
Lecture 05, 22 August 2023

Control flow
A Python program is a sequence of statements

Normal execution is sequential, top to bottom
Most basic type of statement is assignment

name = value , where value can be an expression
To perform interesting computations we need to control the flow

if , for , while

Functions
Templates for re-usable code
Instantiate with different arguments
A function must be defined before it is used (just like any other name)

Typically, define your functions first, then the code that calls them

Updating lists

Combine two lists into one - concatenation - l1 + l2
Append a value to a list - l.append(v)
l.append(v) is same as l = l + [v]

Example 1: Find the first position where v occurs in l

If v is in l , first position lies between 0 to len(l)-1
Return -1 if no v in l

In [1]:

In [2]:

In [3]:

We used a name pos to keep track of our position in the list and manually updated it with each iteration
What we should be able to do instead is:

Set up a list [0,1,2,...,len(l)-1]
Run through these values and check if l[i] == v
Report the first such i

range()
range() function generates a sequence of numbers

In [4]:

In [5]:

range() produces an sequence over which you can iterate
output is not a list, but you can index into it

In [8]:

In [9]:

Out[3]: (7, -1)

Out[4]: range(0, 7)

0
1
2
3
4
5
6

Out[9]: range

def locatepos(v,l):
 pos = 0
 for x in l:
 if x == v:
 return(pos)
 pos = pos+1
 return(-1) ## Could return(False), but not a good idea to have different types

l3 = [1,2,3,4,5,6,7,8,9,10]

locatepos(8,l3), locatepos(12,l3)

range(7) # generates the sequence 0,1,2,...,6

for i in range(7):
 print(i)

l = range(7)

type(l)

In [10]:

Use list() as a function to convert a sequence to a list

In [11]:

In [12]:

list() will complain if its argument is not a valid sequence

In [13]:

In [14]:

In [15]:

More about range()
range(a,b) - generates a, a+1, ..., b-1
range(a,b,d) - generates a, a+d, a+2d, ... stop before it crosses b
range() implicitly generates a sequence, so to "see" it, wrap it in list()

In [16]:

In [17]:

In [18]:

Use negative step to count backwards
Understand stopping criterian when counting backwards

In [19]:

In [20]:

In [21]:

In [22]:

range() requires int arguments

Out[10]: 2

Out[12]: [0, 1, 2, 3, 4, 5, 6]

TypeError Traceback (most recent call last)
Cell In [13], line 1
----> 1 l = list(6)

TypeError: 'int' object is not iterable

Out[15]: (7, -1)

Out[16]: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Out[17]: [3, 8]

Out[18]: [3, 6, 9, 12]

Out[19]: [10, 9, 8, 7, 6]

Out[20]: 10

Out[21]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Out[22]: [9, 6, 3, 0]

l[2]

l = list(range(7))

l

l = list(6)

def locatepos2(v,l):
 # pos = 0
 for pos in range(len(l)):
 if l[pos] == v:
 return(pos)
 return(-1) ## Could return(False), but not a good idea to have different types

locatepos2(8,l3), locatepos2(12,l3)

list(range(3,13))

list(range(3,13,5))

list(range(3,13,3))

list(range(10,5,-1))

len(l3)

list(range(len(l3)-1,-1,-1))

list(range(len(l3)-1,-1,-3))

In [23]:

while loop

for loops iterate over a sequence that is known in advance
sometimes, we need to iterate till a desired condition is satisfied

Example

generating lists of prime numbers
start with a definition of isprime based on the list of factors of a number

In [25]:

In [26]:

factorlist.append() is like factorlist = factorlist + [i]
factorlist needs to be initialized to [] , else Python does not know it is a list value

In [27]:

In [28]:

For a number to be prime, factors(n) should be [1,n]
Note: 1 is correctly reported to not be a prime since [1] is not the same as [1,1]
Can also check len(factors(n)) == 2

In [29]:

In [30]:

Listing out prime numbers

Find all primes below m - primesupto(m)
Can use a for - need to test numbers from 1 to m

In [31]:

