
Stacks, Queues, Priority Queues, Heaps

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 18, 26 Oct 2023

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o↵
the stack

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 2 / 23

S
. push(2)

l . pop() in Python

v i 3
. pop()

I s empty (s)

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o↵
the stack

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 2 / 23

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o↵
the stack

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 2 / 23

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o↵
the stack

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 2 / 23

iBOT

S t-
DMD

Queue

First-in, first-out sequence

addq(q,x) — adds x to rear of queue q

removeq(q) — removes element at head of q

Using Python lists, left is rear, right is front

addq(q,x) is q.insert(0,x)

insert(j,x), insert x before position j

removeq(q) is q.pop()

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 3 / 23

Queue

First-in, first-out sequence

addq(q,x) — adds x to rear of queue q

removeq(q) — removes element at head of q

Using Python lists, left is rear, right is front

addq(q,x) is q.insert(0,x)

insert(j,x), insert x before position j

removeq(q) is q.pop()

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 3 / 23

Systematic exploration

Rectangular m ⇥ n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ⌥

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 4 / 23

Systematic exploration

Rectangular m ⇥ n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ⌥

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 4 / 23

Systematic exploration

Rectangular m ⇥ n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ⌥

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 4 / 23

Systematic exploration

Rectangular m ⇥ n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ⌥

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 4 / 23

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 5 / 23

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 5 / 23

:

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 5 / 23

X(x34547

!

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 5 / 23

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 5 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 6 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 6 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 6 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 6 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Priority queue

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 6 / 23

Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 7 / 23

Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 7 / 23

Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 7 / 23

Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 7 / 23

Moving to two dimensions

First attempt

Assume N processes enter/leave the
queue

Maintain a
p
N ⇥

p
N array

Each row is in sorted order

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 8 / 23

Moving to two dimensions

First attempt

Assume N processes enter/leave the
queue

Maintain a
p
N ⇥

p
N array

Each row is in sorted order

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 8 / 23

/15

Moving to two dimensions

First attempt

Assume N processes enter/leave the
queue

Maintain a
p
N ⇥

p
N array

Each row is in sorted order

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 8 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15 3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15

3 19 23 35 58
15 12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67
15 10 13 20

11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 15 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
p
N)

Scan size column to locate row to insert,
O(

p
N)

Insert into the first row with free space,
O(

p
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 9 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
p
N)

Find the maximum among last entries,
O(

p
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 10 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
p
N)

Find the maximum among last entries,
O(

p
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 10 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
p
N)

Find the maximum among last entries,
O(

p
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 10 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
p
N)

Find the maximum among last entries,
O(

p
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43
10 13 15 20
11 16 28 49
6 14

5
4
4
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 10 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
p
N)

Find the maximum among last entries,
O(

p
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43
10 13 15 20
11 16 28 49
6 14

5
4
4
4
2

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 10 / 23

Summary

2D
p
N ⇥

p
N array with sorted rows

insert() is O(
p
N)

delete max() is O(
p
N)

Processing N items is O(N
p
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 11 / 23

Summary

2D
p
N ⇥

p
N array with sorted rows

insert() is O(
p
N)

delete max() is O(
p
N)

Processing N items is O(N
p
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 11 / 23

Summary

2D
p
N ⇥

p
N array with sorted rows

insert() is O(
p
N)

delete max() is O(
p
N)

Processing N items is O(N
p
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 11 / 23

Summary

2D
p
N ⇥

p
N array with sorted rows

insert() is O(
p
N)

delete max() is O(
p
N)

Processing N items is O(N
p
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 11 / 23

Binary trees

Values are stored as nodes in a
rooted tree

Each node has up to two
children

Left child and right child

Order is important

Other than the root, each node
has a unique parent

Leaf node — no children

Size — number of nodes

Height — number of levels

72

83

37

33

44

14 12

7 72

62

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 12 / 23

RooT

left RightL

0
I ↳ D
I

= 10

Inmodes= 5 JJ leaves

Leight-
-Complete binary tree Size = 2

hegh = log size

1 + 2 + 4 + - - in
size I height I

k-1 & A Size3 h 22° +2 + 22 12 .. 2-

= 2
*
-1 -!!!

size = h3

k r-1
22 -. es
M11

Size 2? Wh24- 10 - -- 0

Heap

Binary tree filled level by level,
left to right

The value at each node is at
least as big the values of its
children

max-heap

Binary tree on the right is an
example of a heap

Root always has the largest
value

By induction, because of the
max-heap property

83

83

54

28 51

27

13

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 13 / 23

Structural full
0

constrat 83283

value constrat I
83272

0
-

X ⑮⑱
54=28

↳IST

Heap

Binary tree filled level by level,
left to right

The value at each node is at
least as big the values of its
children

max-heap

Binary tree on the right is an
example of a heap

Root always has the largest
value

By induction, because of the
max-heap property

83

83

54

28 51

27

13

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 13 / 23

Heap

Binary tree filled level by level,
left to right

The value at each node is at
least as big the values of its
children

max-heap

Binary tree on the right is an
example of a heap

Root always has the largest
value

By induction, because of the
max-heap property

83

83

54

28 51

27

13

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 13 / 23

Non-examples

No “holes” allowed

83

83

51

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 14 / 23

"
O

I

Non-examples

No “holes” allowed

83

83

51

72

44 31

Cannot leave a level incomplete

83

83

54

28 51

27

13

72

44

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 14 / 23

I

-

Non-examples

Heap property is violated

83

53

54

28 51

27

13

72

44 21

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 15 / 23

0

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

74

54 27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 16 / 23

! Yo

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

74

54

77

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 16 / 23

0

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

74

77

54

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 16 / 23

O
Si

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

77

74

54

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 16 / 23

Gote
e

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

77

74

54 44

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 16 / 23

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

77

74

54 44

27

57

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 16 / 23

z

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 16 / 23

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k�1 = 2k � 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 17 / 23

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k�1 = 2k � 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 17 / 23

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k�1 = 2k � 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 17 / 23

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k�1 = 2k � 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 17 / 23

- O

- I

- 2

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k�1 = 2k � 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 17 / 23

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k�1 = 2k � 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 17 / 23

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 18 / 23

X

X

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

77

74

54 44

57

27

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 18 / 23

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

27

77

74

54 44

57

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 18 / 23

↑
2-

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

27

77

74

54 44

57

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 18 / 23

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

77

27

74

54 44

57

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 18 / 23

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

77

74

27

54 44

57

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 18 / 23

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

77

74

54

27 44

57

72

44 31

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 18 18 / 23

