
Lecture 08, 07 September 2023

Mutable and immutable values

Lists are dictionaries are mutable
All other values are immutable (numbers, booleans, strings, tuples)

immutable value : If x holds an immutable value, y = x copies the value to y
mutable value : If l1 holds a mutable value, l2 = l1 makes both names point to the same value

Functions and parameters

Pass a mutable value, then it can updated in the function
Immutable values will be copied

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

In [6]:

In [7]:

In [8]:

In [9]:

In [10]:

In [11]:

In [12]:

In [13]:

In [14]:

Mutability and functions

It is useful to be able to update a list inside a function --- e.g. sorting it

Built in list functions update in place
l.append(v) -> in place version of l = l+[v]
l.extend(l1) -> in place version of l = l + l1

Out[3]: (5, 7)

Out[5]: ([1, 2], [3, 4])

<class 'list'>

Out[8]: ([4, 2], [3, 4])

Out[11]: [3, 4, 5]

Out[14]: [3, 4, 5]

def mycopy(m,n):
 m = n

a = 5
b = 7
mycopy(a,b)

a, b

l1 = [1,2]
l2 = [3,4]
mycopy(11,l2)

l1, l2

def mycopylist(m,n):
 print(type(m))
 m[0] = n[-1]

l1 = [1,2]
l2 = [3,4]
mycopylist(l1,l2)

l1, l2

def myappend(l,v):
 l.append(v)

myappend(l2,5)

l2

def myappend2(l,v):
 l = l + [v]

myappend2(l2,6)

l2

In []:

Lists, arrays, dictionaries: implementation details

What are the salient differences?
How are they stored?
What is the impact on performance?

Arrays

Contiguous block of memory
Typically size is declared in advance, all values are uniform
a[0] points to first memory location in the allocated block

Locate a[i] in memory using index arithmetic
Skip i blocks of memory, each block's size determined by value stored in array

Random access -- accessing the value at a[i] does not depend on i
Useful for procedures like sorting, where we need to swap out of order values a[i] and a[j]

a[i], a[j] = a[j], a[i]
Cost of such a swap is constant, independent of where the elements to be swapped are in the array

Inserting or deleting a value is expensive
Need to shift elements right or left, respectively, depending on the location of the modification

Lists

Each location is a cell, consisiting of a value and a link to the next cell
Think of a list as a train, made up of a linked sequence of cells

The name of the list l gives us access to l[0] , the first cell
To reach cell l[i] , we must traverse the links from l[0] to l[1] to l[2] to l[i-1]] to l[i]

Takes time proportional to i
Cost of swapping l[i] and l[j] varies, depending on values i and j
On the other hand, if we are already at l[i] modifying the list is easy

Insert - create a new cell and reroute the links
Delete - bypass the deleted cell by rerouting the links

Each insert/delete requires a fixed amount of local "plumbing", independent of where in the list it is performed

…

Dictionaries

Values are stored in a fixed block of size
Keys are mapped to
Hash function maps a large set of keys to a small range
Simple hash function: interpret as a bit sequence representing a number in binary, and compute , where
Mismatch in sizes means that there will be collisions -- , but
A good hash function maps keys "randomly" to minimize collisions
Hash can be used as a signature of authenticity

Modifying slightly will drastically alter
No easy way to reverse engineer a to map to a given
Use to check that large files have not been tampered with in transit, either due to network errors or malicious intervention

Dictionary uses a hash function to map key values to storage locations
Lookup requires computing which takes roughly the same time for any

Compare with computing the offset a[i] for any index i in an array
Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
Effectively, a dictionary combines flexibility with random access

𝑚

{0, 1,… ,𝑚 − 1}

ℎ : 𝐾 → 𝑆 𝐾 𝑆

𝑘 ∈ 𝐾 𝑛𝑘 mod 𝑚𝑛𝑘 |𝑆| = 𝑚

≠𝑘1 𝑘2 ℎ() = ℎ()𝑘1 𝑘2

𝑘 ℎ(𝑘)

𝑘
′

ℎ(𝑘)

ℎ(𝑘) 𝑘

Lists in Python

Flexible size, allow inserting/deleting elements in between
However, implementation is an array, rather than a list
Initially allocate a block of storage to the list
When storage runs out, double the allocation
l.append(x) is efficient, moves the right end of the list one position forward within the array
l.insert(0,x) inserts a value at the start, expensive because it requires shifting all the elements by 1

We will run experiments to validate these claims

Measuring execution time

Call time.perf_counter()
Actual return value is meaningless, but difference between two calls measures time in seconds

In [15]:

 appends to an empty Python list107

import time

In [16]:

Doubling the work approximately doubles the time, linear

In [17]:

 inserts at the beginning of a Python list105

In [18]:

Doubling and tripling the work multiplies the time by and , respectively, so quadratic4 9

In [19]:

In [20]:

Creating entries in an empty dictionary107

In [21]:

Doubling the operations, doubles the time, so linear
Dictionaries are effectively random access

In [22]:

3.2351508629944874

5.7539322239899775

5.2932833380036755

17.236067117002676

44.08497351700498

4.113557312011835

9.394316827994771

start = time.perf_counter()
l = []
for i in range(10000000):
 l.append(i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = []
for i in range(20000000):
 l.append(i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = []
for i in range(100000):
 l.insert(0,i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = []
for i in range(200000):
 l.insert(0,i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
l = []
for i in range(300000):
 l.insert(0,i)
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
d = {}
for i in range(10000000,0,-1):
 d[i] = i
elapsed = time.perf_counter() - start
print(elapsed)

start = time.perf_counter()
d = {}
for i in range(20000000,0,-1):
 d[i] = i
elapsed = time.perf_counter() - start
print(elapsed)