In [33]:

TypeError Traceback (most recent call last)
Cell In [23], line 1
----> 1 list(range(1.3,2.7,1))

TypeError: 'float' object cannot be interpreted as an integer

NameError Traceback (most recent call last)
Cell In [26], line 1
----> 1 factors(10)

Cell In [25], line 4, in factors(n)
 2 for i in range(1,n+1):
 3 if n%i == 0:
----> 4 factorlist.append(i)
 5 return(factorlist)

NameError: name 'factorlist' is not defined

Out[28]: [1, 2, 5, 10]

Out[30]: (False, True, False)

Out[33]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

list(range(1.3,2.7,1))

def factors(n):
 for i in range(1,n+1):
 if n%i == 0:
 factorlist.append(i)
 return(factorlist)

factors(10)

def factors(n):
 factorlist = []
 for i in range(1,n+1):
 if n%i == 0:
 factorlist.append(i)
 return(factorlist)

factors(10)

def isprime(n):
 return(factors(n) == [1,n])

isprime(1),isprime(2),isprime(4)

def primesupto(m):
 primelist = []
 for i in range(1,m+1):
 if isprime(i):
 primelist.append(i)
 return(primelist)

primesupto(50)

In [34]:

Listing out prime numbers ...

list out the first m primes
do not know in advance how many values to run through, cannot use for
while loop - terminates based on a suitable condition - like a repeated if

In [35]:

In [37]:

In [38]:

need not keep track of numprimes separately since this is available as len(plist)

In [39]:

In [40]:

for vs while

Use for when you know the upper bound of the iteration in advance
Use while when this is not known in advance
for will always terminate if you do not modify the sequence over which the iteration runs
while may not terminate - need to ensure the condition eventually becomes false - "making progress"

Warning: Do not modify the list being iterated on by for

l = [1,2,3,4,5,6,7,8]
 for x in l:
 if x%2 == 0:
 l.append(x)

The list l keeps growing, so the iteration never terminates
In general, if you update the sequence while it is being iterated over, the outcome is unpredictable

Iterating over on lists

Compute sum and average (mean) of a list
Compute values above the mean

Requires two passes over the list
aboveaverage is an example of filtering a list

Extracting a sublist satisfying a certain property

Many useful functions on lists are built-in to Python

In [41]:

In [42]:

Nested loops
find all elements common to l1 and l2

Out[34]: 9973

Out[37]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]

Out[38]: 20

Out[40]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Out[42]: (8, 36, 8, 1)

primesupto(10000)[-1]

def firstmprimes(m):
 count = 0
 primelist = []
 i = 1
 while(count < m):
 if isprime(i):
 primelist.append(i)
 count = count + 1
 i = i + 1
 return(primelist)

firstmprimes(20)

len(firstmprimes(20))

def firstmprimes2(m):
 # count = 0 -- always len(primelist)
 primelist = []
 i = 1
 while(len(primelist) < m):
 if isprime(i):
 primelist.append(i)
 i = i + 1
 return(primelist)

firstmprimes2(15)

l = [1,2,3,4,5,6,7,8]

len(l), sum(l), max(l), min(l)

for each x in l1 , check if x is in l2
for each y in l2 , check if x == y

In [43]:

In [44]:

Our function will list repetitions multiple times

In [45]:

Nested loops can be expensive
 operations take about 10 seconds in Python

Compare the running time of the following nested loops
10

8

In [46]:

In [47]:

Out[44]: [3, 4]

Out[45]: [3, 3, 4]

Done

Done

def findcommon(l1,l2):
 commonlist = []
 for x in l1:
 for y in l2:
 if x == y:
 commonlist.append(x)
 return(commonlist)

l1 = [1,2,3,4]
l2 = [3,4,5,6]
findcommon(l1,l2)

l1 = [1,2,3,4]
l2 = [3,4,5,3]
findcommon(l1,l2)

for i in range(1000):
 for j in range(1000):
 x = i + j
print("Done")

for i in range(10000):
 for j in range(10000):
 x = i + j
print("Done")

