Analysis of algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 15, 17 Oct 2023

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

Measuring performance

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement
- Time depends on processing power
 - Impossible to change for given hardware
 - Enhancing hardware has only a limited impact at a practical level
- Storage is limited by available memory
 - Easier to configure, augment
- Typically, we focus on time rather than space

Input size

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size n
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - How do we account for this?

Input size

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size n
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - How do we account for this?

Example 1 SIM cards vs Aadhaar cards

- $n \approx 10^9$ number of cards
- Naive algorithm: $t(n) \approx n^2$
- Clever algorithm: $t(n) \approx n \log_2 n$
 - log₂ n number of times you need to divide n by 2 to reach 1
 - $\bullet \log_2(n) = k \Rightarrow n = 2^k$

3/9

Orders of magnitude

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
 - For small values of n, f(n) < g(n)
 - After n = 5000, f(n) overtakes g(n)
- Asymptotic complexity
 - What happens in the limit, as *n* becomes large
- Typical growth functions
 - Is t(n) proportional to log $n, \ldots, n^2, n^3, \ldots, 2^n$?
 - Note: $\log n$ means $\log_2 n$ by default
 - Logarithmic, polynomial, exponential, ...

Orders of magnitude

Input size		Values of $t(n)$						
	log n	n	<i>n</i> log <i>n</i>	n^2	n ³	2 ^{<i>n</i>}	<i>n</i> !	
10	3.3	10	33	100	1000	1000	10 ⁶	
100	6.6	100	66	10 ⁴	10 ⁶	10 ³⁰	10^{157}	
1000	10	1000	104	10 ⁶	10 ⁹			
104	13	104	10 ⁵	10 ⁸	10 ¹²			
10 ⁵	17	10 ⁵	10 ⁶	10 ¹⁰	•			
10 ⁶	20	10 ⁶	107	10 ¹²				
10 ⁷	23	10 ⁷	10 ⁸					
10 ⁸	27	10 ⁸	10 ⁹					
10 ⁹	30	10 ⁹	10 ¹⁰					
10^{10}	33	10 ¹⁰	10 ¹¹					

Madhavan Mukund

Analysis of algorithms

5/9

ж

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations

A 3 4

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations
- Typical basic operations
 - Compare two values
 - Assign a value to a variable

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations
- Typical basic operations
 - Compare two values
 - Assign a value to a variable
- Exchange a pair of values?

(x,y) = (y,x)

able t = x x = y y = t M = UU = U = U = U

- If we ignore constants, focus on orders of magnitude, both are within a factor of 3
- Need not be very precise about defining basic operations

What is the input size

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?
 - Magnitude of *n* is not the correct measure
 - Arithmetic operations are performed digit by digit
 - Addition with carry, subtraction with borrow, multiplication, long division
 - Number of digits is a natural measure of input size
 - Same as $\log_b n$, when we write *n* in base *b*

Which inputs should we consider?

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs
- Instead, worst case input
 - Input that forces algorithm to take longest possible time
 - Search for a value that is not present in an unsorted list
 - Must scan all elements
 - Pessimistic worst case may be rare
 - Upper bound for worst case guarantees good performance

Summary

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time
- Running time t(n) is a function of input size n
 - Interested in orders of magnitude
 - Asymptotic complexity, as *n* becomes large
- From running time, we can estimate feasible input sizes
- We focus on worst case inputs
 - Pessimistic, but easier to calculate than average case
 - Upper bound on worst case gives us an overall guarantee on performance

Searching in a list

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 15, 17 Oct 2023

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

■ Is value v present in list 1?

< □ > < 四

э

■ Is value v present in list 1?

Naive solution scans the list

def naivesearch(v,l):
 for x in l:
 if v == x:
 return(True)
 return(False)

< 3 ×

э

- Is value v present in list 1?
- Naive solution scans the list
- Input size *n*, the length of the list

```
def naivesearch(v,l):
  for x in l:
    if v == x:
        return(True)
    return(False)
```

- Is value v present in list 1?
- Naive solution scans the list
- Input size *n*, the length of the list
- Worst case is when v is not present in 1

```
def naivesearch(v,l):
  for x in l:
    if v == x:
        return(True)
    return(False)
```

- Is value v present in list 1?
- Naive solution scans the list
- Input size *n*, the length of the list
- Worst case is when v is not present in 1
- Worst case complexity is O(n)

```
def naivesearch(v,l):
  for x in l:
    if v == x:
        return(True)
    return(False)
```

2/6

• What if 1 is sorted in ascending order?

