Recursive Insertion Sort

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 16, 19 Oct 2023

Insertion sort

- You are the TA for a course
- Instructor has a pile of evaluated exam papers
- Papers in random order of marks
- Your task is to arrange the papers in descending order of marks

Strategy 2

- Move the first paper to a new pile
- Second paper
- Lower marks than first paper? Place below first paper in new pile
- Higher marks than first paper? Place above first paper in new pile
- Third paper
- Insert into correct position with respect to first two
- Do this for the remaining papers
- Insert each one into correct position in the second pile

Insertion sort

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
- Assume L[:i] is sorted

■ Insert L[i] in L[:i]

```
def InsertionSort(L):
    n = len(L)
    if n < 1:
        return(L)
    for i in range(n):
        # Assume L[:i] is sorted
        # Move L[i] to correct position in I
        j = i
        while(j > 0 and L[j] < L[j-1]):
            (L[j],L[j-1]) = (L[j-1],L[j])
            j = j-1
        # Now L[:i+1] is sorted
    return(L)
```


Insertion sort

- Start building a new sorted list
- Pick next element and insert it into the sorted list

- An iterative formulation
- Assume L[:i] is sorted
- Insert L[i] in L[:i]
- A recursive formulation
- Inductively sort L[:i] \rightarrow
- Insert L[i] in L[:i] \longrightarrow

Insertion sort

- Start building a new sorted list

■ Pick next element and insert it into the sorted list

- An iterative formulation
- Assume L[:i] is sorted
- Insert L[i] in L[:i]
- A recursive formulation
- Inductively sort L[:i]
- Insert L[i] in L[:i]

```
def Insert(L,v):
    n = len(L)
    if n == 0:
        return([v])
    if v >= L[-1]:
        return(L+[v])
    else:
        return(Insert(L[:-1],v)+L [-1:])
```

```
def ISort(L):
    n = len(L)
    if n < 1:
        return(L)
    L = Insert(ISort(L[:-1]),L[-1])
    return(L)
```


Analysis of recursive insertion sort

- For input of size n, let
- $T I(n)$ be the time taken by Insert
- TS(n) be the time taken by ISort

```
def Insert(L,v):
    \(\mathrm{n}=\mathrm{len}(\mathrm{L})\)
    if \(\mathrm{n}==0\) :
        return([v])
    if \(v\) >= L[-1]:
        return (L+[v])
    else
        return(Insert(L[:-1], v)+1 [-1:])
```

def ISort(L):
$\mathrm{n}=\operatorname{len}(\mathrm{L})$
if $\mathrm{n}<1$:
return(L)
L = Insert(ISort(L[:-1]), L[-1])
return(L)

Analysis of recursive insertion sort

- For input of size n, let
- $T I(n)$ be the time taken by Insert
- TS(n) be the time taken by ISort

First calculate $T I(n)$ for Insert

- $\operatorname{TI}(0)=1$
- $T I(n)=T I(n-1)+1$

```
def Insert(L,v):
    n = len(L)
    if n == 0:
        return([v])
    if v >= L[-1]:
        return(L+[v])
    else
        return(Insert(L[:-1],v)+1[-1:])
```

```
def ISort(L):
    n = len(L)
    if n < 1:
        return(L)
    L = Insert(ISort(L[:-1]), L[-1])
    return(L)
```


Analysis of recursive insertion sort

- For input of size n, let
- $T I(n)$ be the time taken by Insert
- TS(n) be the time taken by ISort

First calculate $T I(n)$ for Insert

- $\operatorname{TI}(0)=1$
- $T I(n)=T I(n-1)+1$
- Unwind to get $\operatorname{TI}(n)=n$

```
def Insert(L,v):
    n = len(L)
    if n == 0:
        return([v])
    if v >= L[-1]:
        return(L+[v])
    else
        return(Insert(L[:-1],v)+1[-1:])
```

```
def ISort(L):
    n = len(L)
    if n < 1:
        return(L)
    L = Insert(ISort(L[:-1]), L[-1])
    return(L)
```


