Lecture 08, 07 September 2023

Mutable and immutable values

- Lists are dictionaries are mutable
- All other values are immutable (numbers, booleans, strings, tuples)
- immutable value : If x holds an immutable value, $\mathrm{y}=\mathrm{x}$ copies the value to y
- mutable value : If 11 holds a mutable value, $12=11$ makes both names point to the same value

Functions and parameters

- Pass a mutable value, then it can updated in the function
- Immutable values will be copied

In [1]:	$\begin{gathered} \text { def mycopy }(m, n): \\ m=n \end{gathered}$
In [2]:	$\begin{aligned} & a=5 \\ & b=7 \\ & \text { mycopy }(a, b) \end{aligned}$
In [3]:	a, b
Out [3] :	$(5,7)$
In [4]:	$\begin{aligned} & 11=[1,2] \\ & 12=[3,4] \\ & \text { mycopy }(11,12) \end{aligned}$
In [5]:	11, 12
Out [5] :	$([1,2],[3,4])$
In [6]:	```def mycopylist(m,n): print(type(m)) m[0] = n[-1]```
In [7]:	$\begin{aligned} & 11=[1,2] \\ & 12=[3,4] \\ & \text { mycopylist }(11,12) \end{aligned}$
	<class 'list'>
In [8]:	11, 12
Out [8] :	$([4,2],[3,4])$
In [9]:	```def myappend(l,v): l.append(v)```
In [10]:	myappend (12,5)
In [11]:	12
Out [11]:	[3, 4, 5]
In [12]:	$\begin{gathered} \text { def myappend2(1,v): } \\ 1=1+[\mathrm{v}] \end{gathered}$
In [13]:	myappend2 $(12,6)$
In [14]:	12

Mutability and functions

It is useful to be able to update a list inside a function --- e.g. sorting it

- Built in list functions update in place
- 1 .append $(\mathrm{v}) ~->$ in place version of $1=1+[\mathrm{v}]$
- l.extend(l1) -> in place version of $1=1+11$

Lists, arrays, dictionaries: implementation details

- What are the salient differences?
- How are they stored?
- What is the impact on performance?

Arrays

- Contiguous block of memory
- Typically size is declared in advance, all values are uniform
- a [0] points to first memory location in the allocated block
- Locate a [i] in memory using index arithmetic
- Skip i blocks of memory, each block's size determined by value stored in array
- Random access -- accessing the value at a[i] does not depend on i
- Useful for procedures like sorting, where we need to swap out of order values $a[i]$ and $a[j]$
- $a[i], a[j]=a[j], a[i]$
- Cost of such a swap is constant, independent of where the elements to be swapped are in the array
- Inserting or deleting a value is expensive
- Need to shift elements right or left, respectively, depending on the location of the modification

Lists

- Each location is a cell, consisiting of a value and a link to the next cell
- Think of a list as a train, made up of a linked sequence of cells
- The name of the list 1 gives us access to $1[0]$, the first cell
- To reach cell 1 [i], we must traverse the links from $1[0]$ to $1[1]$ to $1[2] \ldots$ to $1[i-1]$]to 1 [i]
- Takes time proportional to i
- Cost of swapping 1 [i] and 1 [j] varies, depending on values i and j
- On the other hand, if we are already at 1 [i] modifying the list is easy
- Insert - create a new cell and reroute the links
- Delete - bypass the deleted cell by rerouting the links
- Each insert/delete requires a fixed amount of local "plumbing", independent of where in the list it is performed

Dictionaries

- Values are stored in a fixed block of size m
- Keys are mapped to $\{0,1, \ldots, m-1\}$
- Hash function $h: K \rightarrow S$ maps a large set of keys K to a small range S
- Simple hash function: interpret $k \in K$ as a bit sequence representing a number n_{k} in binary, and compute n_{k} mod m, where $|S|=m$
- Mismatch in sizes means that there will be collisions -- $k_{1} \neq k_{2}$, but $h\left(k_{1}\right)=h\left(k_{2}\right)$
- A good hash function maps keys "randomly" to minimize collisions
- Hash can be used as a signature of authenticity
- Modifying k slightly will drastically alter $h(k)$
- No easy way to reverse engineer a k^{\prime} to map to a given $h(k)$
- Use to check that large files have not been tampered with in transit, either due to network errors or malicious intervention
- Dictionary uses a hash function to map key values to storage locations
- Lookup requires computing $h(k)$ which takes roughly the same time for any k
- Compare with computing the offset a[i] for any index i in an array
- Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
- Effectively, a dictionary combines flexibility with random access

Lists in Python

- Flexible size, allow inserting/deleting elements in between
- However, implementation is an array, rather than a list
- Initially allocate a block of storage to the list
- When storage runs out, double the allocation
- l. append (x) is efficient, moves the right end of the list one position forward within the array
- 1 . insert $(0, x)$ inserts a value at the start, expensive because it requires shifting all the elements by 1
- We will run experiments to validate these claims

Measuring execution time

- Call time.perf_counter()
- Actual return value is meaningless, but difference between two calls measures time in seconds

In [16]: start = time.perf_counter()
1 = []
for i in range(10000000):
l.append(i)
elapsed = time.perf_counter() - start
print(elapsed)
3.2351508629944874

- Doubling the work approximately doubles the time, linear

In [17]: start = time.perf_counter()
$1=$ []
for i in range(20000000):
l.append(i)
elapsed = time.perf_counter() - start
print(elapsed)
5.7539322239899775

- 10^{5} inserts at the beginning of a Python list

In [18]: start = time.perf_counter()
1 = []
for i in range(100000):
l.insert (0,i)
elapsed = time.perf_counter() - start
print(elapsed)
5.2932833380036755

- Doubling and tripling the work multiplies the time by 4 and 9 , respectively, so quadratic

In [19]: start = time.perf_counter()
1 = []
for i in range(200000):
l.insert (0,i)
elapsed = time.perf_counter() - start
print(elapsed)
17.236067117002676

In [20]: start = time.perf_counter()
$1=$ []
for i in range (300000):
l.insert (0,i)
elapsed = time.perf_counter() - start
print (elapsed)
44.08497351700498

- Creating 10^{7} entries in an empty dictionary

In [21]: start = time.perf_counter()
$d=\{ \}$
for i in range (10000000,0,-1): $d[i]=i$
elapsed = time.perf_counter() - start
print (elapsed)
4.113557312011835

- Doubling the operations, doubles the time, so linear
- Dictionaries are effectively random access

In [22]: start = time.perf_counter()
$d=\{ \}$
for i in range $(20000000,0,-1)$:
$d[i]=i$
elapsed = time.perf_counter() - start
print (elapsed)
9.394316827994771