3

→ < ∃→

3/6

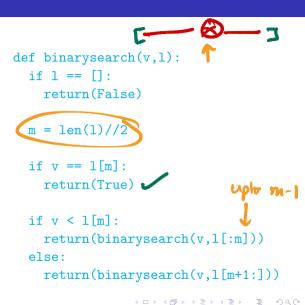
э

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1

< ∃ >

э

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1
 - If midpoint is v, the value is found
 - If v less than midpoint, search the first half
 - If v greater than midpoint, search the second half
 - Stop when the interval to search becomes empty



3/6

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1
 - If midpoint is v, the value is found
 - If v less than midpoint, search the first half
 - If v greater than midpoint, search the second half
 - Stop when the interval to search becomes empty

Binary search

```
def binarysearch(v.l):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1 [m]:
    return(binarysearch(v,l[:m]))
  else:
```

return(binarysearch(v,l[m+1:]))

• • = • • = •

э

Binary search

How long does this take?

```
def binarysearch(v,1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(binarysearch(v,l[:m]))
  else:
    return(binarysearch(v,l[m+1:]))
```

3

Binary search

- How long does this take?
 - Each call halves the interval to search
 - Stop when the interval become empty
- log n number of times to divide n by 2 to reach 1
 - 1 // 2 = 0, so next call reaches empty interval

```
def binarysearch(v,l):
    if l == []:
        return(False)
```

```
m = len(1)//2
```

```
if v == l[m]:
    return(True)
```

if v < l[m]:
 return(binarysearch(v,l[:m]))
else:</pre>

return(binarysearch(v,l[m+1:]))

Binary search

- How long does this take?
 - Each call halves the interval to search
 - Stop when the interval become empty
- log n number of times to divide n by 2 to reach 1
 - 1 // 2 = 0, so next call reaches empty interval

■ O(log n) steps

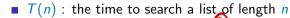
```
def binarysearch(v,l):
    if l == []:
        return(False)
```

```
m = len(1)//2
```

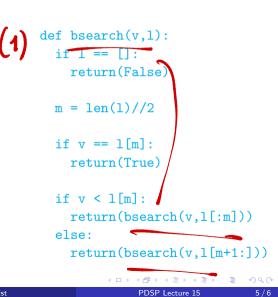
```
if v == l[m]:
    return(True)
```

if v < l[m]:
 return(binarysearch(v,l[:m]))
else:
 return(binarysearch(v,l[:m]))</pre>

return(binarysearch(v,l[m+1:]))



- If n = 0, we exit, so $T(n) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ If n > 0, $T(n) = T(n // 2) + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ **4.** O(1)



T(n): the time to search a list of length n

- If n = 0, we exit, so T(n) = 1
- If n > 0, T(n) = T(n // 2) + 1
- Recurrence for T(n)
 - **T**(0) = 1
 - T(n) = T(n // 2) + 1, n > 0

def bsearch(v.l): if 1 == []: return(False) m = len(1)//2if v == 1[m]: return(True) if v < l[m]: return(bsearch(v,l[:m])) else: return(bsearch(v,l[m+1:]))

5/6

• T(n): the time to search a list of length n

- If n = 0, we exit, so T(n) = 1
- If n > 0, T(n) = T(n // 2) + 1
- **Recurrence for** T(n)
 - T(0) = 1
 T(n) = T(n // 2) + 1, n > 0
- Solve by "unwinding"

def bsearch(v.l): if 1 == []: return(False) m = len(1)//2if v == 1[m]: return(True) if v < l[m]: return(bsearch(v,l[:m])) else: return(bsearch(v,l[m+1:]))

• T(n): the time to search a list of length n

- If n = 0, we exit, so T(n) = 1
- If n > 0, T(n) = T(n // 2) + 1
- **Recurrence** for T(n)
 - T(0) = 1
 T(n) = T(n // 2) + 1, n > 0
- Solve by "unwinding"
- **T**(n) = T(n // 2) + 1

def bsearch(v,1):
 if l == []:
 return(False)

 m = len(1)//2
 if v == l[m]:
 return(True)

if v < l[m]:
 return(bsearch(v,l[:m]))
else:</pre>

return(bsearch(v,l[m+1:]))

3

T(n): the time to search a list of length n

- If n = 0, we exit, so T(n) = 1
- If n > 0, T(n) = T(n // 2) + 1
- Recurrence for T(n)
 - T(0) = 1
 T(n) = T(n // 2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n // 2) + 1= (T(n // 4) + 1) + 1

def bsearch(v.l): if 1 == []: return(False) m = len(1)//2if v == 1[m]: return(True)

if v < l[m]:
 return(bsearch(v,l[:m]))
else:
 return(bsearch(v,l[m+1:]))</pre>

• T(n): the time to search a list of length n

- If n = 0, we exit, so T(n) = 1
- If n > 0, T(n) = T(n // 2) + 1
- Recurrence for T(n)
 - T(0) = 1
 T(n) = T(n // 2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n/2) + 1= $(T(n/4) + 1) + 1 = T(n/2^2) + 1 + 1$

def bsearch(v,l):
 if l == []:
 return(False)
 m = len(1)//2
 if v == l[m]:
 return(True)

if v < l[m]:
 return(bsearch(v,l[:m]))
else:
</pre>

return(bsearch(v,l[m+1:]))

