Lecture 09, 12 September 2023

Arrays ๆ

- Contiguous block of memory
- Typically size is declared in advance, all values are uniform
- a[0] points to first memory location in the allocated block
- Locate a [i] in memory using index arithmetic
- Skip i blocks of memory, each block's size determined by value stored in array
- Random access -- accessing the value at $a[i]$ does not depend on i
- Useful for procedures like sorting, where we need to swap out of order values a[i] and a[j]
- $a[i], a[j]=a[j], a[i]$
- Cost of such a swap is constant, independent of where the elements to be swapped are in the array
- Inserting or deleting a value is expensive
- Need to shift elements right or left, respectively, depending on the location of the modification

Lists

- Each location is a cell, consisiting of a value and a link to the next cell
- Think of a list as a train, made up of a linked sequence of cells
- The name of the list 1 gives us access to 1 [0], the first cell
- To reach cell 1 [i], we must traverse the links from 1 [0] to 1 [1] to 1 [2] ... to 1 [i-1]] to 1 [i]
- Takes time proportional to i
- Cost of swapping 1 [i] and 1 [j] varies, depending on values i and j
- On the other hand, if we are already at 1 [i] modifying the list is easy
- Insert - create a new cell and reroute the links
- Delete - bypass the deleted cell by rerouting the links
- Each insert/delete requires a fixed amount of local "plumbing", independent of where in the list it is performed

Dictionaries

- Values are stored in a fixed block of size m
- Keys are mapped to $\{0,1, \ldots, m-1\}$
- Hash function $h: K \rightarrow S$ maps a large set of keys K to a small range S
- Simple hash function: interpret $k \in K$ as a bit sequence representing a number n_{k} in binary, and compute n_{k} mod m, where $|S|=m$
- Mismatch in sizes means that there will be collisions -- $k_{1} \neq k_{2}$, but $h\left(k_{1}\right)=h\left(k_{2}\right)$
- A good hash function maps keys "randomly" to minimize collisions
- Hash can be used as a signature of authenticity
- Modifying k slightly will drastically alter $h(k)$
- No easy way to reverse engineer a k^{\prime} to map to a given $h(k)$
- Use to check that large files have not been tampered with in transit, either due to network errors or malicious intervention
- Dictionary uses a hash function to map key values to storage locations
- Lookup requires computing $h(k)$ which takes roughly the same time for any k
- Compare with computing the offset $a[i]$ for any index i in an array
- Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
- Effectively, a dictionary combines flexibility with random access

Lists in Python

- Flexible size, allow inserting/deleting elements in between
- However, implementation is an array, rather than a list
- Initially allocate a block of storage to the list
- When storage runs out, double the allocation
- l.append (x) is efficient, moves the right end of the list one position forward within the array
- 1 . insert $(0, x)$ inserts a value at the start, expensive because it requires shifting all the elements by 1
- We will run experiments to validate these claims

Measuring execution time

- Call time.perf_counter()
- Actual return value is meaningless, but difference between two calls measures time in seconds

In [1]: import time

- 10^{7} appends to an empty Python list

In [2]: start = time.perf_counter()
l = []
for i in range(10000000):

1. append(i)
elapsed = time.perf_counter() - start
print(elapsed)
3.1834037989901844

- Doubling the work approximately doubles the time, linear

In [3]: start = time.perf_counter()
1 = []
for i in range(20000000):
l.append(i)
elapsed = time.perf_counter() - start
print(elapsed)
5.753009960986674

- 10^{5} inserts at the beginning of a Python list

In [4]: start = time.perf_counter()
1 = []
for i in range(100000):
l.insert (0,i)
elapsed = time.perf_counter() - start
print (elapsed)
5.5166299150150735

- Doubling and tripling the work multiplies the time by 4 and 9 , respectively, so quadratic

In [5]: start = time.perf_counter()
1 = []
for i in range(200000):
1.insert(0,i)
elapsed = time.perf_counter() - start
print(elapsed)
17.979196411994053

In [6]: start = time.perf_counter()
1 = []
for i in range(300000):
l.insert $(0, i)$
elapsed = time.perf_counter() - start
print(elapsed)
43.46195148699917

- Creating 10^{7} entries in an empty dictionary

In [7]: start = time.perf_counter()
$\mathrm{d}=\{ \}$
for i in range $(10000000,0,-1)$:
$d[i]=i$
elapsed = time.perf_counter() - start
print(elapsed)
3.8069355089974124

- Doubling the operations, doubles the time, so linear
- Dictionaries are effectively random access

In [8]: start = time.perf_counter()
$d=\{ \}$
for i in range $(20000000,0,-1)$:
$d[i]=i$
elapsed = time.perf_counter() - start
print (elapsed)
9.057193082000595

```
In [9]: def createlist(): # Equivalent of l = [] is l = createlist()
    return({})
def listappend(1,x):
    if l == {}:
        1["value"] = x
        1["next"] = {}
        return
    node = l
    while node["next"] != {}:
        node = node["next"]
    node["next"]["value"] = x
    node["next"]["next"] = {}
    return
def listinsert(l,x):
    if l == {}
        l["value"] = x
        l["next"] = {}
        return
    newnode = {}
    newnode["value"] = 1["value"]
    newnode["next"] = l["next"]
    l["value"] = x
    1["next"] = newnode
    return
def printlist(1):
    print("{",end="")
    if l == {}:
        print("}")
    return
    node = 1
    print(node["value"],end="")
    while node["next"] != {}:
        node = node["next"]
    print(",",node["value"],end="")
    print("}")
    return
```

