint φ ∈ ΦCB , ν+ t satisfies φ iff
ν′+t′ satisfies φ (a formal proof of this fact is an easy structural
induction on φ). The same of course holds for clock valuations
in G and G′ with respect to clock constraints in ΦCA . Conse-
quently, Γ1 + t and Γ′1 + t′ enable exactly the same transitions
of the timed automata A and B.

Let us therefore define Γ′2 to be the A/B-configuration ob-
tained from Γ′1 + t′ upon immediately taking the same a-
transitions as those associated with the jump Γ1+t

a−→ Γ2. Ob-
serve that, upon taking these transitions, corresponding clocks
in Γ1 + t and Γ′1 + t′ are (in both Γ1 + t and Γ′1 + t′) either left
unchanged, or reset to zero. Since Γ1 + t ∼ Γ′1 + t′, it easily
follows that Γ2 ∼ Γ′2, as required.

Corollary 12: The relation ∼ preserves badness, doom, and
safety: for any A/B-configurations Γ ∼ Γ′, Γ is bad iff Γ′ is
bad, Γ is doomed iff Γ′ is doomed, and Γ is safe iff Γ′ is safe.

Proof: The case of badness is immediate, whereas doom
and safety follow from the preservation of badness and Propo-
sition 11.

We are therefore only interested in A/B-configurations up
to ∼-equivalence, and thus define a quotient labeled transition

systemH ⊆ Λ∗ as follows:

H =̂ G/∼ =̂ {H(Γ) | Γ is an A/B-configuration},

and, forW1,W2 ∈ H and a ∈ Σ, postulate a transitionW1
a−→

W2 if, for all Γ1 ∈ H−1(W1) there exists Γ2 ∈ H−1(W2) with
Γ1

a−→ Γ2. Lastly, let

H0 =̂ {H(Γ) | Γ is an initial A/B-configuration}

denote the (finite) set of initial words ofH.
Corollary 13: For anyW1,W2 ∈ H and a ∈ Σ,W1

a−→W2

iff there exist A/B-configurations Γ1 ∈ H−1(W1) and Γ2 ∈
H−1(W2) with Γ1

a−→ Γ2.
Proof: Follows immediately from Proposition 11.

Given a word W ∈ H, let

Succ(W) =̂ {W ′ ∈ H | ∃ a ∈ Σ �W a−→W ′}

denote the set of successors of W inH.
Proposition 14: For any word W ∈ H, the set Succ(W) is

finite and effectively computable.
Proof: Given W , it is easy to construct an A/B-

configuration Γ such that H(Γ) = W . Then, given any a ∈ Σ,
note that there are only finitely many A/B-configurations Γ′

with transition Γ
a−→ Γ′ immediately enabled, the list of which

can readily be computed.
Next, observe that, for any t ∈ R+, H(Γ + t) is a word

with the same number of letters as W , the finite collection of
which is also straightforward to enumerate. For each of these
words, and for every event a ∈ Σ, computing the immediate
a-successors can again be done effectively by simply examin-
ing a corresponding A/B-configuration. Note that, according
to Corollary 13, the particular choices of A/B-configuration
we make to compute successors are unimportant. Since the
function H , which converts A/B-configurations back into H-
words, in clearly computable, what we have just described is an
effective algorithm to generate the set Succ(W).

Next, we show that the wqo 4 onH is a simulation relation:
Lemma 15: Let W1,W

′
1 ∈ H be two words such that W1 4

W ′1. Then, for any a ∈ Σ, W ′2 ∈ H, and transition W ′1
a−→

W ′2, there exists a word W2 ∈ H such that W1
a−→ W2 and

W2 4W ′2.
Proof: Let W1, W ′1, and W ′2 be as above, and let Γ1 ∈

H−1(W1), Γ′1 ∈ H−1(W ′1), and Γ′2 ∈ H−1(W ′2) be such that
there is a transition Γ′1

a−→ Γ′2. By Corollary 13, it suffices to
show there exists Γ2 4 Γ′2 such that Γ1

a−→ Γ2.
Write Γ1 = (G1, (q1, ν1)), Γ′1 = (G′1, (q

′
1, ν
′
1)), and

Γ′2 = (G′2, (q
′
2, ν
′
2)). Since Γ′1

a−→ Γ′2, by definition there
must be some t ∈ R+ such that G′2 = SuccA(G′1, t, a) and
(q′2, ν

′
2) ∈ SuccB((q′1, ν

′
1), t, a). Since W1 4 W ′1, Γ1 4 Γ′1,

i.e., there exists G′′1 ⊆ G′1 such that Γ1 ∼ (G′′1 , (q
′
1, ν
′
1)).