Analysis of recursive insertion sort

- For input of size n, let
- $T I(n)$ be the time taken by Insert
- TS(n) be the time taken by ISort
- First calculate $T I(n)$ for Insert
- $\operatorname{TI}(0)=1$
- $T I(n)=T I(n-1)+1$
- Unwind to get $T I(n)=n$
- Set up a recurrence for $T S(n)$
- $T S(0)=1$
- $T S(n)=T S(n-1)+T I(n-1) \quad n-\mathbf{1}$

```
def Insert(L,v):
    n = len(L)
    if n == 0:
        return([v])
    if v >= L[-1]:
        return(L+[v])
    else
        return(Insert(L[:-1],v)+1[-1:])
```

```
def ISort(L):
    n = len(L)
    if n < 1:
        return(L)
    L = Insert(ISort(L[:-1]),L[-1])
    return(L)
```


Analysis of recursive insertion sort

- For input of size n, let
- $T I(n)$ be the time taken by Insert
- TS(n) be the time taken by ISort
- First calculate $T I(n)$ for Insert
- $\operatorname{TI}(0)=1$
- $T I(n)=T I(n-1)+1$
- Unwind to get $\operatorname{TI}(n)=n$

■ Set up a recurrence for $T S(n)$

- $T S(0)=1$
- $T S(n)=T S(n-1)+T I(n-1)$

```
def Insert(L,v):
    n = len(L)
    if n == 0:
        return([v])
    if v >= L[-1]:
        return(L+[v])
    else
        return(Insert(L[:-1],v)+1[-1:])
```

```
def ISort(L):
    n = len(L)
    if n < 1:
        return(L)
    L = Insert(ISort(L[:-1]),L[-1])
    return(L)
```

■ Unwind to get $1+2+\cdots+n-1$

Merge Sort

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 16, 19 Oct 2023

Beating the $O\left(n^{2}\right)$ barrier

- Both selection sort and insertion sort take time $O\left(n^{2}\right)$
- This is infeasible for $n>10000$
- How can we bring the complexity below $O\left(n^{2}\right)$?

Beating the $O\left(n^{2}\right)$ barrier

- Both selection sort and insertion sort take time $O\left(n^{2}\right)$
- This is infeasible for $n>10000$
- How can we bring the complexity below $O\left(n^{2}\right)$?

Strategy 3

- Divide the list into two halves

Beating the $O\left(n^{2}\right)$ barrier

- Both selection sort and insertion sort take time $O\left(n^{2}\right)$
- This is infeasible for $n>10000$
- How can we bring the complexity below $O\left(n^{2}\right)$?

Strategy 3

- Divide the list into two halves
- Separately sort the left and right half

Beating the $O\left(n^{2}\right)$ barrier

- Both selection sort and insertion sort take time $O\left(n^{2}\right)$
- This is infeasible for $n>10000$
- How can we bring the complexity below $O\left(n^{2}\right)$?

Strategy 3

- Divide the list into two halves
- Separately sort the left and right half

■ Combine the two sorted halves to get a fully sorted list

Combining two sorted lists

- Combine two sorted lists A and B into a single sorted list C

Combining two sorted lists

- Combine two sorted lists A and B into a single sorted list C
- Compare first elements of A and B

Combining two sorted lists

- Combine two sorted lists A and B into a single sorted list C
- Compare first elements of A and B
- Move the smaller of the two to C

Combining two sorted lists

- Combine two sorted lists A and B into a single sorted list C
- Compare first elements of A and B
- Move the smaller of the two to C
- Repeat till you exhaust A and B

Combining two sorted lists

■ Combine two sorted lists A and B into a single sorted list C

- Compare first elements of A and B
- Move the smaller of the two to C
- Repeat till you exhaust A and B

Combining two sorted lists

■ Combine two sorted lists A and B into a single sorted list C

- Compare first elements of A and B
- Move the smaller of the two to C
- Repeat till you exhaust A and B21

Combining two sorted lists

■ Combine two sorted lists A and B into a single sorted list C

- Compare first elements of A and B

- Move the smaller of the two to C
- Repeat till you exhaust A and B 2132

Combining two sorted lists

■ Combine two sorted lists A and B into a single sorted list C

- Compare first elements of A and B

- Move the smaller of the two to C
- Repeat till you exhaust A and B $21 \quad 32 \quad 55$

Combining two sorted lists

- Combine two sorted lists A and B into a single sorted list C
- Compare first elements of A and B

32 | 74 | 89 |
| :---: | :---: |
| 21 | 55 |
| 74 | |$?$

- Move the smaller of the two to C
- Repeat till you exhaust A and $B$$\begin{array}{llll}21 & 32 & 55 & 64\end{array}$

