Stacks, Queues, Priority Queues, Heaps

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 18, 26 Oct 2023

Stack

- Stack is a last-in, first-out sequence
- push (s, x) — add x to stack s
- pop (s) - return most recently added element
s. push (w)
l.pop(l) in Python
vos.pop()
Isemply (s)

Stack

- Stack is a last-in, first-out sequence
- push (s, x) — add x to stack s
- pop (s) - return most recently added element
- Maintain stack as list, push and pop from the right
- push (s, x) is $\mathrm{s} . \operatorname{append}(\mathrm{x})$
- s.pop() - Python built-in, returns last element

Stack

■ Stack is a last-in, first-out sequence

- push ($s, x)$ - add x to stack s
- pop(s) - return most recently added element
- Maintain stack as list, push and pop from the right
- push (s,x) is s.append (x)
- s.pop() - Python built-in, returns last element

■ Stack defined using classes:
s.push(x), s.pop()

Stack

■ Stack is a last-in, first-out sequence

- push ($s, x)$ - add x to stack s
- pop(s) - return most recently added element
- Maintain stack as list, push and pop from the right
- push (s, x) is s.append (x)
- s.pop() - Python built-in, returns last element

■ Stack defined using classes:
s.push (x), s.pop()

■ Stacks are natural to keep track of local variables through function calls

- Each function call pushes current frame onto a stack
- When function exits, pop its frame off

Queue

■ First-in, first-out sequence

- $\operatorname{addq}(\mathrm{q}, \mathrm{x})$ - adds x to rear of queue q
- removeq (q) - removes element at head of q

Queue

■ First-in, first-out sequence

- $\operatorname{addq}(\mathrm{q}, \mathrm{x})$ - adds x to rear of queue q
- removeq (q) - removes element at head of q
- Using Python lists, left is rear, right is front

■ $\operatorname{addq}(q, x)$ is $q \cdot \operatorname{insert}(0, x)$
■ insert (j, x), insert x before position j

- removeq (q) is $q \cdot p o p()$

Systematic exploration

- Rectangular $m \times n$ grid
- Chess knight starts at ($s x$, sy) -
- Usual knight moves
- Can it reach a target square ($t x$, ty) ?

Systematic exploration

- Rectangular $m \times n$ grid
- Chess knight starts at ($s x, s y$)
- Usual knight moves
- Can it reach a target square ($t x, t y$)?

Systematic exploration

- Rectangular $m \times n$ grid
- Chess knight starts at ($s x, s y$)
- Usual knight moves
- Can it reach a target square $(t x, t y)$?

Systematic exploration

- Rectangular $m \times n$ grid

■ Chess knight starts at (sx, sy) -

- Usual knight moves
- Can it reach a target square $(t x, t y)$?

Systematic exploration

- $\mathrm{X1}$ - all squares reachable in one move from ($s x$, sy)
- X 2 - all squares reachable from $X 1$ in one move

■ Don't explore an already marked square

Systematic exploration

- $\mathrm{X1}$ - all squares reachable in one move from ($s x$, sy)
- X 2 - all squares reachable from $X 1$ in one move
- Don't explore an already marked square

■ When do we stop?

- If we reach target square
- What if target is not reachable?

Systematic exploration

- X 1 - all squares reachable in one move from ($s x$, sy)
- X 2 - all squares reachable from $X 1$ in one move
- Don't explore an already marked square

■ When do we stop?

- If we reach target square
- What if target is not reachable?
- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)

Systematic exploration

- X 1 - all squares reachable in one move from ($s x$, sy)
- X 2 - all squares reachable from $X 1$ in one move
- Don't explore an already marked square

■ When do we stop?

- If we reach target square
- What if target is not reachable?
- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)
- Remove (ax, ay) from head of queue
- Mark all squares reachable in one step from (ax, ay)
- Add all newly marked squares to the queue

Systematic exploration

- X 1 - all squares reachable in one move from ($s x$, sy)
- X 2 - all squares reachable from $X 1$ in one move
- Don't explore an already marked square

■ When do we stop?

- If we reach target square
- What if target is not reachable?
- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)
- Remove (ax, ay) from head of queue
- Mark all squares reachable in one step from (ax, ay)
- Add all newly marked squares to the queue
- When the queue is empty, we have finished

Dealing with priorities

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities

Dealing with priorities

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it

Dealing with priorities

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities

■ When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it

■ New jobs may join the list at any time

Dealing with priorities

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it

■ New jobs may join the list at any time

- How should the scheduler maintain the list of pending jobs and their priorities?

Dealing with priorities

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it

■ New jobs may join the list at any time
■ How should the scheduler maintain the list of pending jobs and their priorities?