Write Γ′′1 = (G′′1 , (q
′
1, ν
′
1)), G′′2 = SuccA(G′′1 , t, a), and Γ′′2 =

(G′′2 , (q
′
2, ν
′
2)). We then have Γ1 ∼ Γ′′1 and Γ′′1

a−→ Γ′′2 . We can

let ToExplore = H0

let Explored = ∅
repeat forever

repeat
if ToExplore = ∅ return ‘L(B) ⊆ L(A)’
remove some W from ToExplore
if W is bad return ‘L(B) * L(A)’

until ∀V ∈ Explored � V 64W
let ToExplore = ToExplore ∪ Succ(W)
let Explored = Explored ∪ {W}.

Fig. 1. Algorithm to decide whether L(B) ⊆ L(A)

therefore invoke Proposition 11 to conclude that there exists an
A/B-configuration Γ2 with Γ1

a−→ Γ2 and Γ2 ∼ Γ′′2 .
Now notice that, since G′′1 ⊆ G′1, G′′2 = SuccA(G′′1 , t, a) ⊆

SuccA(G′1, t, a) = G′2, and hence Γ′′2 4 Γ′2. Combining this
fact with Γ2 ∼ Γ′′2 , we easily see that Γ2 4 Γ′2, as required.

(Note that < is also a simulation, but we will not need this.)
Let W ∈ H be a word and let Γ ∈ H−1(W) be a corre-

sponding A/B-configuration. We attach the expressions bad,
doomed, and safe to W according to whether they respectively
apply to Γ. (Note that, in doing so, the particular choice of Γ
is unimportant, thanks to Corollary 12.) If W is doomed and if
i ∈ N is the length of a shortest path from W to a bad word, let
us say that W is i-doomed. Thus, in particular, bad words are
0-doomed.

Proposition 16: Let W,W ′ ∈ H be two words such that
W 4 W ′. If W ′ is i-doomed, then W is j-doomed for some
j 6 i.

Proof: Follows immediately from Lemma 15 and the fol-
lowing observation: for any A/B-configurations Γ and Γ′, if
Γ 4 Γ′ and Γ′ is bad, then so is Γ.

Figure 1 gives an algorithm for deciding whether L(B) ⊆
L(A). This algorithm uses two set variables, ToExplore and
Explored, in which to store words. Its correctness is the subject
of Theorem 17.

Theorem 17: Let A and B be two timed automata, with A
having at most one clock. Then the language inclusion question
of whether L(B) ⊆ L(A) is decidable.

Proof: From Corollary 8, we know that L(B) ⊆ L(A)
iff all initial words are safe. We now show that the latter is
precisely what the algorithm given in Figure 1 decides.

We first observe that the algorithm terminates: indeed, if it
did not, since ToExplore is always a finite set, an infinite col-
lection W1,W2, . . . of words would over time be added to Ex-
plored, each new word having the property that it does not dom-
inate any of its predecessors. This would constitute an infi-
nite non-saturating sequence, directly contradicting Higman’s
lemma.

Next, it is clear that if the algorithm returns ‘L(B) * L(A)’,
then that statement is accurate: some bad word is reachable
from one of the initial words inH0. On the other hand, if ToEx-
plore ever comes to contain a bad word, then the algorithm will
inevitably return ‘L(B) * L(A)’.