• T(n): the time to search a list of length n

- If n = 0, we exit, so T(n) = 1
- If n > 0, T(n) = T(n // 2) + 1
- Recurrence for T(n)
 - T(0) = 1
 T(n) = T(n // 2) + 1, n > 0
- Solve by "unwinding"

•
$$T(n) = T(n/2) + 1$$

= $(T(n/4) + 1) + 1 = T(n/2^{2}) + 1 + 1$
= \cdots
= $T(n/2^{k}) + 1 + \cdots + 1$

def bsearch(v.l): if 1 == []: return(False) m = len(1)//2if v == 1[m]: return(True) if v < l[m]: return(bsearch(v,l[:m])) else: return(bsearch(v,l[m+1:]))

T(n): the time to search a list of length n

- If n = 0, we exit, so T(n) = 1
- If n > 0, T(n) = T(n // 2) + 1
- Recurrence for T(n)
 - T(0) = 1
 T(n) = T(n // 2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n/2) + 1= $(T(n/2) + 1) + 1 = T(n/2^2) + 1 + 1$ = \cdots = $T(n/2^k) + 1 + \cdots + 1$ = T(1) + k, for $k = \log n$
- def bsearch(v.l): if 1 == []: return(False) m = len(1)//2if v == 1[m]: return(True) if v < l[m]: return(bsearch(v,l[:m])) else: return(bsearch(v,l[m+1:]))

T(n): the time to search a list of length n If n = 0, we exit, so T(n) = 1def bsearch(v.l): if 1 == []: • If n > 0, T(n) = T(n // 2) + 1return(False) taken Recurrence for T(n)T(0) = 1m = len(1)//2list • T(n) = T(n // 2) + 1, n > 0tale hime if v == 1[m] Checky [Im] Solve by "unwinding" return(True) **T**(n) = T(n // 2) + 1 $= (T(n // 4) + 1) + 1 = T(n // 2^{2}) + 1 + 1$ if v < l[m]: — . . . return(bsearch(v,l[:m])) $= T(n // 2^k) + \underbrace{1 + \cdots + 1}_{k + 1}$ else: return(bsearch(v,l[m+1:])) = T(1) + k, for $k = \log n$ $= (T(0) + 1) + \log n = 2 + \log n$

Binary search on a linked hot Cherling L[m] takes time O(m) T(2)--T(o) = IM/2+ M/4+ M/8+ -- $T(n) = T(n/2) + \frac{n/2}{2}$ $T(n_{4}) + n_{4}$ T(n(s)+1/8

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list

< ∃ >

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list
- For a sorted list, binary search takes time $O(\log n)$
 - Halve the interval to search each time

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list
- For a sorted list, binary search takes time $O(\log n)$
 - Halve the interval to search each time
- In a sorted list, we can determine that v is absent by examining just $\log n$ values!

Naïve Sorting Algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 15, 17 Oct 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values

▶ < ∃ ▶</p>

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?

▶ < ∃ ▶</p>

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

 Scan the entire pile and find the paper with minimum marks

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile

PDSP Lecture 15

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile
- Repeat with the remaining papers
 - Add the paper with next minimum marks to the second pile each time

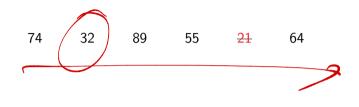
- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile
- Repeat with the remaining papers
 - Add the paper with next minimum marks to the second pile each time
- Eventually, the new pile is sorted in descending order



3

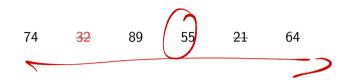


21

Madhavan N	Λu	kund
------------	----	------

← □ → < □ → < □ → < □ →
 PDSP Lecture 15

3



21 32

Madhavan M	lukund
------------	--------

< □ > < □ > < □ > < □ > < □ > < □ >
 PDSP Lecture 15

э.

74 32 89 55 21 64

21 32 55

Madhavan	Mu	kund
----------	----	------

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

74 32 89 55 21 64 21 32 55 64

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

74 32 89 55 21 64 21 32 55 64 74

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

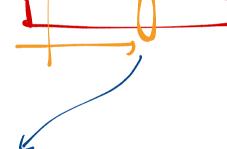
74	32	89	55	21	6 4
21	32	55	64	74	89

 Select the next element in sorted order

- Select the next element in sorted order
- Append it to the final sorted list

→ < ∃→

- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position



. . .