Priority queue

■ Need to maintain a collection of items with priorities to optimise the following operations

- delete_max ()
- Identify and remove item with highest priority
- Need not be unique
- insert()
- Add a new item to the collection

Implementing priority queues with one dimensional structures

- delete_max ()
- Identify and remove item with highest priority
- Need not be unique
- insert()
- Add a new item to the list

Implementing priority queues with one dimensional structures

■ Unsorted list

- insert() is $O(1)$
- delete_max () is $O(n)$

■ delete_max()
■ Identify and remove item with highest priority

- Need not be unique
- insert()
- Add a new item to the list

Implementing priority queues with one dimensional structures

■ Unsorted list

- insert() is $O(1)$
- delete $\max ()$ is $O(n)$

■ Sorted list

- delete_max () is $O(1)$
- insert() is $O(n)$
- delete_max ()
- Identify and remove item with highest priority
- Need not be unique
- insert()
- Add a new item to the list

Implementing priority queues with one dimensional structures

■ Unsorted list

- insert() is $O(1)$

■ delete_max () is $O(n)$

- Sorted list
- delete_max () is $O(1)$
- insert() is $O(n)$
- Processing n items requires $O\left(n^{2}\right)$

■ delete_max()
■ Identify and remove item with highest priority

- Need not be unique
- insert ()
- Add a new item to the list

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue
- Maintain a $\sqrt{N} \times \sqrt{N}$ array
$N=25$

3	19	23	35	58
12	17	25	43	67
10	13	2815		
11	16	28	49	
6	14			

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue
- Maintain a $\sqrt{N} \times \sqrt{N}$ array
- Each row is in sorted order
$N=25$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

insert()

■ Keep track of the size of each row

$N=25$				
3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

5
5
3
4
2

insert()

- Keep track of the size of each row
- Insert into the first row that has space
- Use size of row to determine

$N=25$					
3	19	23	35	58	
12	17	25	43	67	
10	13	20			
11	16	28	49		
6	14				

5
5
3
4
2

insert()

- Keep track of the size of each row
- Insert into the first row that has space
- Use size of row to determine
- Insert 15

$N=25$					
3	19	23	35	58	
12	17	25	43	67	
10	13	20			
11	16	28	49		
6	14				

5
5
3
4
2

insert()

- Keep track of the size of each row
- Insert into the first row that has space - Use size of row to determine
- Insert 15

$N=25$					
153 19 23 35 58 12 17 25 43 67 10 13 20 11 16 28 49 6 14					

5
5
3
4
2

insert()

- Keep track of the size of each row
- Insert into the first row that has space
- Use size of row to determine
- Insert 15

$N=25$						
3 19 23 35 58 12 17 25 43 67 10 13 20 11 16 28 49 6 14						

5
5
3
4
2

insert()

- Keep track of the size of each row
- Insert into the first row that has space
- Use size of row to determine
- Insert 15

$N=25$					
3 19 23 35 58 12 17 25 43 67 10 13 20 11 16 28 49 6 14					

5
5
3
4
2

insert()

- Keep track of the size of each row
- Insert into the first row that has space
- Use size of row to determine
- Insert 15

$N=25$				
	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
3
4
2

insert()

- Keep track of the size of each row
- Insert into the first row that has space
- Use size of row to determine
- Insert 15

$N=25$				
	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

insert()

- Keep track of the size of each row
- Insert into the first row that has space
- Use size of row to determine
- Insert 15
- Takes time $O(\sqrt{N})$
- Scan size column to locate row to insert,

$$
N=25
$$

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

- Insert into the first row with free space, $O(\sqrt{N})$

delete_max ()

■ Maximum in each row is the last element

$N=25$				
3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

delete_max ()

■ Maximum in each row is the last element

- Position is available through size column

$$
N=25
$$

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

delete_max ()

■ Maximum in each row is the last element

- Position is available through size column
- Identify the maximum amongst these

$$
N=25
$$

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4
2

delete_max ()

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these
- Delete it

$$
N=25
$$

3	19	23	35	58
12	17	25	43	
10	13	15	20	
11	16	28	49	
6	14			

5
4
4
4
2

delete_max ()

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these
- Delete it
- Again $O(\sqrt{N})$

$$
N=25
$$

3	19	23	35	58
12	17	25	43	
10	13	15	20	
11	16	28	49	
6	14			

5
4
4
4
2

- Find the maximum among last entries, $O(\sqrt{N})$
- Delete it, $O(1)$

Summary

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
- insert () is $O(\sqrt{N})$
- delete max () is $O(\sqrt{N})$
- Processing N items is $O(N \sqrt{N})$

$N=25$				
3 19 23 35 58 12 17 25 43 67 10 13 20 11 16 28 49 6 14				

Summary

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
- insert () is $O(\sqrt{N})$
- delete max () is $O(\sqrt{N})$
- Processing N items is $O(N \sqrt{N})$
- Can we do better?