Combining two sorted lists

- Combine two sorted lists A and B into a
$32 \quad 74 \quad 89$ single sorted list C
- Compare first elements of A and B
$21 \quad 55 \quad 64$
- Move the smaller of the two to C
- Repeat till you exhaust A and B $\begin{array}{lllll}21 & 32 & 55 & 64 & 74\end{array}$

Combining two sorted lists

■ Combine two sorted lists A and B into a
$32 \quad 74 \quad 89$ single sorted list C

- Compare first elements of A and B
$21 \quad 55 \quad 64$
- Move the smaller of the two to C
- Repeat till you exhaust A and B $\begin{array}{llllll}21 & 32 & 55 & 64 & 74 & 89\end{array}$

Combining two sorted lists

■ Combine two sorted lists A and B into a
$32 \quad 74 \quad 89$ single sorted list C

- Compare first elements of A and B
$21 \quad 55 \quad 64$
■ Move the smaller of the two to C
- Repeat till you exhaust A and B
$\begin{array}{llllll}21 & 32 & 55 & 64 & 74 & 89\end{array}$
- Merging A and B

Merge sort

- Let n be the length of L

Merge sort

- Let n be the length of L
- Sort A[:n//2]

Merge sort

- Let n be the length of L
- Sort A[:n//2]
- Sort A [n//2:]

Merge sort

- Let n be the length of L
- Sort A[:n//2]
- Sort A [n//2:]
- Merge the sorted halves into B

Merge sort

- Let n be the length of L
- Sort A[:n//2]
- Sort A [n//2:]
- Merge the sorted halves into B

■ How do we sort

$$
\mathrm{A}[: \mathrm{n} / / 2] \text { and }
$$

$\mathrm{A}[\mathrm{n} / / 2:]$?

Merge sort

- Let n be the length of L
- Sort A[:n//2]
- Sort A [n//2:]

■ Merge the sorted halves into B

■ How do we sort
$\mathrm{A}[: \mathrm{n} / / 2]$ and
$\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]

43	32	22	78	63	57	91	13

■ Sort A [n//2:]

- Merge the sorted halves into B

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]
- Sort A [n//2:]

43	32	22	78	63	57	91	13

- Merge the sorted halves into B

43	32	22	78

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]

43	32	22	78	63	57	91	13

■ Sort A [n//2:]

- Merge the sorted halves into B

| 43 | 32 | 22 | 78 |
| :--- | :--- | :--- | :--- |\quad| 63 | 57 | 91 | 13 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

| 43 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 22 | 78 |
| :--- | :--- | :--- |
| 63 | 57 |\quad| 91 | 13 |
| :--- | :--- |

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]

43	32	22	78	63	57	91	13

■ Sort A [n//2:]

- Merge the sorted halves into B

| 43 | 32 | 22 | 78 |
| :--- | :--- | :--- | :--- |\quad| 63 | 57 | 91 | 13 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]

43	32	22	78	63	57	91	13

■ Sort A [n//2:]

- Merge the sorted halves into B

| 43 | 32 | 22 | 78 |
| :--- | :--- | :--- | :--- |\quad| 63 | 57 | 91 | 13 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

| 43 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 22 | 78 |
| :--- | :--- | :--- |
| 63 | 57 |\quad| 91 | 13 |
| :--- | :--- | :--- |

- Recursively, same strategy!

| 43 | 32 | 22 | 78 | 63 | 57 | $\boxed{ } 91$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | | 73 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Merge sort

- Let n be the length of L
- Sort A[:n//2]

43	32	22	78	63	57	91	13

■ Sort A [n//2:]

- Merge the sorted halves into B

| 43 | 32 | 22 | 78 |
| :--- | :--- | :--- | :--- |\quad| 63 | 57 | 91 | 13 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]

43	32	22	78	63	57	91	13

■ Sort A [n//2:]

- Merge the sorted halves into B

| 43 | 32 | 22 | 78 |
| :--- | :--- | :--- | :--- |\quad| 63 | 57 | 91 | 13 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

| 32 | 43 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 22 | 78 |
| :--- | :--- | :--- |
| 63 | 57 |\quad| 91 | 13 |
| :--- | :--- |

Merge sort

- Let n be the length of L
- Sort A[:n//2]