We now claim that, if ToExplore ever comes to contain a
doomed word, then eventually the algorithm will also return
‘L(B) * L(A)’. Suppose, on the contrary, that in a given
complete execution of the algorithm, the lowest doom index
achieved by ToExplore is some i > 1; i.e., at some point, an
i-doomed word W belonged to ToExplore, and for every other
word V to have belonged to ToExplore, V was either safe or j-
doomed, for some j > i. Since W is i-doomed, one of its suc-
cessors in Succ(W) must be (i−1)-doomed. Thus whenW was
examined in the inner repeat loop, it cannot have satisfied the
exit condition ∀V ∈ Explored � V 64 W , otherwise Succ(W)
would have been added to ToExplore, contradicting our mini-
mal choice of i. It follows that there must have been some word
V ∈ Explored with V 4W , from which we deduce, according
to Proposition 16, that V is j-doomed for some j 6 i. But V ’s
presence in Explored implies that Succ(V)—which contains a
(j − i)-doomed word—was at some point added to ToExplore.
This again contradicts our minimal choice of i and shows that,
if any initial word inH0 fails to be safe, then the algorithm will
return ‘L(B) * L(A)’, as required.

Remark 18: Why does Theorem 17 fail when A is allowed
two clocks? As discussed earlier (and see also Theorem 21),
Alur and Dill showed in [5] that the language inclusion prob-
lem of whether L(B) ⊆ L(A) is in general undecidable if A
is allowed two (or more) clocks. It is therefore instructive to
point out where the construction and proof of our single-clock
decidability result break down when A is a timed automaton
with two clocks.

Recall first that, when A has only one clock, a state of A
is a pair (s, u), where s is a location and u is a real number
representing the value of A’s single clock. When examining
a configuration of A—i.e., a finite set of states of A—it is es-
sential to know the ordering of the fractional parts of the clock
values of states in the configuration: without this information,
it would be impossible to accurately predict how the configura-
tion will tranform as time elapses. In the construction and proof
of Theorem 17, we keep track of this ordering by simply repro-
ducing it as the order of the letters in the word that encodes the
configuration.

If A is now a timed automaton equipped with two clocks x
and y, a state of A is a triple (s, u, v), where s is a location and
u and v are real numbers representing the values of clocks x
and y respectively. A configuration of A is again a finite set of
states of A. Note, however, that in order to accurately predict
how a given configuration will transform as time elapses, it is
necessary at a minimum to know the ordering of the fractional
parts of the values of clock x of states in the configuration, as
well as the ordering of the fractional parts of the values of clock
y of states in the configuration.3 Notice now that if each state
in the configuration is represented by some letter, the order-
ing of these letters can capture either the ordering of the frac-
tional parts of clock x, or the ordering of the fractional parts of

3It is in fact also necessary to know the global ordering of the fractional parts
of all clock values, but let us disregard this additional burden here.

clock y, but not both. It is therefore not possible to encode two-
clock configurations as words and at the same time preserve all
necessary information to accurately predict how configurations
evolve over time.

Naturally, other discrete structures (such as directed graphs
with colored edges) could easily be used to encode two-clock
configurations and retain the necessary information. But no
such structures could then be equipped with a wqo compatible
with the domination order on configurations, as we now demon-
strate.

Let A be a timed automaton with two clocks x and y, and
let states and configurations of A be defined as above. Let us
say that two A-configurations G and G′ are equivalent if there
is a bijection from G to G′ that preserves both the ordering of
the fractional parts of clock x of states, and the ordering of the
fractional parts of clock y of states.4 We also say that G is
dominated by G′, written G 4 G′, if there exists G′′ ⊆ G′

such that G is equivalent to G′′.
It turns out that the domination order for two-clock timed

automata is not a wqo, so that any hope of guarantee-
ing termination of an algorithm similar to that presented in
Figure 1 is doomed. We illustrate this by exhibiting an
infinite non-saturating sequence of two-clock configurations
G1, G2, G3, The control location of all the states in these
configurations is the same, and moreover all x and y clock val-
ues lie strictly between 0 and 1. As a result, each configuration
can be represented as a finite subset of the open unit square
(0, 1) × (0, 1). For i > 1, configuration Gi consists of 2i + 2
points (states), arranged on i distinct horizontal levels, or lines,
in a seesaw manner. Each horizontal level holds two points, and
an extra point is added to both the lowest and the highest lev-
els. This sequence of configurations is inspired from an infinite
antichain of permutations described in [28].

