In [1]:

In [2]:

Lecture 09, 12 September 2023

Arrays 1

Contiguous block of memory
Typically size is declared in advance, all values are uniform
a[@] points to first memory location in the allocated block
Locate a[i] in memory using index arithmetic
= Skip i blocks of memory, each block's size determined by value stored in array
Random access -- accessing the value at a[i] does not depend on i
Useful for procedures like sorting, where we need to swap out of order values a[i] and a[j]
= a[i], a[j]l = a[jl, alil
= Cost of such a swap is constant, independent of where the elements to be swapped are in the array
Inserting or deleting a value is expensive
Need to shift elements right or left, respectively, depending on the location of the modification

Lists

Each location is a cell, consisiting of a value and a link to the next cell
= Think of a list as a train, made up of a linked sequence of cells
The name of the list 1 gives us accessto 1[@] , the first cell
Toreachcell 1[i] , we must traverse the links from 1[@] to 1[1] to 1[2] ...to 1[i-1]]to 1[i]
= Takes time proportional to i
Cost of swapping 1[1i] and 1[j] varies, depending onvalues i and j
On the other hand, if we are already at 1[i] modifying the list is easy
= Insert - create a new cell and reroute the links
= Delete - bypass the deleted cell by rerouting the links
Each insert/delete requires a fixed amount of local "plumbing”, independent of where in the list it is performed

Dictionaries

Values are stored in a fixed block of size m
Keys are mapped to {0, 1,...,m — 1}
Hash function & : K — .S maps a large set of keys K to a small range S
Simple hash function: interpret k € K as a bit sequence representing a number ;. in binary, and compute n;, mod m, where |.S| = m
Mismatch in sizes means that there will be collisions -- k| # k, but h(k,) = h(ky)
A good hash function maps keys "randomly" to minimize collisions
Hash can be used as a signature of authenticity
= Modifying k slightly will drastically alter h(k)
= No easy way to reverse engineer a k’ to map to a given h(k)
= Use to check that large files have not been tampered with in transit, either due to network errors or malicious intervention
Dictionary uses a hash function to map key values to storage locations
Lookup requires computing (k) which takes roughly the same time for any k
= Compare with computing the offset a[i] for any index i in an array
Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
Effectively, a dictionary combines flexibility with random access

Lists in Python

Flexible size, allow inserting/deleting elements in between

However, implementation is an array, rather than a list

Initially allocate a block of storage to the list

When storage runs out, double the allocation

1.append(x) is efficient, moves the right end of the list one position forward within the array
1.insert(@,x) inserts a value at the start, expensive because it requires shifting all the elements by 1
We will run experiments to validate these claims

Measuring execution time

e Call time.perf_counter()
« Actual return value is meaningless, but difference between two calls measures time in seconds

import time
. 107 appends to an empty Python list

start = time.perf_countex()
1=1]
for i in range(10000000):
1.append(i)
elapsed = time.perf_counter() - start
print(elapsed)

3.1834037989901844

« Doubling the work approximately doubles the time, linear

In [3]: start = time.pexf_counter()
1=1]
for i in range(20000000):
1.append(i)
elapsed = time.perf_counter() - start
print(elapsed)

5.753009960986674

+ 10’ inserts at the beginning of a Python list

In [4]: start = time.perf_counter()
1=1]
for i in range(100000):
1.insert(0,1)
elapsed = time.perf_counter() - start
print(elapsed)

5.5166299150150735

« Doubling and tripling the work multiplies the time by 4 and 9, respectively, so quadratic

In [5]: start = time.pexrf_counter()
1=11
for i in range(200000):
1l.insert(0,1i)
elapsed = time.perf_counter() - start
print(elapsed)

17.979196411994053

In [6]: start = time.pexf_counter()
1=11
for i in range(300000):
1.insert(0,1i)
elapsed = time.perf_counter() - start
print(elapsed)

43.46195148699917

e Creating 107 entries in an empty dictionary

In [7]: start = time.pexf_counter()

d = {}
for i in range(10000000,0,-1):
d[fi] = i
elapsed = time.perf_counter() - start
print(elapsed)

3.8069355089974124

« Doubling the operations, doubles the time, so linear
« Dictionaries are effectively random access

In [8]: start = time.pexf_counter()

d = {}
for i in range(20000000,0,-1):
d[i] = 1
elapsed = time.perf_counter() - start
print(elapsed)

9.057193082000595

In [9]:

In [10]:

In [11]:

In [12]:

Implementing a "real" list using dictionaries

def createlist(): [] is 1 =

return({})

Equivalent of 1 =

def listappend(1l,x):
if 1 == {}:
1["value"] = x
1["next"] = {}
return

node = 1
while node['"next"]
node =

= {}:

node["next"]

node["next"]["value"] = x
node["next"]["next"] = {}
return

def listinsert(1l,x):
if 1 == {}:
1["value"] = x
1["next"] = {}
return

newnode = {}

newnode["value"] = 1["value"]
newnode["next"] = 1["next"]
1["value"] = x

1["next"] = newnode

return

def printlist(l):
print("{",end="")

if 1 == {}:
print("}")
return

node = 1

print(node["value"],end="")
while node["next"] != {}:
node = node["next"]
print(",",node["value"],end="")
print("}")
return