43	32	22	78	63	57	91	13

- Sort A [n//2:]
- Merge the sorted halves into B

| 43 | 32 | 22 | 78 |
| :--- | :--- | :--- | :--- |\quad| 63 | 57 | 91 | 13 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

32	43			
22	78		57	63
:---	:---	:---		

43	32	22	78	63	57	91

Merge sort

- Let n be the length of L
- Sort $A[: n / / 2]$

43	32	22	78	63	57	91	13

- Sort A [n//2:]
- Merge the sorted halves into B

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]

43	32	22	78	63	57	91	13

- Sort A [n//2:]
- Merge the sorted halves into B

| 43 | 32 | 22 | 78 |
| :--- | :--- | :--- | :--- |\quad| 63 | 57 | 91 | 13 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

| 32 | 43 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 22 | 78 |
| :--- | :--- | :--- |
| 57 | 63 |\quad| 13 | 91 |
| :--- | :--- |

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort $A[: n / / 2]$

43	32	22	78	63	57	91	13

- Merge the sorted halves into B

| 22 | 32 | 43 | 78 |
| :--- | :--- | :--- | :--- |\quad| 63 | 57 | 91 | 13 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

| 32 | 43 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 22 | 78 |
| :--- | :--- | :--- |
| 57 | 63 |\quad| 13 | 91 |
| :--- | :--- |

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort $A[: n / / 2]$

43	32	22	78	63	57	91	13

■ Sort A [n//2:]

- Merge the sorted halves into B

| 22 | 32 | 43 | 78 |
| :--- | :--- | :--- | :--- |\quad| 13 | 57 | 63 | 91 |
| :--- | :--- | :--- | :--- |

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort $A[: n / / 2]$
- Sort A [n//2:]
- Merge the sorted halves into B

■ How do we sort A[:n//2] and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort $A[: n / / 2]$

13	22	32	43	57	63	78	91

■ Sort A [n//2:]

- Merge the sorted halves into B

| 22 | 32 | 43 | 78 |
| :--- | :--- | :--- | :--- |\quad| 13 | 57 | 63 | 91 |
| :--- | :--- | :--- | :--- |

■ How do we sort
$\mathrm{A}[: \mathrm{n} / / 2]$ and
A[n//2:]?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]

13	22	32	43	57	63	78	91

■ Sort A [n//2:]

- Merge the sorted halves into B

■ How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and $\mathrm{A}[\mathrm{n} / / 2:]$?

- Recursively, same strategy!

Merge sort

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and

A [n//2:]?

- Recursively, same strategy!

Merge sort

■ Let n be the length of L

- Sort A[:n//2]
- Sort A[n//2:]

■ Merge the sorted halves into B

- How do we sort $\mathrm{A}[: \mathrm{n} / / 2]$ and A[n//2:]?
- Recursively, same strategy!

Divide and Conquer

- Break up the problem into disjoint parts
- Solve each part separately
- Combine the solutions efficiently

Merging sorted lists

- Combine two sorted lists A and B into C

Merging sorted lists

- Combine two sorted lists A and B into C
- If A is empty, copy B into C

Merging sorted lists

- Combine two sorted lists A and B into C
- If A is empty, copy B into C
- If B is empty, copy A into C

Merging sorted lists

- Combine two sorted lists A and B into C
- If A is empty, copy B into C
- If B is empty, copy A into C
- Otherwise, compare first elements of A and B

■ Move the smaller of the two to C

Merging sorted lists

- Combine two sorted lists A and B into C
- If A is empty, copy B into C
- If B is empty, copy A into C
- Otherwise, compare first elements of A and B

■ Move the smaller of the two to C

- Repeat till all elements of A and B have been moved

Merging sorted lists

- Combine two sorted lists A and B into C
- If A is empty, copy B into C
- If B is empty, copy A into C
- Otherwise, compare first elements of A and B

