
Lecture 09, 12 September 2023

Arrays ¶

Contiguous block of memory
Typically size is declared in advance, all values are uniform
a[0] points to first memory location in the allocated block

Locate a[i] in memory using index arithmetic
Skip i blocks of memory, each block's size determined by value stored in array

Random access -- accessing the value at a[i] does not depend on i
Useful for procedures like sorting, where we need to swap out of order values a[i] and a[j]

a[i], a[j] = a[j], a[i]
Cost of such a swap is constant, independent of where the elements to be swapped are in the array

Inserting or deleting a value is expensive
Need to shift elements right or left, respectively, depending on the location of the modification

Lists

Each location is a cell, consisiting of a value and a link to the next cell
Think of a list as a train, made up of a linked sequence of cells

The name of the list l gives us access to l[0] , the first cell
To reach cell l[i] , we must traverse the links from l[0] to l[1] to l[2] to l[i-1]] to l[i]

Takes time proportional to i
Cost of swapping l[i] and l[j] varies, depending on values i and j
On the other hand, if we are already at l[i] modifying the list is easy

Insert - create a new cell and reroute the links
Delete - bypass the deleted cell by rerouting the links

Each insert/delete requires a fixed amount of local "plumbing", independent of where in the list it is performed

…

Dictionaries

Values are stored in a fixed block of size
Keys are mapped to
Hash function maps a large set of keys to a small range
Simple hash function: interpret as a bit sequence representing a number in binary, and compute , where
Mismatch in sizes means that there will be collisions -- , but
A good hash function maps keys "randomly" to minimize collisions
Hash can be used as a signature of authenticity

Modifying slightly will drastically alter
No easy way to reverse engineer a to map to a given
Use to check that large files have not been tampered with in transit, either due to network errors or malicious intervention

Dictionary uses a hash function to map key values to storage locations
Lookup requires computing which takes roughly the same time for any

Compare with computing the offset a[i] for any index i in an array
Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
Effectively, a dictionary combines flexibility with random access

𝑚

{0, 1,… ,𝑚 − 1}

ℎ : 𝐾 → 𝑆 𝐾 𝑆

𝑘 ∈ 𝐾 𝑛𝑘 mod 𝑚𝑛𝑘 |𝑆| = 𝑚

≠𝑘1 𝑘2 ℎ() = ℎ()𝑘1 𝑘2

𝑘 ℎ(𝑘)

𝑘′ ℎ(𝑘)

ℎ(𝑘) 𝑘

Lists in Python

Flexible size, allow inserting/deleting elements in between
However, implementation is an array, rather than a list
Initially allocate a block of storage to the list
When storage runs out, double the allocation
l.append(x) is efficient, moves the right end of the list one position forward within the array
l.insert(0,x) inserts a value at the start, expensive because it requires shifting all the elements by 1

We will run experiments to validate these claims

Measuring execution time

Call time.perf_counter()
Actual return value is meaningless, but difference between two calls measures time in seconds

In [1]:

 appends to an empty Python list107

In [2]:

Doubling the work approximately doubles the time, linear

3.1834037989901844

import time

start = time.perf_counter()
l = []
for i in range(10000000):
 l.append(i)
elapsed = time.perf_counter() - start
print(elapsed)

In [3]:

 inserts at the beginning of a Python list105

In [4]:

Doubling and tripling the work multiplies the time by and , respectively, so quadratic4 9

In [5]:

In [6]:

Creating entries in an empty dictionary107

In [7]:

Doubling the operations, doubles the time, so linear
Dictionaries are effectively random access

In [8]:

5.753009960986674

5.5166299150150735

17.979196411994053

43.46195148699917

3.8069355089974124

9.057193082000595

start = time.perf_counter()
l = []
for i in range(20000000):
 l.append(i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = []
for i in range(100000):
 l.insert(0,i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = []
for i in range(200000):
 l.insert(0,i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = []
for i in range(300000):
 l.insert(0,i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
d = {}
for i in range(10000000,0,-1):
 d[i] = i
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
d = {}
for i in range(20000000,0,-1):
 d[i] = i
elapsed = time.perf_counter() - start
print(elapsed)

Implementing a "real" list using dictionaries

In [9]:

Display a small list as nested dictionaries

In [10]:

Insert elements at the beginning in this implementation of a list107

In [11]:

Doubling the work doubles the time, so linear

In [12]:

Append elements in this implementation of a list104

0.020103318995097652
{'value': 0, 'next': {'value': 1, 'next': {'value': 2, 'next': {'value': 3, 'next': {'value': 4, 'next': {'value': 5, 'nex
t': {'value': 6, 'next': {'value': 7, 'next': {'value': 8, 'next': {'value': 9, 'next': {}}}}}}}}}}}

