
Recursive Insertion Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 16, 19 Oct 2023

Insertion sort

You are the TA for a course

Instructor has a pile of
evaluated exam papers

Papers in random order of
marks

Your task is to arrange the
papers in descending order of
marks

Strategy 2

Move the first paper to a new pile

Second paper
Lower marks than first paper? Place below
first paper in new pile

Higher marks than first paper? Place above
first paper in new pile

Third paper
Insert into correct position with respect to
first two

Do this for the remaining papers

Insert each one into correct position in the
second pile

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 2 / 4

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation
Inductively sort L[:i]

Insert L[i] in L[:i]

def InsertionSort(L):
n = len(L)
if n < 1:

return(L)
for i in range(n):

Assume L[:i] is sorted
Move L[i] to correct position in L[:i]
j = i
while(j > 0 and L[j] < L[j-1]):
(L[j],L[j-1]) = (L[j-1],L[j])
j = j-1

Now L[:i+1] is sorted
return(L)

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 3 / 4

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation
Inductively sort L[:i]

Insert L[i] in L[:i]

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 3 / 4

Satel &

-n-z At

D&
-

iBu⑧n- 2
- L
-

↳

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation
Inductively sort L[:i]

Insert L[i] in L[:i]

def Insert(L,v):
n = len(L)
if n == 0:

return([v])
if v >= L[-1]:

return(L+[v])
else:

return(Insert(L[:-1],v)+L[-1:])

def ISort(L):
n = len(L)
if n < 1:

return(L)
L = Insert(ISort(L[:-1]),L[-1])
return(L)

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 3 / 4

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n � 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n � 1) + TI (n � 1)

Unwind to get 1 + 2 + · · ·+ n � 1

def Insert(L,v):
n = len(L)
if n == 0:

return([v])
if v >= L[-1]:

return(L+[v])
else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):
n = len(L)
if n < 1:

return(L)
L = Insert(ISort(L[:-1]),L[-1])
return(L)

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 4 / 4

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n � 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n � 1) + TI (n � 1)

Unwind to get 1 + 2 + · · ·+ n � 1

def Insert(L,v):
n = len(L)
if n == 0:

return([v])
if v >= L[-1]:

return(L+[v])
else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):
n = len(L)
if n < 1:

return(L)
L = Insert(ISort(L[:-1]),L[-1])
return(L)

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 4 / 4

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n � 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n � 1) + TI (n � 1)

Unwind to get 1 + 2 + · · ·+ n � 1

def Insert(L,v):
n = len(L)
if n == 0:

return([v])
if v >= L[-1]:

return(L+[v])
else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):
n = len(L)
if n < 1:

return(L)
L = Insert(ISort(L[:-1]),L[-1])
return(L)

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 4 / 4

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n � 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n � 1) + TI (n � 1)

Unwind to get 1 + 2 + · · ·+ n � 1

def Insert(L,v):
n = len(L)
if n == 0:

return([v])
if v >= L[-1]:

return(L+[v])
else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):
n = len(L)
if n < 1:

return(L)
L = Insert(ISort(L[:-1]),L[-1])
return(L)

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 4 / 4

~n-

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n � 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n � 1) + TI (n � 1)

Unwind to get 1 + 2 + · · ·+ n � 1

def Insert(L,v):
n = len(L)
if n == 0:

return([v])
if v >= L[-1]:

return(L+[v])
else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):
n = len(L)
if n < 1:

return(L)
L = Insert(ISort(L[:-1]),L[-1])
return(L)

Madhavan Mukund Recursive Insertion Sort PDSP Lecture 16 4 / 4

Merge Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 16, 19 Oct 2023

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 16 2 / 11

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Strategy 3

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 16 2 / 11

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Strategy 3

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 16 2 / 11

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Strategy 3

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 16 2 / 11

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

->

O

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

O

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

&

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55 64

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

O
?

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55 64 74

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55 64 74 89

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55 64 74 89

Madhavan Mukund Merge Sort PDSP Lecture 16 3 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

q

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

I

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

⑦

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

↑

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

A
E

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

22 32 43 78 63 57 91 13

32 43 22 78 57 63 13 91

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

22 32 43 78 13 57 63 91

32 43 22 78 57 63 13 91

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

-

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

22 32 43 78 13 57 63 91

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

- 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

13 22 32 43 57 63 78 91

22 32 43 78 13 57 63 91

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

13 22 32 43 57 63 78 91

Madhavan Mukund Merge Sort PDSP Lecture 16 4 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted halves into B

How do we sort A[:n//2] and
A[n//2:]?

Recursively, same strategy!

Madhavan Mukund Merge Sort PDSP Lecture 16 5 / 11

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted halves into B

How do we sort A[:n//2] and
A[n//2:]?

Recursively, same strategy!

Divide and Conquer

Break up the problem into disjoint parts

Solve each part separately

Combine the solutions e�ciently

Madhavan Mukund Merge Sort PDSP Lecture 16 5 / 11

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B
have been moved

Madhavan Mukund Merge Sort PDSP Lecture 16 6 / 11

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B
have been moved

Madhavan Mukund Merge Sort PDSP Lecture 16 6 / 11

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B
have been moved

Madhavan Mukund Merge Sort PDSP Lecture 16 6 / 11

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B
have been moved

Madhavan Mukund Merge Sort PDSP Lecture 16 6 / 11

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B
have been moved

Madhavan Mukund Merge Sort PDSP Lecture 16 6 / 11

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B
have been moved

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (m-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Merge Sort PDSP Lecture 16 6 / 11