Rather than give a precise definition of our infinite sequence
of configurations, we illustrate in Figures 2 to 4 the configura-
tions G3, G4, and G5, from which the general pattern is easily
deduced. Note that dotted lines indicate the various horizontal
levels, whereas solid seesaw lines are only used as a visual aid
to highlight the general pattern. We leave to the reader the easy
task of checking that, for i 6= j, Gi 64 Gj , which shows that the
sequence G1, G2, G3, . . . indeed never saturates.

4.2. Null-constant restriction
We now show that the language inclusion question L(B) ⊆

L(A) is decidable even if both A and B are allowed arbitrarily
many clocks, provided that A never compares its clocks to any
constant other than 0.

A timed automaton is said to be deterministic if it has a
unique start location, and if, whenever two transitions from a
common location are labeled with the same event, then their
clock constraints are disjoint.

4For simplicity, we are omitting in this definition other requirements such as
the preservation of control locations and integral parts of clocks, etc., which
have no bearing on our main argument.

x
1

1

y

Fig. 2. Configuration G3 of an infinite non-saturating sequence of con-
figurations of a timed automaton with two clocks

x
1

1

y

Fig. 4. Configuration G5

x
1

1

y

Fig. 3. Configuration G4

The following result makes use of a construction similar to
that given in [30].

Lemma 19: LetA be a timed automaton with 0 the only con-
stant appearing among its clock constraints. Then one can con-
struct a deterministic timed automaton A′ which accepts the
same timed language: L(A) = L(A′). (In addition, A′ has
a single clock and uses only the constant 0 in its clock con-
straints.)

Proof: Let A be as above. The idea is to construct a de-
terministic version of the region automaton5 of A. We will in
addition equip this region automaton with a single clock, so as
to keep track, on any transition, of whether a strictly positive
amount of time has elapsed (since the firing of the last transi-
tion) or not. Since A is itself unable to make any finer timed
distinctions, the resulting automaton will be equivalent to it.

Let A = (Σ, S, S0, Sf , C,E), with C = {x1, . . . , xM} the
set of clocks of A. A clock region of A is simply an M -tuple of
bits, with each bit recording whether its corresponding clock
has current value 0 or not. Let REG denote the set of all
clock regions. Define a basic location to be a pair (s, r), with
s ∈ S a location of A, and r ∈ REG a clock region. For

a ∈ Σ, postulate a basic transition (s, r)
0,a−→ (s′, r′) if an im-

mediate transition between (s, r) and (s′, r′) is consistent with
some immediate transition of A, and postulate a basic transi-

tion (s, r)
1,a−→ (s′, r′) if a delayed transition between (s, r) and

(s′, r′) is consistent with some (strictly positive) time-delayed

5The region automaton construction, introduced in [5], takes as input a timed
automatonA and produces an untimed automaton that accepts the untimed lan-
guage of A: the very same sequences of events, without the delays.

transition of A.
We now construct a deterministic timed automaton A′ as fol-

lows: its alphabet is the same as that ofA, Σ. Its set of locations
is P(S × REG)—in other words, locations of A′ are simply
sets of basic locations. Its unique start location is S0 × {~0},
where ~0 represents the region consisting entirely of null bits.
The accepting locations of A′ are those which contain at least
one basic location whose first component is accepting (belongs
to Sf). A′ has a single clock, z, which is reset on every transi-
tion. Lastly, for Q,Q′ two locations of A′ and a ∈ Σ, define a

transition Q
0,a−→ Q′ if Q′ = {(s′, r′) | ∃(s, r) ∈ Q � (s, r) 0,a−→

(s′, r′)}, and likewise for Q
1,a−→ Q′. In writing Q

1,a−→ Q′

we denote the a-labeled transition from Q to Q′ which is con-
strained by z > 0 and which subsequently resets z, whereas

Q
0,a−→ Q′ represents the same transition, but constrained by

z = 0 rather than z > 0.
It is readily seen that A′ is deterministic, and that it accepts

the same timed language as A. The latter rests on the observa-
tion that, whenever A accepts a timed trace π, A also accepts
any timed trace which is identical to π except for the precise
non-zero values of all strictly positive delays.

