Lecture 05, 22 August 2023

Control flow

« APython program is a sequence of statements
= Normal execution is sequential, top to bottom

« Most basic type of statement is assignment
= name = value, where value can be an expression

« To perform interesting computations we need to control the flow
« if, for, while

Functions

« Templates for re-usable code

« Instantiate with different arguments

« A function must be defined before it is used (just like any other name)
= Typically, define your functions first, then the code that calls them

Updating lists

« Combine two lists into one - concatenation - 11 + 12
» Append avalue to alist- 1.append(v)
« l.append(v) issameas 1 = 1 + [Vv]

Example 1: Find the first position where v occursin 1

e If v isin 1, first position lies between @ to len(1l)-1
e Return -1 ifno v in 1

In [1]: def locatepos(v,l):
pos = 0
for x in 1:
if x == v:
return(pos)
pos = pos+1
return(-1) ## Could return(False), but not a good idea to have different types

In [2]: 13 = [1,2,3,4,5,6,7,8,9,10]

In [3]: locatepos(8,13), locatepos(12,13)

Out[3]: (7, -1)

« We used a name pos to keep track of our position in the list and manually updated it with each iteration
« What we should be able to do instead is:

= Setupalist [0,1,2,...,1en(1)-1]

= Run through these values and check if 1[i] == v

= Report the first such i

range()
- range() function generates a sequence of numbers
In [4]: range(7) # generates the sequence 0,1,2,...,6
Out[4]: range(0, 7)

In [5]: for i in range(7):
print(i)

O WNRLOSO

e range() produces an sequence over which you can iterate
« output is not a list, but you can index into it

In [8]: 1 = range(7)

In [9]: type(l)

Out[9]: range

In [10]: 1[2]

Out[10]: 2

« Use list() as afunction to convert a sequence to a list

In [11]: 1 = list(range(7))

In [12]: 1

Out[12]: [e, 1, 2, 3, 4, 5, 6]

e list() will complain if its argument is not a valid sequence

In [13]: 1 = list(6)

TypeError Traceback (most recent call last)
Cell In [13], line 1
----> 11 = 1list(6)

TypeError: 'int' object is not iterable

In [14]: def locatepos2(v,1l):
pos = @
for pos in range(len(l)):
if 1[pos] ==
return(pos)
return(-1) ## Could return(False), but not a good idea to have different types

In [15]: locatepos2(8,13), locatepos2(12,13)

Out[15]: (7, -1)

More about range()

» range(a,b) -generatesa, a+l, ..., b-1
« range(a,b,d) -generates a, a+d, a+2d, ... stop before it crosses b
« range() implicitly generates a sequence, so to "see" it, wrap itin 1ist()

In [16]: list(range(3,13))
Out[16]: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

In [17]: list(range(3,13,5))
Out[17]: [3, 8]

In [18]: list(range(3,13,3))
Out[18]: [3, 6, 9, 12]

« Use negative step to count backwards
« Understand stopping criterian when counting backwards

In [19]: list(range(10,5,-1))

Out[19]: [1@, 9, 8, 7, 6]

In [20]: len(13)

Out[20]: 10

In [21]: list(range(len(13)-1,-1,-1))
Out[21]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
In [22]: list(range(len(13)-1,-1,-3))
Out[22]: [9, 6, 3, 0]

« range() requires int arguments

In [23]: list(range(1.3,2.7,1))

TypeError Traceback (most recent call last)
Cell In [23], line 1
----> 1 list(range(1.3,2.7,1))

TypeError: 'float' object cannot be interpreted as an integer

while loop

« for loops iterate over a sequence that is known in advance
« sometimes, we need to iterate till a desired condition is satisfied

Example

« generating lists of prime numbers
« start with a definition of isprime based on the list of factors of a number

In [25]: def factors(n):
for i in range(1,n+1):
if n%i == 0:
factorlist.append(i)
return(factorlist)

In [26]: factors(10)

NameError Traceback (most recent call last)
Cell In [26], line 1
----> 1 factors(10)