- Display a small list as nested dictionaries

In [10]: start = time.perf_counter()
1 = createlist()
for i in range(10):
listappend (1,i)
elapsed = time.perf_counter() - start
print(elapsed)
print(1)
0.020103318995097652
\{'value': 0, 'next': \{'value': 1, 'next': \{'value': 2, 'next': \{'value': 3, 'next': \{'value': 4, 'next': \{'value': 5, 'nex t': \{'value': 6, 'next': \{'value': 7, 'next': \{'value': 8, 'next': \{'value': 9, 'next': \{\}\}\}\}\}\}\}\}\}\}\}

- Insert 10^{7} elements at the beginning in this implementation of a list

In [11]: start = time. perf_counter()
1 = createlist()
for i in range(1000000):
listinsert(l,i)
elapsed = time.perf_counter() - start
print(elapsed)
3.375442454998847

- Doubling the work doubles the time, so linear

In [12]: start = time.perf_counter()
l = createlist()
for in inge(2000000):
listinsert(1,i)
elapsed = time.perf_counter() - start
print(elapsed)
6.131248404999496

- Append 10^{4} elements in this implementation of a list
listappend(1,i)
elapsed = time.perf_counter() - start
print(elapsed)
9.82448883599136
- Halving the work takes $1 / 4$ of the time, so quadratic

In [14]: start = time.perf_counter()
1 = createlist()
for i in range(5000):
listappend(1,i)
elapsed = time.perf_counter() - start
print(elapsed)
2.685035665985197

Defining our own data structures

- We have implemented a "linked" list using dictionaries
- The fundamental functions like listappend, listinsert, listdelete modify the underlying list
- Instead of mylist = \{\}, we wrote mylist = createlist()
- To check empty list, use a function isempty () rather than mylist == \{\}
- Can we clearly separate the interface from the implementation
- Define the data structure in a more "modular" way

Set comprehension

- Defining new sets from old
- $\left\{x^{2} \mid x \in \mathbb{Z}, x \geq 0 \wedge(x \bmod 2)=0\right\}$
- $x \in \mathbb{Z}$, generating set
- $x \geq 0 \wedge(x \bmod 2)=0$, filtering condition
- x^{2}, output transformation
- More generally $\{f(x) \mid x \in S, p(x)\}$
- generating set S
- filtering predicate $p()$
- transformer function $f()$

Can do this manually for lists

- List of squares of even numbers from 0 to 19
- Initialize output list as []
- Run through a loop and append elements to output list

In [15]: evensqlist = []
for i in range(20):
if i \% 2 == 0:
evensqlist.append(i*i)
print(evensqlist)
[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Operating on each element of a list

- map (f, l) applies a function f to each element of a list 1
- filter $(p, 1)$ extracts elements x from 1 for which $p(x)$ is `True

In [16]: def even(x):
$\operatorname{return}(x \% 2==0)$
def odd(x):
return(not(even(x)))
def square(x):
return ($x^{*} x$)
$N=20$
$11=$ list(range(N))
12 = list(filter(odd,11)) \# Note that we can pass a function name as an argument
13 = list(map(square,11))
\# Combine map and filter
14 = list(map(square,filter(even,l1)))

In [17]: 11
Out [17]: $[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]$

In [18]:	12
Out [18] :	$[1,3,5,7,9,11,13,15,17,19]$
In [19]:	13
Out [19]:	[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, $361]$
In [20]:	14

List comprehension

- [$f(x)$ for x in ... if $p(x)$]

In [21]: [square(x) for x in range(20) if even(x)]

Out[21]: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

In [22]: \# A zero vector of length N
[0 for i in range(20)] \# The map function can be a constant function

Out[22]: $[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$

- List comprehension can be nested
- A 2 dimensional list : A list of M lists of N zeros

In [23]: $M, N=3,5$
onedim = [0 for i in range(N)] \# A list of N zeros
twodim $=$ [[0 for i in range(N)] for j in range(M)]

In [24]: onedim, twodim
Out [24]: ([0, 0, 0, 0, 0], [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])

All Pythagorean triples with value less than \mathbf{n}

- (x, y, z) such that $x^{2}+y^{2}=z^{2}, x, y, z \leq n$

Using nested loops

- Run through all possible (x, y, z)
- To avoid duplicates like $(3,4,5)$ and $(4,3,5)$ enumerate y starting from x
- z must be at least y, enumerate z starting from y

In [25]: $N=20$
triples = []
for x in range(1,N+1)
for y in range $(x, N+1)$:
for z in range $(y, N+1)$:
if $x^{*} x+y^{*} y==z^{*} z$
triples.append((x,y,z))

In [26]: triples

Out [26]: $[(3,4,5),(5,12,13),(6,8,10),(8,15,17),(9,12,15),(12,16,20)]$

Pythagorean triples via list comprehension

- Multiple generators for x, y and z
- As before start generator for y at x and generator for z at y

In [27]: $N=20$
[(x, y, z) for x in range $(1, N+1)$ for y in range $(x, N+1)$ for z in range $(y, N+1)$ if $x^{*} x+y^{*} y==z^{*} z$]

Out [27]: $[(3,4,5),(5,12,13),(6,8,10),(8,15,17),(9,12,15),(12,16,20)]$

Uses of list comprehension

List comprehension notation is compact and useful in a number of contexts

- Pull out all dictionary values where the keys satisfy some property: e.g. all marks below 50
- [d[k] for k in d.keys() if $p(k)$]
- Symmetrically, keys whose values satisfy some property: e.g. all roll numbers where marks are below 50
- [k for k in d.keys() if $p(d[k])$]
- Or, extract (key,value) pairs of interest
- [(k,d[k]) for k in d.keys() if $p(d[k])$]