Theorem 20: Let A and B be two timed automata, with 0
the only constant appearing among the clock constraints of A.
Then the language inclusion question of whetherL(B) ⊆ L(A)
is decidable.

Proof: Follows immediately from Lemma 19, the fact
that deterministic timed automata can be complemented, the
fact that timed automata are closed under intersection, and
the well-known fact that language emptiness is decidable [5].
(Alternately, one could directly invoke Theorem 17, since by
Lemma 19 A is equivalent to a timed automaton equipped with
a single clock.)

5. Undecidability of Universality with Minimal
Resources

In Section 4, we examined two decidable instances of the
language inclusion problem between timed automata. It turns
out that these are, for all practical purposes, the only decid-
able instances, at least in terms of placing restrictions on the
resources of timed automata (number of clocks, number of lo-
cations, magnitude of clock constraints, and size of alphabet).

To make this statement more precise, we consider a special
case of language inclusion, namely the universality problem
(whether a timed automaton accepts every timed trace). For
arbitrary timed automata, this problem was shown to be unde-
cidable in [5]. We sharpen this result in the following theorem:

Theorem 21: For A a timed automaton, the universality
question of whether L(A) = TT remains undecidable under
any of the following restrictions:

1) A has two clocks and a one-event alphabet6, or
2) A has two clocks and uses a single (non-zero) constant in

clock constraints, or
6Over strongly monotonic time, we require two events in A’s alphabet.

3) A has a single location and a one-event alphabet6, or
4) A has a single location and uses a single (non-zero) con-

stant in clock constraints.
Remark 22: We recall that diagonal clock constraints (of the

form x − y ./ k) are not allowed in our model of timed au-
tomata. This restriction considerably complicates cases (3) and
(4), since multiple locations cannot simply be encoded through
the ordering of clock values, as is otherwise standard [30].

Proof: (Sketch.) In all four cases, the idea of the proof
is similar to that presented by Alur and Dill in [5]. Given a
two-counter machine M , one constructs a timed automaton A
satisfying the relevant restrictions and which moreover rejects
precisely those timed traces that correspond (via a certain en-
coding) to the halting computations of M . It follows that M
halts iff L(A) 6= TT. Since the halting problem is undecidable
for two-counter machines, so is the universality problem for the
corresponding type of timed automata.

Note that Alur and Dill’s result imposes no restrictions on
timed automata, contrary to Theorem 21. Our encodings and
constructions—in particular those pertaining to cases (3) and
(4)—are therefore significantly more intricate. Full details can
be found in [23].

Note, of course, that the assertion L(A) = TT reduces to
L(B) ⊆ L(A), if B is chosen to be any timed automaton that
accepts every timed trace.

An interesting consequence of Theorem 21 (cases (1) and
(3)) is that the ‘communication’ structure of timed automata
plays no role in the undecidability of universality. This suggests
that the type of questions considered in this paper are no easier
to handle in an event-less timed framework than they are here.

6. Conclusion and Future Work
The main contribution of this paper is an algorithm to decide

the timed automaton language inclusion question of whether
L(B) ⊆ L(A), providedA has at most one clock. We have also
shown that the problem is decidable if the only constant appear-
ing among the clock constraints of A is zero. Moreover, these
two cases are essentially the only decidable instances of lan-
guage inclusion, in terms of restricting the resources of timed
automata.

From a practical point of view, our main decidability result
enables the automated verification of timed systems against
functional specifications expressed as finite-state machines
equipped with a single clock. We believe this to be a substantial
improvement in expressiveness over (untimed) finite-state ma-
chines, although the feasibility and usefulness of this approach
will need to be demonstrated through case studies.

Finally, let us list three interesting directions for future
work:
• What is the complexity of our algorithm?
• Can we extend our decidability result to Büchi timed au-

tomata?
• Are there alternate (e.g., logical) characterizations of the

languages accepted by single-clock timed automata?

References
[1] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable chan-

nels. In Proceedings of LICS 93, pages 160–670. IEEE Computer Society
Press, 1993.