/ 1
-
- len() <min

- Boundary

e

o Lai" CISfA[i]- Gregee*B k MAN

-

Merge sort

To sort A into B, both of length n

If n 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 16 7 / 11

Merge sort

To sort A into B, both of length n

If n 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 16 7 / 11

Merge sort

To sort A into B, both of length n

If n 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 16 7 / 11

0
not n= 0

else
you will keep

~

splitting singleton list

Merge sort

To sort A into B, both of length n

If n 1, nothing to be done

Otherwise
Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 16 7 / 11

Merge sort

To sort A into B, both of length n

If n 1, nothing to be done

Otherwise
Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 16 7 / 11

Merge sort

To sort A into B, both of length n

If n 1, nothing to be done

Otherwise
Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 16 7 / 11

Merge sort

To sort A into B, both of length n

If n 1, nothing to be done

Otherwise
Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

def mergesort(A):

n = len(A)

if n <= 1:

return(A)

L = mergesort(A[:n//2])

R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 7 / 11

Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n 2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Merge Sort PDSP Lecture 16 8 / 11

merge (A , B)

If A =
= 2] :

rehum B

elif B ==[] :
return A

elif A [0] < BC0] :
rekern ([A [0]]-merge (A(1 =3,B)
e

Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n 2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Merge Sort PDSP Lecture 16 8 / 11

Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n 2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Merge Sort PDSP Lecture 16 8 / 11

Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n 2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Merge Sort PDSP Lecture 16 8 / 11

Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n 2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Merge Sort PDSP Lecture 16 8 / 11

Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n 2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Merge Sort PDSP Lecture 16 8 / 11

Analysing mergesort

Let T (n) be the time taken for input of size n

For simplicity, assume n = 2k for some k

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

Solve two subproblems of size n/2

Merge the solutions in time n/2 + n/2 = n

Unwind the recurrence to solve

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 9 / 11

Analysing mergesort

Let T (n) be the time taken for input of size n

For simplicity, assume n = 2k for some k

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

Solve two subproblems of size n/2

Merge the solutions in time n/2 + n/2 = n

Unwind the recurrence to solve

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 9 / 11

Analysing mergesort

Let T (n) be the time taken for input of size n

For simplicity, assume n = 2k for some k

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

Solve two subproblems of size n/2

Merge the solutions in time n/2 + n/2 = n

Unwind the recurrence to solve

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 9 / 11

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

= 2 [2T (n/4) + n/2] + n

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

= 2 [2T (n/4) + n/2] + n = 22T (n/22) + 2n

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

me O
- v -

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

= 2 [2T (n/4) + n/2] + n = 22T (n/22) + 2n

= 22
⇥
2T (n/23) + n/22

⇤
+ 2n = 23T (n/23) + 3n

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

00

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

= 2 [2T (n/4) + n/2] + n = 22T (n/22) + 2n

= 22
⇥
2T (n/23) + n/22

⇤
+ 2n = 23T (n/23) + 3n

...
= 2kT (n/2k) + kn

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

⑧

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

= 2 [2T (n/4) + n/2] + n = 22T (n/22) + 2n

= 22
⇥
2T (n/23) + n/22

⇤
+ 2n = 23T (n/23) + 3n

...
= 2kT (n/2k) + kn

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

= 2 [2T (n/4) + n/2] + n = 22T (n/22) + 2n

= 22
⇥
2T (n/23) + n/22

⇤
+ 2n = 23T (n/23) + 3n

...
= 2kT (n/2k) + kn

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

⑧

-
n - 1 ---

Analysing mergesort

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

T (n) = 2T (n/2) + n

= 2 [2T (n/4) + n/2] + n = 22T (n/22) + 2n

= 22
⇥
2T (n/23) + n/22

⇤
+ 2n = 23T (n/23) + 3n

...
= 2kT (n/2k) + kn

When k = log n, T (n/2k) = T (1) = 1

T (n) = 2log nT (1) + (log n)n = n + n log n

Hence T (n) is O(n log n)

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 16 10 / 11

es

- ~ n

n2 n/2

- ~n

MMy y y
~n I logn

-I is
B B -- -

Summary

Merge sort takes time O(n log n) so can be used e↵ectively on large inputs

Variations on merge are possible

Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

List di↵erence — elements in A but not in B

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Madhavan Mukund Merge Sort PDSP Lecture 16 11 / 11

Summary

Merge sort takes time O(n log n) so can be used e↵ectively on large inputs

Variations on merge are possible

Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

List di↵erence — elements in A but not in B

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Madhavan Mukund Merge Sort PDSP Lecture 16 11 / 11

Summary

Merge sort takes time O(n log n) so can be used e↵ectively on large inputs

Variations on merge are possible

Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

List di↵erence — elements in A but not in B

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Madhavan Mukund Merge Sort PDSP Lecture 16 11 / 11

Summary

Merge sort takes time O(n log n) so can be used e↵ectively on large inputs

Variations on merge are possible

Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

List di↵erence — elements in A but not in B

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Madhavan Mukund Merge Sort PDSP Lecture 16 11 / 11

Summary

Merge sort takes time O(n log n) so can be used e↵ectively on large inputs

Variations on merge are possible

Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

List di↵erence — elements in A but not in B

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Madhavan Mukund Merge Sort PDSP Lecture 16 11 / 11

Summary

Merge sort takes time O(n log n) so can be used e↵ectively on large inputs

Variations on merge are possible

Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

List di↵erence — elements in A but not in B

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Madhavan Mukund Merge Sort PDSP Lecture 16 11 / 11

Summary

Merge sort takes time O(n log n) so can be used e↵ectively on large inputs

Variations on merge are possible

Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

List di↵erence — elements in A but not in B

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Madhavan Mukund Merge Sort PDSP Lecture 16 11 / 11

-extend (12)
↓

el +12

b
- apped (v)
el+[v]

