In [17:

In [2]:

In [3]:

Out[3]:

In [4]:

In [5]:

Out[5]:

In [6]:

In [7]:

In [8]:

Out[8]:

In [9]:

In [10]:

In [11]:

Out[11]:

In [12]:

In [13]:

In [14]:

Out[14]:

Lecture 08, 07 September 2023

Mutable and immutable values

« Lists are dictionaries are mutable
« All other values are immutable (numbers, booleans, strings, tuples)

« immutable value : If x holds an immutable value, y = X copies the value to y
« mutable value : If 11 holds a mutable value, 12 = 11 makes both names point to the same value

Functions and parameters

« Pass a mutable value, then it can updated in the function
« Immutable values will be copied

def mycopy(m,n):

m=n
a=>5
b =7

mycopy(a,b)

a, b

(5, 7)

11 = [1,2]
12 = [3,4]

mycopy (11,12)

11, 12

([1, 21, [3, 41)

def mycopylist(m,n):
print(type(m))

m[0@] = n[-1]
11 = [1,2]
12 = [3,4]

mycopylist(11,12)
<class 'list'>
11, 12

(14, 21, [3, 4]1)

def myappend(1,v):
1.append(v)

myappend(12,5)

12
[3, 4, 5]

def myappend2(1,v):
1 1+ [v]

myappend2(12,6)

12

[3, 4, 5]

Mutability and functions
Itis useful to be able to update a list inside a function --- e.g. sorting it

« Built in list functions update in place
« l.append(v) ->inplace versionof 1 = 1+[v]
« l.extend(1ll1l) ->inplaceversionof 1 = 1 + 11

In []:

Lists, arrays, dictionaries: implementation details

« What are the salient differences?
« How are they stored?
e What is the impact on performance?

Arrays

Contiguous block of memory
Typically size is declared in advance, all values are uniform
a[@] points to first memory location in the allocated block
Locate a[i] in memory using index arithmetic
= Skip i blocks of memory, each block's size determined by value stored in array
Random access -- accessing the value at a[i] does notdepend on i
Useful for procedures like sorting, where we need to swap out of order values a[i] and a[j]
= alil, aljl = a[jl, alil
= Cost of such a swap is constant, independent of where the elements to be swapped are in the array
Inserting or deleting a value is expensive
Need to shift elements right or left, respectively, depending on the location of the modification

Lists

Each location is a cell, consisiting of a value and a link to the next cell
= Think of a list as a train, made up of a linked sequence of cells
The name of the list 1 gives us accessto 1[@] , the first cell
Toreachcell 1[1] , we must traverse the links from 1[@] to 1[1] to 1[2] ...to 1[i-1]]to 1[i]
= Takes time proportional to i
Cost of swapping 1[i] and 1[j] varies, depending onvalues i and j
On the other hand, if we are already at 1[i] modifying the list is easy
= Insert - create a new cell and reroute the links
= Delete - bypass the deleted cell by rerouting the links
Each insert/delete requires a fixed amount of local "plumbing”, independent of where in the list it is performed

Dictionaries

Values are stored in a fixed block of size m
Keys are mapped to {0, 1, ...,m — 1}
Hash function & : K — S maps a large set of keys K to a small range S
Simple hash function: interpret k € K as a bit sequence representing a number n, in binary, and compute 1, mod m, where |.S| = m
Mismatch in sizes means that there will be collisions -- k| # k,, but h(k,) = h(k;)
A good hash function maps keys "randomly” to minimize collisions
Hash can be used as a signature of authenticity
» Modifying k slightly will drastically alter h(k)
= No easy way to reverse engineer a kK’ to map to a given (k)
= Use to check that large files have not been tampered with in transit, either due to network errors or malicious intervention
Dictionary uses a hash function to map key values to storage locations
Lookup requires computing A(k) which takes roughly the same time for any k
= Compare with computing the offset a[i] for anyindex i in an array
Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
Effectively, a dictionary combines flexibility with random access

Lists in Python

Flexible size, allow inserting/deleting elements in between

However, implementation is an array, rather than a list

Initially allocate a block of storage to the list

When storage runs out, double the allocation

1.append(x) is efficient, moves the right end of the list one position forward within the array
1.insert(@,x) inserts a value at the start, expensive because it requires shifting all the elements by 1
We will run experiments to validate these claims

Measuring execution time
« Call time.perf_counter()
« Actual return value is meaningless, but difference between two calls measures time in seconds

In [15]: import time

« 107 appends to an empty Python list

In [16]: start = time.pexrf_counter()
1=1]
for i in range(10000000):
1.append(i)
elapsed = time.perf_counter() - start
print(elapsed)

3.2351508629944874

« Doubling the work approximately doubles the time, linear

In [17]: start = time.perf_countex()
1=1]
for i in range(20000000):
1.append(i)
elapsed = time.perf_counter() - start
print(elapsed)

5.7539322239899775

« 10’ inserts at the beginning of a Python list

In [18]: start = time.pexrf_counter()
1=11
for i in range(100000):
1l.insert(0,1i)
elapsed = time.perf_counter() - start
print(elapsed)

5.2932833380036755

« Doubling and tripling the work multiplies the time by 4 and 9, respectively, so quadratic

In [19]: start = time.pexrf_counter()
1=1
for i in range(200000):
1.insert(0,1i)
elapsed = time.perf_counter() - start
print(elapsed)

17.236067117002676

In [20]: start = time.perf_countex()
1=1]
for i in range(300000):
1l.insert(0,1)
elapsed = time.perf_counter() - start
print(elapsed)

44.08497351700498

« Creating 107 entries in an empty dictionary

In [21]: start = time.perf_countex()

d = {}
for i in range(10000000,0,-1):
d[i] = i
elapsed = time.perf_counter() - start
print(elapsed)

4.113557312011835

« Doubling the operations, doubles the time, so linear
« Dictionaries are effectively random access

In [22]: start = time.perf_countex()

d = {}
for i in range(20000000,0,-1):
d[i] = i
elapsed = time.perf_counter() - start
print(elapsed)

9.394316827994771