Cell In [25], line 4, in (n)
2 for i in range(1,n+1):
3 if n%i ==

——-> 4 factorlist.append(i)

5 return(factorlist)

NameError: name 'factorlist' is not defined

» factorlist.append() islike factorlist = factorlist + [i]
« factorlist needs to be initialized to [] , else Python does not know it is a list value

In [27]: def factors(n):
factorlist = []
for i in range(1,n+1):
if n%i ==
factorlist.append(i)
return(factorlist)

In [28]: factors(10)

Out[28]: [1, 2, 5, 10]

« For a number to be prime, factors(n) should be [1,n]
« Note: 1 is correctly reported to not be a prime since [1] is notthe sameas [1,1]
« Canalso check len(factors(n)) ==

In [29]: def isprime(n):
return(factors(n) == [1,n])

In [30]: isprime(1),isprime(2),isprime(4)

Out[30]: (False, True, False)

Listing out prime numbers

« Find all primes below m - primesupto(m)
e Can use a for - need to test numbers from 1 to m

In [31]: def primesupto(m):
primelist = []
for i in range(1,m+1):
if isprime(i):
primelist.append(i)
return(primelist)

In [33]: primesupto(50)

Out[33]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

In [34]: primesupto(10000)[-1]

Out[34]: 9973

Listing out prime numbers ...

« list out the first m primes
« do not know in advance how many values to run through, cannot use for
« while loop - terminates based on a suitable condition - like a repeated if

In [35]: def firstmprimes(m):

count = 0@
primelist = []
i=1

while(count < m):
if isprime(i):
primelist.append(i)
count = count + 1
i=1i+1
return(primelist)

In [37]: firstmprimes(20)
Out[37]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
In [38]: len(firstmprimes(20))

Out[38]: 20

« need not keep track of numprimes separately since this is available as len(plist)

In [39]: def firstmprimes2(m):
count = @ -- always len(primelist)
primelist = []
i=1
while(len(primelist) < m):
if isprime(i):
primelist.append(i)
i=1i+1
return(primelist)

In [40]: firstmprimes2(15)

Out[4@]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

for vs while

« Use for when you know the upper bound of the iteration in advance

« Use while when this is not known in advance

« for will always terminate if you do not modify the sequence over which the iteration runs

« while may not terminate - need to ensure the condition eventually becomes false - "making progress"

Warning: Do not modify the list being iterated on by for

1=11,2,3,4,5,6,7,8]
for x in 1:
if x%2 == 0:
1.append(x)

« Thelist 1 keeps growing, so the iteration never terminates
« In general, if you update the sequence while it is being iterated over, the outcome is unpredictable

Iterating over on lists

« Compute sum and average (mean) of a list
« Compute values above the mean
= Requires two passes over the list
« aboveaverage is an example of filtering a list
» Extracting a sublist satisfying a certain property

Many useful functions on lists are built-in to Python
In [41]: 1 = [1,2,3,4,5,6,7,8]

In [42]: len(l), sum(l), max(l), min(1l)

Out[42]: (8, 36, 8, 1)

Nested loops

« find all elements common to 11 and 12

In [43]:

In [44]:

Out[44]:

In [45]:

Out[45]:

In [46]:

In [47]:

= foreach x in 11, checkif x isin 12
= foreach y in 12, checkif x ==y

def findcommon(11,12):
commonlist = []
for x in 11:

for y in 12:
if x == y:
commonlist.append(x)
return(commonlist)
11 = [1,2,3,4]
12 = [3,4,5,6]

findcommon(11,12)

[3, 4]

Our function will list repetitions multiple times

11 [1,2,3,4]
12 [3,4,5,3]
findcommon(11,12)

[3, 3, 4]

« Nested loops can be expensive
« 10°® operations take about 10 seconds in Python
« Compare the running time of the following nested loops

for i in range(1000):
for j in range(1000):
x=1+%+]j
print("Done")

Done

for i in range(10000):
for j in range(10000):
x =1i+]j
print("Done")

Done