« Display a small list as nested dictionaries

start = time.perf_countex()
1 = createlist()
for i in range(10):
listappend(1,i)
elapsed = time.perf_counter() - start
print(elapsed)
print(1)

0.020103318995097652
{'value': @, 'next': {'value': 1, 'next':
t': {'value': 6, 'next': {'value': 7,

{'value': 2,
‘next’':

« Insert 107 elements at the beginning in this implementation of a list

start = time.perf_countex()

1 = createlist()

for i in range(1000000):
listinsert(1l,i)

elapsed = time.perf_counter() - start

print(elapsed)

3.375442454998847

« Doubling the work doubles the time, so linear

start = time.perf_counter()

1 = createlist()

for i in range(2000000):
listinsert(1l,1)

elapsed = time.perf_counter() - start

print(elapsed)

6.131248404999496

« Append 10* elements in this implementation of a list

{'value':

createlist()

'next':
8,

{'value': 3,
'next': {'value': 9,

'next':

'next':

{'value': 4,

'next':

{33333}

{'value': 5,

nex

In [13]: start = time.pexrf_counter()
1 = createlist()
for i in range(10000):
listappend(1,1i)
elapsed = time.perf_counter() - start
print(elapsed)

9.82448883599136

« Halving the work takes 1/4 of the time, so quadratic

In [14]: start = time.perf_countex()
1 = createlist()
for i in range(5000):
listappend(1,i)
elapsed = time.perf_counter() - start
print(elapsed)

2.685035665985197

Defining our own data structures

We have implemented a "linked" list using dictionaries

The fundamental functions like listappend, listinsert, listdelete modify the underlying list
Instead of mylist = {},wewrote mylist = createlist()

To check empty list, use a function isempty() rather than mylist == {}

Can we clearly separate the interface from the implementation

Define the data structure in a more "modular” way

Set comprehension

« Defining new sets from old
e {(¥* | x€Z,x>0A(x mod 2) = 0}
= X € Z, generating set
= x >0 A (x mod 2) = 0, filtering condition
- X2, output transformation
« More generally { f(x) | x € S, p(x)}
= generating set .S
« filtering predicate p()
= transformer function f()

Can do this manually for lists

« List of squares of even numbers from 0 to 19
« Initialize output listas []
« Run through a loop and append elements to output list

In [15]: evensqlist = []
for i in range(20):
if i % 2 == 0:
evensqlist.append(i*i)
print(evensqlist)

[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Operating on each element of a list

« map(f,1) applies afunction f to each elementof alist 1
o filter(p,1l) extracts elements x from 1 for which p(x) is True

In [16]: def even(x):
return(x%2 == 0)

def odd(x):
return(not(even(x)))

def square(x):
return(x*x)

N = 20

11 = list(range(N))

12 = list(filter(odd,11)) # Note that we can pass a function name as an argument
13 = list(map(square,11))

Combine map and filter

14 = list(map(square,filter(even,11)))

In [17]: 11

Out[17]: [e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

In [18]:

Out[18]:

In [19]:

Out[19]:

In [20]:

Out[20]:

In [21]:

Out[21]:

In [22]:

Out[22]:

In [23]:

In [24]:

Out[24]:

In [25]:

In [26]:

Out[26]:

12
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

13

289,

361]
14

[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

List comprehension

o [f(x) for x in ... if p(x)]

[square(x) for x in range(20) if even(x)]
[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

A zero vector of length N
[@ for i in range(20)] # The map function can be a constant function

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0, 0, 0, 0]

« List comprehension can be nested
« A2 dimensional list : Alist of M lists of N zeros

M,N = 3,5
onedim = [@ for i in range(N)] # A list of N zeros
twodim = [[@ for i in range(N)] for j in range(M)]

onedim, twodim

([0, o, 0, 0, @], [[0, 0, 0, 0, @], [0, O, O, O, @], [0, @, @, 0, @]])

All Pythagorean triples with value less than n

o (x,y,z)suchthat x> + y> = z%,x,y,z2 < n

Using nested loops

» Run through all possible (x,y,z)
« To avoid duplicates like (3,4,5) and (4,3,5) enumerate y starting from X
e z mustbeatleast y, enumerate z starting from y

N = 20
triples = []
for x in range(1,N+1):
for y in range(x,N+1):
for z in range(y,N+1):
if x*x + y*y == z*z:
triples.append((x,y,z))

triples

[(3, 4, 5), (5, 12, 13), (6, &, 10), (8, 15, 17), (9, 12, 15), (12, 16, 20)]

Pythagorean triples via list comprehension

e Multiple generators for x, y and z
« As before start generator for y at x and generator for z at y

In [27]:

Out[27]:

N = 20
[(x,y,z) for x in range(1,N+1) for y in range(x,N+1) for z in range(y,N+1) if x*x + y*y == z*z]
[(3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15), (12, 16, 20)]

Uses of list comprehension
List comprehension notation is compact and useful in a number of contexts

« Pull out all dictionary values where the keys satisfy some property: e.g. all marks below 50
= [d[k] for k in d.keys() if p(k)]

« Symmetrically, keys whose values satisfy some property: e.g. all roll numbers where marks are below 50
= [k for k in d.keys() if p(d[k])]

« Or, extract (key,value) pairs of interest
= [(k,d[k]) for k in d.keys() if p(d[k]) 1]