$N=25$				
3 19 23 35 58 12 17 25 43 67 10 13 20 11 16 28 49 6 14				

Summary

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
- insert () is $O(\sqrt{N})$
- delete max () is $O(\sqrt{N})$
- Processing N items is $O(N \sqrt{N})$
- Can we do better?
- Maintain a special binary tree - heap

$N=25$				
3 19 23 35 58 12 17 25 43 67 10 13 20 11 16 28 49 6 14				

- Height $O(\log N)$
- insert () is $O(\log N)$
- delete $\max ()$ is $O(\log N)$
- Processing N items is $O(N \log N)$

Summary

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
- insert () is $O(\sqrt{N})$
- delete max () is $O(\sqrt{N})$
- Processing N items is $O(N \sqrt{N})$
- Can we do better?
- Maintain a special binary tree - heap

$N=25$				
3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

- Height $O(\log N)$
- insert () is $O(\log N)$
- delete max () is $O(\log N)$
- Processing N items is $O(N \log N)$
- Flexible - need not fix N in advance

Binary trees

- Values are stored as nodes in a rooted tree
- Each node has up to two children
- Left child and right child
- Order is important
- Other than the root, each node has a unique parent
- Leaf node - no children
- Size - number of nodes $=10$
- Height - number of levels in nodes $=5$

Heap

- Binary tree filled level by level, left to right

Heap

■ Binary tree filled level by level, left to right

- The value at each node is at least as big the values of its children
- max-heap
- Binary tree on the right is an example of a heap

Heap

■ Binary tree filled level by level, left to right

- The value at each node is at least as big the values of its children
- max-heap
- Binary tree on the right is an example of a heap
- Root always has the largest

- By induction, because of the max-heap property

Non-examples

No "holes" allowed

Non-examples

No "holes" allowed
Cannot leave a level incomplete

Non-examples

Heap property is violated

insert()

■ insert (77)

insert()

■ insert (77)

- Add a new node at dictated by heap structure

insert()

■ insert (77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root

insert()

■ insert (77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root

insert()

■ insert (77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)

insert()

■ insert (77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert (44)
- insert(57)

insert()

■ insert (77)

- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert (44)
- insert(57)

Complexity of insert()

- Need to walk up from the leaf to the root
- Height of the tree

Complexity of insert ()

■ Need to walk up from the leaf to the root

- Height of the tree
- Number of nodes at level 0 is $2^{0}=1$

Complexity of insert ()

■ Need to walk up from the leaf to the root

- Height of the tree
- Number of nodes at level 0 is $2^{0}=1$

■ Number of nodes at level j is 2^{j}

Complexity of insert ()

- Need to walk up from the leaf to the root
- Height of the tree
- Number of nodes at level 0 is $2^{0}=1$

■ Number of nodes at level j is 2^{j}

- If we fill k levels, $2^{0}+2^{1}+\cdots+2^{k-1}=2^{k}-1$ nodes

Complexity of insert()

- Need to walk up from the leaf to the root
- Height of the tree
- Number of nodes at level 0 is $2^{0}=1$

■ Number of nodes at level j is 2^{j}

- If we fill k levels, $2^{0}+2^{1}+\cdots+2^{k-1}=2^{k}-1$ nodes
- If we have N nodes, at most $1+\log N$ levels

Complexity of insert()

- Need to walk up from the leaf to the root
- Height of the tree
- Number of nodes at level 0 is $2^{0}=1$

■ Number of nodes at level j is 2^{j}

- If we fill k levels, $2^{0}+2^{1}+\cdots+2^{k-1}=2^{k}-1$ nodes
- If we have N nodes, at most $1+\log N$ levels
- insert () is $O(\log N)$

delete_max ()

- Maximum value is always at the root

delete_max ()

- Maximum value is always at the root
- After we delete one value, tree shrinks

■ Node to delete is rightmost at lowest level

delete_max ()

- Maximum value is always at the root
- After we delete one value, tree shrinks

■ Node to delete is rightmost at lowest level

■ Move "homeless" value to the root

delete_max ()

- Maximum value is always at the root
- After we delete one value, tree shrinks
- Node to delete is rightmost at lowest level

■ Move "homeless" value to the root

- Restore the heap property downwards

delete_max ()

- Maximum value is always at the root
- After we delete one value, tree shrinks

■ Node to delete is rightmost at lowest level

■ Move "homeless" value to the root

- Restore the heap property downwards

- Only need to follow a single path down
- Again $O(\log N)$

delete_max ()

- Maximum value is always at the root
- After we delete one value, tree shrinks

■ Node to delete is rightmost at lowest level

■ Move "homeless" value to the root

- Restore the heap property downwards

- Only need to follow a single path down
- Again $O(\log N)$

delete_max ()

- Maximum value is always at the root
- After we delete one value, tree shrinks

■ Node to delete is rightmost at lowest level

■ Move "homeless" value to the root

- Restore the heap property downwards

- Only need to follow a single path down
- Again $O(\log N)$