3.375442454998847

6.131248404999496

def createlist(): # Equivalent of l = [] is l = createlist()
 return({})

def listappend(l,x):
 if l == {}:
 l["value"] = x
 l["next"] = {}
 return

 node = l
 while node["next"] != {}:
 node = node["next"]

 node["next"]["value"] = x
 node["next"]["next"] = {}
 return

def listinsert(l,x):
 if l == {}:
 l["value"] = x
 l["next"] = {}
 return

 newnode = {}
 newnode["value"] = l["value"]
 newnode["next"] = l["next"]
 l["value"] = x
 l["next"] = newnode
 return

def printlist(l):
 print("{",end="")

 if l == {}:
 print("}")
 return
 node = l

 print(node["value"],end="")
 while node["next"] != {}:
 node = node["next"]
 print(",",node["value"],end="")
 print("}")
 return

start = time.perf_counter()
l = createlist()
for i in range(10):
 listappend(l,i)
elapsed = time.perf_counter() - start
print(elapsed)
print(l)

start = time.perf_counter()
l = createlist()
for i in range(1000000):
 listinsert(l,i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = createlist()
for i in range(2000000):
 listinsert(l,i)
elapsed = time.perf_counter() - start
print(elapsed)

In [13]:

Halving the work takes 1/4 of the time, so quadratic

In [14]:

Defining our own data structures

We have implemented a "linked" list using dictionaries
The fundamental functions like listappend , listinsert , listdelete modify the underlying list
Instead of mylist = {} , we wrote mylist = createlist()
To check empty list, use a function isempty() rather than mylist == {}
Can we clearly separate the interface from the implementation
Define the data structure in a more "modular" way

Set comprehension

Defining new sets from old

, generating set
, filtering condition

, output transformation
More generally

generating set
filtering predicate
transformer function

{ ∣ 𝑥 ∈ ℤ, 𝑥 ≥ 0 ∧ (𝑥 mod 2) = 0}𝑥2

𝑥 ∈ ℤ

𝑥 ≥ 0 ∧ (𝑥 mod 2) = 0

𝑥2

{𝑓(𝑥) ∣ 𝑥 ∈ 𝑆, 𝑝(𝑥)}

𝑆

𝑝()

𝑓()

Can do this manually for lists

List of squares of even numbers from 0 to 19
Initialize output list as []
Run through a loop and append elements to output list

In [15]:

Operating on each element of a list

map(f,l) applies a function f to each element of a list l
filter(p,l) extracts elements x from l for which p(x) is `True

In [16]:

In [17]:

9.82448883599136

2.685035665985197

[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Out[17]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

start = time.perf_counter()
l = createlist()
for i in range(10000):
 listappend(l,i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = createlist()
for i in range(5000):
 listappend(l,i)
elapsed = time.perf_counter() - start
print(elapsed)

evensqlist = []
for i in range(20):
 if i % 2 == 0:
 evensqlist.append(i*i)
print(evensqlist)

def even(x):
 return(x%2 == 0)

def odd(x):
 return(not(even(x)))

def square(x):
 return(x*x)

N = 20
l1 = list(range(N))
l2 = list(filter(odd,l1)) # Note that we can pass a function name as an argument
l3 = list(map(square,l1))

Combine map and filter
l4 = list(map(square,filter(even,l1)))

l1

In [18]:

In [19]:

In [20]:

List comprehension

[f(x) for x in ... if p(x)]

In [21]:

In [22]:

List comprehension can be nested
A 2 dimensional list : A list of M lists of N zeros

In [23]:

In [24]:

All Pythagorean triples with value less than n

 such that , (𝑥, 𝑦, 𝑧) + =𝑥2 𝑦2 𝑧2 𝑥, 𝑦, 𝑧 ≤ 𝑛

Using nested loops

Run through all possible (x,y,z)
To avoid duplicates like (3,4,5) and (4,3,5) enumerate y starting from x
z must be at least y , enumerate z starting from y

In [25]:

In [26]:

Pythagorean triples via list comprehension

Multiple generators for x , y and z
As before start generator for y at x and generator for z at y

Out[18]: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

Out[19]: [0,
 1,
 4,
 9,
 16,
 25,
 36,
 49,
 64,
 81,
 100,
 121,
 144,
 169,
 196,
 225,
 256,
 289,
 324,
 361]

Out[20]: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Out[21]: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Out[22]: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Out[24]: ([0, 0, 0, 0, 0], [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])

Out[26]: [(3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15), (12, 16, 20)]

l2

l3

l4

[square(x) for x in range(20) if even(x)]

A zero vector of length N
[0 for i in range(20)] # The map function can be a constant function

M,N = 3,5
onedim = [0 for i in range(N)] # A list of N zeros
twodim = [[0 for i in range(N)] for j in range(M)]

onedim, twodim

N = 20
triples = []
for x in range(1,N+1):
 for y in range(x,N+1):
 for z in range(y,N+1):
 if x*x + y*y == z*z:
 triples.append((x,y,z))

triples

In [27]:

Uses of list comprehension

List comprehension notation is compact and useful in a number of contexts

Pull out all dictionary values where the keys satisfy some property: e.g. all marks below 50
[d[k] for k in d.keys() if p(k)]

Symmetrically, keys whose values satisfy some property: e.g. all roll numbers where marks are below 50
[k for k in d.keys() if p(d[k])]

Or, extract (key,value) pairs of interest
[(k,d[k]) for k in d.keys() if p(d[k])]

Out[27]: [(3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15), (12, 16, 20)]

N = 20
[(x,y,z) for x in range(1,N+1) for y in range(x,N+1) for z in range(y,N+1) if x*x + y*y == z*z]