[2] P. A. Abdulla and B. Jonsson. Verifying networks of timed processes. In
Proceedings of TACAS 98, volume 1384, pages 298–312. Springer LNCS,
1998.

[3] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidabil-
ity theorems for infinite-state systems. In Proceedings of LICS 96, pages
313–321. IEEE Computer Society Press, 1996.

[4] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Proceedings of LICS 90, pages 414–425. IEEE Computer Society
Press, 1990.

[5] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[6] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A de-
terminizable class of timed automata. Theoretical Computer Science,
211:253–273, 1999.

[7] D. Bošnački. Digitization of timed automata. In Proceedings of FMICS
99, 1999.

[8] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verifi-
cation of software components in C. In Proceedings of ICSE 03, pages
385–395. IEEE Computer Society, 2003.

[9] A. Finkel and Ph. Schnoebelen. Well-structured transition systems every-
where! Theoretical Computer Science, 256(1–2):63–92, 2001.

[10] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
Proceedings of HART 97, volume 1201, pages 331–345. Springer LNCS,
1997.

[11] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8:231–274, 1987.

[12] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks?
In Proceedings of ICALP 92, volume 623, pages 545–558. Springer
LNCS, 1992.

[13] T. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and
hybrid systems. In Proceedings of HSCC 00, volume 1790, pages 145–
159. Springer LNCS, 2000.

[14] P. Herrmann. Timed automata and recognizability. Information Process-
ing Letters, 65:313–318, 1998.

[15] G. Higman. Ordering by divisibility in abstract algebras. In Proceedings
of the London Mathematical Society, volume 2, pages 236–366, 1952.

[16] J. E. Hopcroft and J. Ullman. Introduction to automata theory, languages
and computation. Addison-Wesley, New York, NY, 1979.

[17] Information Sciences Institute, University of Southern California. Trans-
mission Control Protocol (DARPA Internet Program Protocol Specifica-
tion), 1981. http://www.faqs.org/rfcs/rfc793.html.

[18] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. Timed I/O Au-
tomata: A mathematical framework for modeling and analyzing real-time
systems. In Proceedings of RTSS 03. IEEE Computer Society Press, 2003.

[19] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines — A survey. In Proceedings of the IEEE, volume 84, pages
1090–1126, 1996.

[20] N. A. Lynch and H. Attiya. Using mappings to prove timing properties.
Distributed Computing, 6(2):121–139, 1992.

[21] J. Magee and J. Kramer. Concurrency: State Models and Java Programs.
John Wiley, 1999.

[22] J. Ouaknine. Digitisation and full abstraction for dense-time model check-
ing. In Proceedings of TACAS 02, volume 2280, pages 37–51. Springer
LNCS, 2002.

[23] J. Ouaknine and J. B. Worrell. On the undecidability of universality for
timed automata with minimal resources. In preparation.

[24] J. Ouaknine and J. B. Worrell. Revisiting digitization, robustness, and
decidability for timed automata. In Proceedings of LICS 03, pages 198–
207. IEEE Computer Society Press, 2003.

[25] J. Ouaknine and J. B. Worrell. Timed CSP = closed timed ε-automata.
Nordic Journal of Computing, 10:99–133, 2003.

[26] J. Ouaknine and J. B. Worrell. Universality and language inclusion for
open and closed timed automata. In Proceedings of HSCC 03, volume
2623, pages 375–388. Springer LNCS, 2003.

[27] J.-F. Raskin. Logics, Automata and Classical Theories for Deciding Real
Time. PhD thesis, University of Namur, 1999.

[28] D. A. Spielman and Miklós Bóna. An infinite antichain of permutations.
The Electronic Journal of Combinatorics, 7(2):1–4, 2000.

[29] S. Taşiran, R. Alur, R. P. Kurshan, and R. K. Brayton. Verifying abstrac-
tions of timed systems. In Proceedings of CONCUR 96, volume 1119,
pages 546–562. Springer LNCS, 1996.

[30] S. Tripakis. Folk theorems on the determinization and minimization of
timed automata. In Proceedings of FORMATS 03, 2003.