■ Move the smaller of the two to C

- Repeat till all elements of A and B have been moved

def merge (A,B):
$(\mathrm{m}, \mathrm{n})=(\operatorname{len}(\mathrm{A}), \operatorname{len}(\mathrm{B}))$
$(C, i, j, \boldsymbol{\gamma})=([], 0,0, \boldsymbol{\gamma})$
$\begin{aligned} & \text { while } k<m+n: ~ \\ & \text { if } i==m:\end{aligned} \operatorname{fen}(C)<m+n$
$\left.\begin{array}{l}\text { if } i==m: \\ \text { C.extend }(B[j:])\end{array}\right\} \operatorname{lc}(\mathrm{m}$
$k=k+(n-j)$
elif $j==n$:
C.extend (A[i:])
$\mathrm{k}=\mathrm{k}+(\mathrm{m}-\mathrm{i})$
elif $A[i]<B[j]:$
$c[10] \times \sqrt{i}]$ $\frac{\text { C.append }(A[i])}{(i, k)=(i+1, k+1)}$ else:

Merge sort

- To sort A into B, both of length n

Merge sort

- To sort A into B, both of length n
- If $n \leq 1$, nothing to be done

Merge sort

- To sort A into B, both of length n
- $n \leq 1$, n nothing to be done
- Otherwise not $n=0$
else you will keep splitting singleton list-

Merge sort

- To sort A into B, both of length n
- If $n \leq 1$, nothing to be done

■ Otherwise

- Sort A[:n//2] into L

Merge sort

- To sort A into B, both of length n
- If $n \leq 1$, nothing to be done

■ Otherwise

- Sort A[:n//2] into L
- Sort $A[n / / 2:]$ into R

Merge sort

- To sort A into B, both of length n
- If $n \leq 1$, nothing to be done

■ Otherwise

- Sort $\mathrm{A}[: \mathrm{n} / / 2]$ into L
- Sort A[n//2:] into R
- Merge L and R into B

Merge sort

- To sort A into B, both of length n
- If $n \leq 1$, nothing to be done

$$
\begin{aligned}
& \text { def mergesort }(\mathrm{A}): \\
& \mathrm{n}=\operatorname{len}(\mathrm{A})
\end{aligned}
$$

- Otherwise
- Sort A[:n//2] into L
- Sort A[n//2:] into R
- Merge L and R into B

$$
\begin{aligned}
& \text { if } n<=1: \\
& \quad \operatorname{return}(A) \\
& L= \operatorname{mergesort}(A[: n / / 2]) \\
& R= \operatorname{mergesort}(A[n / / 2:]) \\
& B= \operatorname{merge}(L, R) \\
& \text { return }(B)
\end{aligned}
$$

Analysing merge

■ Merge A of length m, B of length n

$$
\begin{aligned}
& \text { morge }(A, B) \\
& 4 A=\left[\begin{array}{c}
1 \\
\hline
\end{array}\right. \\
& \text { retum } B \\
& \text { eif } b=[] \text { : } \\
& \text { romm A } \\
& \text { clif } A[0<B[0] \text {. }
\end{aligned}
$$

Analysing merge

- Merge A of length m, B of length n
- Output list C has length $m+n$

```
def merge(A,B):
    (m,n) = (len (A), len (B))
    (C,i,j,k)=([],0,0,0)
    while k < m+n:
        if i == m:
        C.extend (B [j:])
        k = k + (n-j)
        elif j == n:
            C.extend(A[i:])
            k = k + (n-i)
        elif A[i] < B[j]:
        C.append(A[i])
        (i,k) = (i+1,k+1)
        else:
        C.append (B [j])
        (j,k) = (j+1,k+1)
    return(C)
```


Analysing merge

- Merge A of length m, B of length n
- Output list C has length $m+n$
- In each iteration we add (at least) one element to C

```
def merge(A,B):
    (m,n) = (len (A), len (B))
    (C,i,j,k) = ([],0,0,0)
    while k < m+n:
        if i == m:
        C.extend (B [j:])
        k = k + (n-j)
        elif j == n:
            C.extend(A[i:])
            k = k + (n-i)
        elif A[i] < B[j]:
        C.append(A[i])
                (i,k) = (i+1,k+1)
        else:
        C.append (B [j])
        (j,k) = (j+1,k+1)
    return(C)
```


Analysing merge

- Merge A of length m, B of length n
- Output list C has length $m+n$
- In each iteration we add (at least) one element to C
- Hence merge takes time $O(m+n)$

```
def merge(A,B):
    (m,n) = (len (A), len (B))
    (C,i,j,k) = ([],0,0,0)
    while k < m+n:
        if i == m:
        C.extend (B [j:])
        k = k + (n-j)
        elif j == n:
        C.extend (A [i:])
        k = k + (n-i)
        elif A[i] < B[j]:
        C.append(A[i])
        (i,k) = (i+1,k+1)
        else:
        C.append(B[j])
        (j,k) = (j+1,k+1)
    return(C)
```


