Stacks, Queues, Priority Queues, Heaps

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 18, 26 Oct 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Stack is a last-in, first-out sequence
- push(s,x) add x to stack s
- pop(s) return most recently added element

S. push (20) v or s. pop() Isempty (s)

Stacks, Queues, Priority Queues, Heaps

• • = • • = •

l. popl) in lyon

э.

Stack

- Stack is a last-in, first-out sequence
- push(s,x) add x to stack s
- pop(s) return most recently added element
- Maintain stack as list, push and pop from the right
 - push(s,x) is s.append(x)
 - s.pop() Python built-in, returns last element

Stack

- Stack is a last-in, first-out sequence
- push(s,x) add x to stack s
- pop(s) return most recently added element
- Maintain stack as list, push and pop from the right
 - push(s,x) is s.append(x)
 - s.pop() Python built-in, returns last element
- Stack defined using classes: s.push(x), s.pop()

Stack

- Stack is a last-in, first-out sequence
- push(s,x) add x to stack s
- pop(s) return most recently added element
- Maintain stack as list, push and pop from the right
 - push(s,x) is s.append(x)
 - s.pop() Python built-in, returns last element
- Stack defined using classes: s.push(x), s.pop()

- Stacks are natural to keep track of local variables through function calls
 - Each function call pushes current frame onto a stack

- First-in, first-out sequence
- **addq**(q, x) adds x to rear of queue q
- removeq(q) removes element at head of q

▶ < ∃ ▶</p>

Queue

- First-in, first-out sequence
- **addq**(q, x) adds x to rear of queue q
- removeq(q) removes element at head of q
- Using Python lists, left is rear, right is front
 - addq(q,x) is q.insert(0,x)
 - insert(j,x), insert x before position j
 - removeq(q) is q.pop()

▶ < ∃ ▶</p>

- Rectangular $m \times n$ grid
- Chess knight starts at (sx, sy)
- Usual knight moves
- Can it reach a target square (*t*×, *ty*)? ♦

- Rectangular $m \times n$ grid
- Chess knight starts at (sx, sy)
- Usual knight moves
- Can it reach a target square (*t*×, *ty*)? ♦

- Rectangular $m \times n$ grid
- Chess knight starts at (sx, sy)
- Usual knight moves
- Can it reach a target square (*tx*, *ty*)? ♦

- Rectangular $m \times n$ grid
- Chess knight starts at (sx, sy)
- Usual knight moves
- Can it reach a target square (*tx*, *ty*)? ♦

- X1 all squares reachable in one move from (sx, sy)
- X2 —- all squares reachable from X1 in one move

. . .

Don't explore an already marked square

▶ < ∃ ▶</p>

- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move
- Don't explore an already marked square
- When do we stop?

. . .

- If we reach target square
- What if target is not reachable?

- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move
- Don't explore an already marked square
- When do we stop?

. . .

- If we reach target square
- What if target is not reachable?

- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)

- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move
- Don't explore an already marked square
- When do we stop?

. . .

- If we reach target square
- What if target is not reachable?

- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)
 - Remove (*ax*, *ay*) from head of queue
 - Mark all squares reachable in one step from (ax, ay)
 - Add all newly marked squares to the queue

- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move
- Don't explore an already marked square
- When do we stop?

. . .

- If we reach target square
- What if target is not reachable?

- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)
 - Remove (*ax*, *ay*) from head of queue
 - Mark all squares reachable in one step from (ax, ay)
 - Add all newly marked squares to the queue
- When the queue is empty, we have finished

PDSP Lecture 18

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Job scheduler

 A job scheduler maintains a list of pending jobs with their priorities

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time
- How should the scheduler maintain the list of pending jobs and their priorities?

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time
- How should the scheduler maintain the list of pending jobs and their priorities?

Priority queue

 Need to maintain a collection of items with priorities to optimise the following operations

delete_max()

- Identify and remove item with highest priority
- Need not be unique
- insert()
 - Add a new item to the collection

delete_max()

- Identify and remove item with highest priority
- Need not be unique

insert()

Add a new item to the list

- Unsorted list
 - insert() is O(1)
 - delete_max() is O(n)

delete_max()

- Identify and remove item with highest priority
- Need not be unique

insert()

Add a new item to the list

- Unsorted list
 - insert() is O(1)
 - delete_max() is O(n)
- Sorted list
 - delete_max() is O(1)
 - insert() is O(n)

delete_max()

- Identify and remove item with highest priority
- Need not be unique
- insert()
 - Add a new item to the list

- Unsorted list
 - insert() is O(1)
 - delete_max() is O(n)
- Sorted list
 - delete_max() is O(1)
 - insert() is O(n)
- Processing *n* items requires $O(n^2)$

delete_max()

- Identify and remove item with highest priority
- Need not be unique
- insert()
 - Add a new item to the list

Moving to two dimensions

First attempt

 Assume N processes enter/leave the queue

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue
- Maintain a $\sqrt{N} \times \sqrt{N}$ array

