
Quicksort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 17, 24 Oct 2023

Shortcomings of merge sort

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Merging happens because elements in the left half need to move to the right half
and vice versa

Consider an input of the form [0,2,4,6,1,3,5,9]

Can we divide the list so that everything on the left is smaller than everything on
the right?

No need to merge!

Madhavan Mukund Quicksort PDSP Lecture 17 2 / 17

DIVIDE & CONQue

t
↓ d
A

T(n) = 2T(Y/z)+ 2

Shortcomings of merge sort

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Merging happens because elements in the left half need to move to the right half
and vice versa

Consider an input of the form [0,2,4,6,1,3,5,9]

Can we divide the list so that everything on the left is smaller than everything on
the right?

No need to merge!

Madhavan Mukund Quicksort PDSP Lecture 17 2 / 17

6
,
0
,4,219, 3 ,5, 1

-

Shortcomings of merge sort

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Merging happens because elements in the left half need to move to the right half
and vice versa

Consider an input of the form [0,2,4,6,1,3,5,9]

Can we divide the list so that everything on the left is smaller than everything on
the right?

No need to merge!

Madhavan Mukund Quicksort PDSP Lecture 17 2 / 17

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

smay
L ↓
Sort Soul

-mi

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

O

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

Divide and conquer without merging

Suppose the median of L is m

Move all values m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot
element

Madhavan Mukund Quicksort PDSP Lecture 17 3 / 17

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

A : Anthony =Tony

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

Yum <L60]

uppen - L[0]

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

High level view of quicksort

Input list

43 32 22 78 63 57 91 13

Identify pivot

Mark lower elements and upper elements

Rearrange the elements as lower–pivot–upper

32 22 13 43 78 63 57 91

Recursively sort the lower and upper partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

0

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

High level view of quicksort

Input list

43 32 22 78 63 57 91 13

Identify pivot

Mark lower elements and upper elements

Rearrange the elements as lower–pivot–upper

32 22 13 43 78 63 57 91

Recursively sort the lower and upper partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

High level view of quicksort

Input list

43 32 22 78 63 57 91 13

Identify pivot

Mark lower elements and upper elements

Rearrange the elements as lower–pivot–upper

32 22 13 43 78 63 57 91

Recursively sort the lower and upper partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

High level view of quicksort

Input list

43 32 22 78 63 57 91 13

Identify pivot

Mark lower elements and upper elements

Rearrange the elements as lower–pivot–upper

32 22 13 43 78 63 57 91

Recursively sort the lower and upper partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in
the array

Partition L into lower and upper
parts with respect to the pivot

Move the pivot between the
lower and upper partition

Recursively sort the two
partitions

High level view of quicksort

Input list

43 32 22 78 63 57 91 13

Identify pivot

Mark lower elements and upper elements

Rearrange the elements as lower–pivot–upper

32 22 13 43 78 63 57 91

Recursively sort the lower and upper partitions

Madhavan Mukund Quicksort PDSP Lecture 17 4 / 17

def quucksort (2) :

If L = = 0 :
return []

pivot = 20] could be ((i) for any :

lower = [x for xin 2[1 :3 If <= pivot]

uppen : (i for ze in . 221 :] if > pint]
menrecursiveae

return quick+(piro] + quicksout (upper

new list

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

L[i]
↓LARDUPPER / UNCLASSIRED
--

IP >P

Eventratt If 4i] > P
-

D stuft green boundary rightPat
ebe

Make space in Lower

swap with first UPPER

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 78 63 57 91 13

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 78 63 57 91 13
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 78 63 57 91 13
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 78 63 57 91 13
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 78 63 57 91 13
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 78 63 57 91 13
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 78 63 57 91 13
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 78 63 57 91 13
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

-

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

43 32 22 13 63 57 91 78
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

O0

Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Examine the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

13 32 22 43 63 57 91 78
" "

Pivot is always the first element

Maintain two indices to mark the end of the
Lower and Upper segments

After partitioning, exchange the pivot with the
last element of the Lower segment