Analysing merge

- Merge A of length m, B of length n
- Output list C has length $m+n$
- In each iteration we add (at least) one element to C
- Hence merge takes time $O(m+n)$
- Recall that $m+n \leq 2(\max (m, n))$

```
def merge(A,B):
    (m,n) = (len (A),\operatorname{len}(B))
    (C,i,j,k) = ([], 0,0,0)
    while k < m+n:
        if i == m:
        C.extend (B [j:])
        k = k + (n-j)
        elif j == n:
                C.extend(A[i:])
                k = k + (n-i)
        elif A[i] < B[j]:
        C.append (A[i])
                (i,k) = (i+1,k+1)
        else:
        C.append (B[j])
        (j,k) = (j+1,k+1)
    return(C)
```


Analysing merge

- Merge A of length m, B of length n
- Output list C has length $m+n$
- In each iteration we add (at least) one element to C
- Hence merge takes time $O(m+n)$
- Recall that $m+n \leq 2(\max (m, n))$
- If $m \approx n$, merge take time $O(n)$

```
def merge(A,B):
    (m,n) = (len(A), len(B))
    (C,i,j,k) = ([],0,0,0)
    while k < m+n:
        if i == m:
        C.extend (B [j:])
        k = k + (n-j)
        elif j == n:
        C.extend(A[i:])
        k = k + (n-i)
        elif A[i] < B[j]:
        C.append(A[i])
                (i,k) = (i+1,k+1)
        else:
        C.append(B[j])
        (j,k) = (j+1,k+1)
    return(C)
```


Analysing mergesort

■ Let $T(n)$ be the time taken for input of size n

- For simplicity, assume $n=2^{k}$ for some k

```
def mergesort(A):
    n = len(A)
```

 if \(\mathrm{n}<=1\) :
 return(A)
 $\mathrm{L}=$ mergesort (A[:n//2])
$R=\operatorname{mergesort}(A[n / / 2:])$
$B=$ merge (L, R)
return(B)

Analysing mergesort

■ Let $T(n)$ be the time taken for input of size n

- For simplicity, assume $n=2^{k}$ for some k
- Recurrence
- $T(0)=T(1)=1$
- $T(n)=2 T(n / 2)+n$
- Solve two subproblems of size $n / 2$
- Merge the solutions in time $n / 2+n / 2=n$

```
def mergesort(A):
    n = len(A)
```

if $\mathrm{n}<=1$:
return(A)
$\mathrm{L}=$ mergesort (A[:n//2])
$R=\operatorname{mergesort}(A[n / / 2:])$
$B=\operatorname{merge}(L, R)$
return(B)

Analysing mergesort

- Let $T(n)$ be the time taken for input of size n
- For simplicity, assume $n=2^{k}$ for some k
- Recurrence
- $T(0)=T(1)=1$
- $T(n)=2 T(n / 2)+n$
- Solve two subproblems of size $n / 2$
- Merge the solutions in time $n / 2+n / 2=n$

■ Unwind the recurrence to solve

```
def mergesort(A):
    n = len(A)
```

if $\mathrm{n}<=1$:
return (A)
$\mathrm{L}=$ mergesort (A[:n//2])
$R=\operatorname{mergesort}(A[n / / 2:])$
$B=\operatorname{merge}(L, R)$
return(B)

Analysing mergesort

- Recurrence

■ $T(0)=T(1)=1$

```
def mergesort(A):
    n = len(A)
    if n <= 1:
        return(A)
    L = mergesort(A[:n//2])
    R = mergesort(A[n//2:])
    B = merge(L,R)
    return(B)
```


Analysing mergesort

- Recurrence

■ $T(0)=T(1)=1$

```
def mergesort(A):
    n = len(A)
    if n <= 1:
        return(A)
```

 \(\mathrm{L}=\) mergesort (A[:n//2])
 \(R=\operatorname{mergesort}(A[n / / 2:])\)
 \(B=\operatorname{merge}(L, R)\)
 return(B)