N = 25

▶ < ∃ ▶</p>

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue
- Maintain a $\sqrt{N} \times \sqrt{N}$ array
- Each row is in sorted order

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

▶ < ⊒ ▶

Keep track of the size of each row

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

5
5
3
4
2

▶ < ∃ ▶</p>

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

5
5
3
4
2

▶ < ⊒ ▶

9/23

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

5
5
3
4
2

PDSP Lecture 18

▶ < ⊒ ▶

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

N = 25

15	3	19	23	35	58
	12	17	25	43	67
	10	13	20		
	11	16	28	49	
	6	14			

5
5
3
4
2

PDSP Lecture 18

< ∃ >

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

	3	19	23	35	58
15	12	17	25	43	67
	10	13	20		
	11	16	28	49	
	6	14			

5
5
3
4
2

< ∃ >

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

	3	19	23	35	58
	12	17	25	43	67
15	10	13	20		
	11	16	28	49	
	6	14			

5
5
3
4
2

PDSP Lecture 18

▶ < ⊒ ▶

9/23

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
3
4
2

▶ < ⊒ ▶

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

PDSP Lecture 18

▶ < ⊒ ▶

9/23
- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15
- Takes time $O(\sqrt{N})$
 - Scan size column to locate row to insert, $O(\sqrt{N})$
 - Insert into the first row with free space, $O(\sqrt{N})$

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

Maximum in each row is the last element

N = 25

- Maximum in each row is the last element
- Position is available through size column

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

< ∃ >

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these
- Delete it

N = 25

3	19	23	35	58
12	17	25	43	
10	13	15	20	
11	16	28	49	
6	14			

5
4
4
4
2

PDSP Lecture 18

10/23

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these
- Delete it
- Again $O(\sqrt{N})$
 - Find the maximum among last entries, $O(\sqrt{N})$
 - Delete it, O(1)

N = 25

3	19	23	35	58
12	17	25	43	
10	13	15	20	
11	16	28	49	
6	14			

5
4
4
4
2

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing N items is $O(N\sqrt{N})$

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

✓ □ → < ≥ >
PDSP Lecture 18

▶ < ∃ ▶</p>

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing N items is $O(N\sqrt{N})$
- Can we do better?

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

PDSP Lecture 18

< ∃ >

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing N items is $O(N\sqrt{N})$
- Can we do better?
- Maintain a special binary tree heap
 - Height O(log N)
 - insert() is $O(\log N)$
 - delete_max() is O(log N)
 - Processing N items is $O(N \log N)$

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing N items is $O(N\sqrt{N})$
- Can we do better?
- Maintain a special binary tree heap
 - Height O(log N)
 - insert() is $O(\log N)$
 - delete_max() is O(log N)
 - Processing N items is $O(N \log N)$
- Flexible need not fix N in advance

N = 25

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

PDSP Lecture 18

Binary trees

- Values are stored as nodes in a rooted tree
- Each node has up to two children
 - Left child and right child
 - Order is important
- Other than the root, each node has a unique parent
- Leaf node no children
- Size number of nodes 🗢 🚺
- Height number of levels In nodes = 5

PDSP Lecture 18

12/23

Stacks, Queues, Priority Queues, Heaps

Stacks, Queues, Priority Queues, Heaps

PDSP Lecture 18

13/23

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap
- Binary tree on the right is an example of a heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap
- Binary tree on the right is an example of a heap
- Root always has the largest value
 - By induction, because of the max-heap property

PDSP Lecture 18

13/23

Non-examples

No "holes" allowed

Non-examples

No "holes" allowed

Cannot leave a level incomplete

Non-examples

Heap property is violated

PDSP Lecture 18

▲ 国 ▶ | ▲ 国 ▶ |

■ insert(77)

← □ ▶ < □ ▶ < □ ▶ < □ ▶
 PDSP Lecture 18

3

■ insert(77)

 Add a new node at dictated by heap structure

∎ insert(77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root

▶ < ⊒ ▶

∎ insert(77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root

∎ insert(77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)

▶ < ⊒ ▶

∎ insert(77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)
- insert(57)

▶ < ⊒ ▶

∎ insert(77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)
- insert(57)

▶ < ⊒ ▶

- Need to walk up from the leaf to the root
 - Height of the tree

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is 2⁰ = 1

▶ < ⊒ ▶

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^j

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is 2⁰ = 1
- Number of nodes at level j is 2^j
- If we fill k levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes

PDSP Lecture 18

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^j
- If we fill *k* levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes
- If we have *N* nodes, at most 1 + log *N* levels

PDSP Lecture 18

- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is 2⁰ = 1
- Number of nodes at level j is 2^j
- If we fill *k* levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes
- If we have N nodes, at most 1 + log N levels
- insert() is O(log N)

PDSP Lecture 18

17 / 23

Maximum value is always at the root

Madhavan Mukun

► < ∃ ►</p>

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level

▶ ∢ ⊒

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards

18/23

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again O(log N)

PDSP Lecture 18

18/23
delete_max()

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again O(log N)

PDSP Lecture 18

delete_max()

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards

■ Again O(log N)