Madhavan Mukund Quicksort PDSP Lecture 17 5 / 17

Quicksort code

Scan the list from left to right

Four segments: Pivot, Lower,
Upper, Unclassified

Classify the first unclassified
element

If it is larger than the pivot,
extend Upper to include this
element

If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 6 / 17

-
- 1 to =1

Summary

Quicksort uses divide and conquer, like merge sort

By partitioning the list carefully, we avoid a merge step
This allows an in place sort

We can also provide an iterative implementation to avoid the cost of recursive calls

The partitioning strategy we described is not the only one used in the literature

Can build the lower and upper segments from opposite ends and meet in the middle

Need to analyse the complexity of quick sort

Madhavan Mukund Quicksort PDSP Lecture 17 7 / 17

Summary

Quicksort uses divide and conquer, like merge sort

By partitioning the list carefully, we avoid a merge step
This allows an in place sort

We can also provide an iterative implementation to avoid the cost of recursive calls

The partitioning strategy we described is not the only one used in the literature

Can build the lower and upper segments from opposite ends and meet in the middle

Need to analyse the complexity of quick sort

Madhavan Mukund Quicksort PDSP Lecture 17 7 / 17

Summary

Quicksort uses divide and conquer, like merge sort

By partitioning the list carefully, we avoid a merge step
This allows an in place sort

We can also provide an iterative implementation to avoid the cost of recursive calls

The partitioning strategy we described is not the only one used in the literature

Can build the lower and upper segments from opposite ends and meet in the middle

Need to analyse the complexity of quick sort

Madhavan Mukund Quicksort PDSP Lecture 17 7 / 17

Summary

Quicksort uses divide and conquer, like merge sort

By partitioning the list carefully, we avoid a merge step
This allows an in place sort

We can also provide an iterative implementation to avoid the cost of recursive calls

The partitioning strategy we described is not the only one used in the literature

Can build the lower and upper segments from opposite ends and meet in the middle

Need to analyse the complexity of quick sort

Madhavan Mukund Quicksort PDSP Lecture 17 7 / 17

LOWER

1eywnown/e

Summary

Quicksort uses divide and conquer, like merge sort

By partitioning the list carefully, we avoid a merge step
This allows an in place sort

We can also provide an iterative implementation to avoid the cost of recursive calls

The partitioning strategy we described is not the only one used in the literature

Can build the lower and upper segments from opposite ends and meet in the middle

Need to analyse the complexity of quick sort

Madhavan Mukund Quicksort PDSP Lecture 17 7 / 17

Analysis

Partitioning with respect to the
pivot takes time O(n)

If the pivot is the median

T (n) = 2T (n/2) + n

T (n) is O(n log n)

Worst case? Pivot is maximum
or minimum

Partitions are of size 0, n � 1

T (n) = T (n � 1) + n

T (n) = n + (n � 1) + · · ·+ 1

T (n) is O(n2)

Already sorted array: worst case!

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 8 / 17

Analysis

Partitioning with respect to the
pivot takes time O(n)

If the pivot is the median

T (n) = 2T (n/2) + n

T (n) is O(n log n)

Worst case? Pivot is maximum
or minimum

Partitions are of size 0, n � 1

T (n) = T (n � 1) + n

T (n) = n + (n � 1) + · · ·+ 1

T (n) is O(n2)

Already sorted array: worst case!

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 8 / 17

Analysis

Partitioning with respect to the
pivot takes time O(n)

If the pivot is the median

T (n) = 2T (n/2) + n

T (n) is O(n log n)

Worst case? Pivot is maximum
or minimum

Partitions are of size 0, n � 1

T (n) = T (n � 1) + n

T (n) = n + (n � 1) + · · ·+ 1

T (n) is O(n2)

Already sorted array: worst case!

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 8 / 17

Analysis

Partitioning with respect to the
pivot takes time O(n)

If the pivot is the median

T (n) = 2T (n/2) + n

T (n) is O(n log n)

Worst case? Pivot is maximum
or minimum

Partitions are of size 0, n � 1

T (n) = T (n � 1) + n

T (n) = n + (n � 1) + · · ·+ 1

T (n) is O(n2)

Already sorted array: worst case!