Analysing mergesort

- Recurrence

■ $T(0)=T(1)=1$

```
def mergesort(A):
    n = len(A)
    if n <= 1:
        return(A)
    L = mergesort(A[:n//2])
    R = mergesort(A[n//2:])
    B = merge(L,R)
    return(B)
```


Analysing mergesort

- Recurrence
- $T(0)=T(1)=1$
- $T(n)=2 T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$

$$
=2[2 T(n / 4)+n / 2]+n=2^{2} T\left(n / 2^{2}\right)+(2)
$$

$$
\begin{aligned}
& \text { def mergesort(A): } \\
& \mathrm{n}=\operatorname{len}(\mathrm{A}) \\
& \text { if } \mathrm{n} \text { <= } 1 \text { : } \\
& \text { return(A) } \\
& \text { L = mergesort(A[:n//2]) } \\
& R=\operatorname{mergesort}(A[n / / 2:]) \\
& B=\operatorname{merge}(L, R) \\
& \text { return(B) }
\end{aligned}
$$

Analysing mergesort

■ Recurrence

- $T(0)=T(1)=1$
- $T(n)=2 T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2[2 T(n / 4)+n / 2]+n=2^{2} T\left(n / 2^{2}\right)+2 n \\
& =2^{2}\left[2 T\left(n / 2^{3}\right)+n / 2^{2}+2 n=2^{3} T\left(n / 2^{3}\right)+3 n\right.
\end{aligned}
$$

```
def mergesort(A):
    \(\mathrm{n}=\operatorname{len}(\mathrm{A})\)
    if n <= 1:
        return(A)
    \(\mathrm{L}=\operatorname{mergesort}(\mathrm{A}[: \mathrm{n} / / 2])\)
    \(R=\operatorname{mergesort}(A[n / / 2:])\)
    \(B=\operatorname{merge}(L, R)\)
    return(B)
```


Analysing mergesort

■ Recurrence

- $T(0)=T(1)=1$
- $T(n)=2 T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2[2 T(n / 4)+n / 2]+n=2^{2} T\left(n / 2^{2}\right)+2 n \\
& =2^{2}\left[2 T\left(n / 2^{3}\right)+n / 2^{2}\right]+2 n=2^{3} T\left(n / 2^{3}\right)+3 n
\end{aligned}
$$

$$
=2^{k} T\left(2^{k}+k n\right.
$$

$$
\begin{aligned}
& \text { def mergesort }(A): \\
& \mathrm{n}=\operatorname{len}(\mathrm{A}) \\
& \text { if } \mathrm{n}<=1: \\
& \quad \operatorname{return}(\mathrm{A}) \\
& \mathrm{L}=\operatorname{mergesort}(\mathrm{A}[: \mathrm{n} / / 2]) \\
& \mathrm{R}=\operatorname{mergesort}(\mathrm{A}[\mathrm{n} / / 2:]) \\
& \mathrm{B}=\operatorname{merge}(\mathrm{L}, \mathrm{R}) \\
& \\
& \text { return }(B)
\end{aligned}
$$

Analysing mergesort

- Recurrence
- $T(0)=T(1)=1$
- $T(n)=2 T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2[2 T(n / 4)+n / 2]+n=2^{2} T\left(n / 2^{2}\right)+2 n \\
& =2^{2}\left[2 T\left(n / 2^{3}\right)+n / 2^{2}\right]+2 n=2^{3} T\left(n / 2^{3}\right)+3 n
\end{aligned}
$$

$$
=2^{k} T\left(n / 2^{k}\right)+k n
$$

■ When $k=\log n, T\left(n / 2^{k}\right)=T(1)=1$

$$
\begin{aligned}
& \text { def } \text { mergesort }(A): \\
& n= \operatorname{len}(A) \\
& \text { if } n<=1: \\
& \quad \operatorname{return}(A) \\
& L= \operatorname{mergesort}(A[: n / / 2]) \\
& R= \operatorname{mergesort}(A[n / / 2:]) \\
& B= \operatorname{merge}(L, R)
\end{aligned}
$$

return (B)