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 8 / 17

Analysis . . .

However, average case is
O(n log n)

Sorting is a rare situation where
we can compute this

Values don’t matter, only
relative order is important

Analyze behaviour over
permutations of {1, 2, . . . , n}
Each input permutation
equally likely

Expected running time is
O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 9 / 17

Analysis . . .

However, average case is
O(n log n)

Sorting is a rare situation where
we can compute this

Values don’t matter, only
relative order is important

Analyze behaviour over
permutations of {1, 2, . . . , n}
Each input permutation
equally likely

Expected running time is
O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 9 / 17

Analysis . . .

However, average case is
O(n log n)

Sorting is a rare situation where
we can compute this

Values don’t matter, only
relative order is important

Analyze behaviour over
permutations of {1, 2, . . . , n}
Each input permutation
equally likely

Expected running time is
O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 9 / 17

Randomization

Any fixed choice of pivot allows
us to construct worst case input

Instead, choose pivot position
randomly at each step

Expected running time is again
O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 10 / 17

Randomization

Any fixed choice of pivot allows
us to construct worst case input

Instead, choose pivot position
randomly at each step

Expected running time is again
O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 10 / 17

Randomization

Any fixed choice of pivot allows
us to construct worst case input

Instead, choose pivot position
randomly at each step

Expected running time is again
O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 10 / 17

Iterative quicksort

Recursive calls work on disjoint
segments

No recombination of results is
required

Can explicitly keep track of left
and right endpoints of each
segment to be sorted

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 11 / 17

Iterative quicksort

Recursive calls work on disjoint
segments

No recombination of results is
required

Can explicitly keep track of left
and right endpoints of each
segment to be sorted

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 11 / 17

Quicksort in practice

In practice, quicksort is very fast

Very often the default algorithm
used for in-built sort functions

Sorting a column in a
spreadsheet

Library sort function in a
programming language

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 12 / 17

Quicksort in practice

In practice, quicksort is very fast

Very often the default algorithm
used for in-built sort functions

Sorting a column in a
spreadsheet

Library sort function in a
programming language

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+1,upper+1)

Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 17 12 / 17

Summary

The worst case complexity of quicksort is O(n2)

However, the average case is O(n log n)

Randomly choosing the pivot is a good strategy to beat worst case inputs

Quicksort works in-place and can be implemented iteratively

Very fast in practice, and often used for built-in sorting functions

Good example of a situation when the worst case upper bound is pessimistic

Madhavan Mukund Quicksort PDSP Lecture 17 13 / 17

Summary

The worst case complexity of quicksort is O(n2)

However, the average case is O(n log n)

Randomly choosing the pivot is a good strategy to beat worst case inputs

Quicksort works in-place and can be implemented iteratively

Very fast in practice, and often used for built-in sorting functions

Good example of a situation when the worst case upper bound is pessimistic

Madhavan Mukund Quicksort PDSP Lecture 17 13 / 17

Summary

The worst case complexity of quicksort is O(n2)

However, the average case is O(n log n)

Randomly choosing the pivot is a good strategy to beat worst case inputs

Quicksort works in-place and can be implemented iteratively

Very fast in practice, and often used for built-in sorting functions

Good example of a situation when the worst case upper bound is pessimistic

Madhavan Mukund Quicksort PDSP Lecture 17 13 / 17

Summary

The worst case complexity of quicksort is O(n2)

However, the average case is O(n log n)

Randomly choosing the pivot is a good strategy to beat worst case inputs

Quicksort works in-place and can be implemented iteratively

Very fast in practice, and often used for built-in sorting functions

Good example of a situation when the worst case upper bound is pessimistic

Madhavan Mukund Quicksort PDSP Lecture 17 13 / 17

Summary

The worst case complexity of quicksort is O(n2)

However, the average case is O(n log n)

Randomly choosing the pivot is a good strategy to beat worst case inputs

Quicksort works in-place and can be implemented iteratively

Very fast in practice, and often used for built-in sorting functions

Good example of a situation when the worst case upper bound is pessimistic

Madhavan Mukund Quicksort PDSP Lecture 17 13 / 17