Analysing mergesort

- Recurrence
- $T(0)=T(1)=1$
- $T(n)=2 T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2[2 T(n / 4)+n / 2]+n=2^{2} T\left(n / 2^{2}\right)+2 n \\
& =2^{2}\left[2 T\left(n / 2^{3}\right)+n / 2^{2}\right]+2 n=2^{3} T\left(n / 2^{3}\right)+3 n
\end{aligned}
$$

$$
=2^{k} T\left(n / 2^{k}\right)
$$

■ When $k=\log n, T\left(n / 2^{k}\right)=T(1)=1$

- $\begin{gathered}T(n)=2^{\log n} T(1)+(\log n) n=n+n \log n \\ \boldsymbol{n} \cdot \mathbf{1}\end{gathered}$

$$
\begin{aligned}
& \text { def } \text { mergesort }(A): \\
& n= \operatorname{len}(A) \\
& \text { if } n<=1: \\
& \quad \operatorname{return}(A) \\
& L= \text { mergesort }(A[: n / / 2]) \\
& R= \operatorname{mergesort}(A[n / / 2:]) \\
& B= \operatorname{merge}(L, R) \\
& \operatorname{return}(B)
\end{aligned}
$$

Analysing mergesort

- Recurrence
- $T(0)=T(1)=1$
- $T(n)=2 T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2[2 T(n / 4)+n / 2]+n=2^{2} T\left(n / 2^{2}\right)+2 n \\
& =2^{2}\left[2 T\left(n / 2^{3}\right)+n / 2^{2}\right]+2 n=2^{3} T\left(n / 2^{3}\right)+3 n
\end{aligned}
$$

$$
=2^{k} T\left(n / 2^{k}\right)+k n
$$

$$
\begin{aligned}
\text { def } & \text { mergesort }(A): \\
\mathrm{n}= & \operatorname{len}(\mathrm{A}) \\
\text { if } & \mathrm{n}<=1: \\
& \quad \operatorname{return}(\mathrm{A}) \\
\mathrm{L}= & \operatorname{mergesort}(\mathrm{A}[: \mathrm{n} / / 2]) \\
\mathrm{R}= & \operatorname{mergesort}(\mathrm{A}[\mathrm{n} / / 2:]) \\
B= & \operatorname{merge}(\mathrm{L}, \mathrm{R})
\end{aligned}
$$

■ When $k=\log n, T\left(n / 2^{k}\right)=T(1)=1$
return (B)

- $T(n)=2^{\log n} T(1)+(\log n) n=n+n \log n$
- Hence $T(n)$ is $O(n \log n)$

Summary

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs

Summary

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible

Summary

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible

■ Union of two sorted lists - discard duplicates, if $A[i]==B[j]$ move just one copy to C and increment both i and j

Summary

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible

■ Union of two sorted lists - discard duplicates, if $\mathrm{A}[\mathrm{i}]==\mathrm{B}[j]$ move just one copy to C and increment both i and j

■ Intersection of two sorted lists - when A [i] == B[j], move one copy to C, otherwise discard the smaller of $A[i], B[j]$

Summary

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible

■ Union of two sorted lists - discard duplicates, if $\mathrm{A}[\mathrm{i}]==\mathrm{B}[j]$ move just one copy to C and increment both i and j

■ Intersection of two sorted lists - when $\mathrm{A}[\mathrm{i}]==\mathrm{B}[j]$, move one copy to C , otherwise discard the smaller of $A[i], B[j]$

- List difference - elements in A but not in B

Summary

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible

■ Union of two sorted lists - discard duplicates, if $\mathrm{A}[\mathrm{i}]==\mathrm{B}[j]$ move just one copy to C and increment both i and j

■ Intersection of two sorted lists - when $\mathrm{A}[\mathrm{i}]$ == $\mathrm{B}[j]$, move one copy to C , otherwise discard the smaller of $A[i], B[j]$

- List difference - elements in A but not in B
- Merge needs to create a new list to hold the merged elements
- No obvious way to efficiently merge two lists in place
- Extra storage can be costly

Summary

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible
- Union of two sorted lists - discard duplicates, if $\mathrm{A}[\mathrm{i}]=\mathrm{B}[j]$ move just one copy to C and increment both i and j
- Intersection of two sorted lists - when $A[i]==B[j]$, move one copy to C, otherwise discard the smaller of $A[i], B[j]$
- List difference - elements in A but not in B
- Merge needs to create a new list to hold the merged elements
- No obvious way to efficiently merge two lists in place

$l \mid$ extend ($\ell 2$) \downarrow $e_{1}+l_{2}$

- Extra storage can be costly
- Inherently recursive
- Recursive calls and returns are expensive