¢

111

- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 - ...
- Eventually the list is rearranged in place in ascending order

- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 - ...
- Eventually the list is rearranged in place in ascending order

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[j] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i], L[mpos]) = (L[mpos], L[i])
      # Now L[:i+1] is sorted
   return(L)
```

• • = • • = •

```
    Correctness follows from the invariant

                                        def SelectionSort(L):
                                            n = len(L)
                                            if n < 1:
                                               return(L)
                                            for i in range(n):
                                             👞# Assume L[:i] is sorted
                                               mpos = i
                                               # mpos: position of minimum in L[i:]
                                               for j in range(i+1,n):
                                                 if L[j] < L[mpos]:</pre>
                                                    mpos = j
                                               # L[mpos] : smallest value in L[i:]
                                               # Exchange L[mpos] and L[i]
                                               (L[i], L[mpos]) = (L[mpos], L[i])
                                               # Now L[:i+1] is sorted
                                            return(L)
```

• • = • • = •

Correctness follows from the invariant

Efficiency

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[j] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i], L[mpos]) = (L[mpos], L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
    # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
      if L[i] < L[mpos]:
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i], L[mpos]) = (L[mpos], L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n i steps to find minimum in L[i:]

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[j] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i], L[mpos]) = (L[mpos], L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n i steps to find minimum in L[i:]
 - $T(n) = n + (n-1) + \cdots + 1$

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[j] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i], L[mpos]) = (L[mpos], L[i])
      # Now L[:i+1] is sorted
   return(L)
```

3

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n i steps to find minimum in L[i:]
 - $T(n) = n + (n-1) + \cdots + 1$
 - T(n) = n(n+1)/2

def SelectionSort(L): n = len(L)if n < 1: return(L) for i in range(n): # Assume L[:i] is sorted mpos = i# mpos: position of minimum in L[i:] for j in range(i+1,n): if L[j] < L[mpos]:</pre> mpos = j# L[mpos] : smallest value in L[i:] # Exchange L[mpos] and L[i] (L[i], L[mpos]) = (L[mpos], L[i])# Now L[:i+1] is sorted return(L)

PDSP Lecture 15

5/11

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n i steps to find minimum in L[i:]
 - $T(n) = n + (n-1) + \cdots + 1$
 - T(n) = n(n+1)/2
- T(n) is $O(n^2)$

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[j] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i], L[mpos]) = (L[mpos], L[i])
      # Now L[:i+1] is sorted
   return(L)
```

3

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

▶ < ∃ ▶</p>

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

▶ < ⊒ ▶

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

• Move the first paper to a new pile

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile
- Third paper
 - Insert into correct position with respect to first two

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile
- Third paper
 - Insert into correct position with respect to first two
- Do this for the remaining papers
 - Insert each one into correct position in the second pile

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

74 32 89 55 21 64

₹ 9 . . .

74 32 89 55 21 64

74

Madhavan M	ukund
------------	-------

74 32 89 55 21 64

32 74

74 <u>32</u> <u>89 55 21 64</u>

32 74 89

Madhavan	Mukund
----------	--------

74 32 89 55 21 64

32 55 74 89

PDSP Lecture 15

74 32 89 55 21 64 21 32 55 74 89

74	32	89	55	21	64
21	32	55	64	74	89

Start building a new sorted list

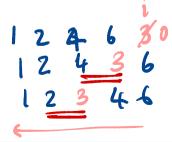
3

- Start building a new sorted list
- Pick next element and insert it into the sorted list

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]

▶ < ∃ ▶</p>

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]



```
def InsertionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in L
      i = i
      while(j > 0 and L[j] < L[j-1]):
        (L[j], L[j-1]) = (L[i-1], L[i])
        i = i - 1
      # Now L[:i+1] is sorted
   return(L)
```

PDSP Lecture 15

Correctness follows from the invariant

```
def InsertionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in L
      j = i
      while(L[j] < L[j-1]):
        (L[i], L[i-1]) = (L[i-1], L[i])
        i = i - 1
      # Now L[:i+1] is sorted
   return(L)
```

Correctness follows from the invariant

Efficiency

```
def InsertionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in L
      j = i
      while(L[j] < L[j-1]):
        (L[i], L[i-1]) = (L[i-1], L[i])
        i = i - 1
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times

```
def InsertionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in L
      i = i
      while(L[j] < L[j-1]):
        (L[i], L[i-1]) = (L[i-1], L[i])
        i = i - 1
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]

```
def InsertionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in L
      i = i
     while(L[j] < L[j-1]):
        (L[j], L[j-1]) = (L[j-1], L[j])
        i = i - 1
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \dots + (n-1)$

```
def InsertionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in L
      i = i
      while(L[j] < L[j-1]):
        (L[i], L[i-1]) = (L[i-1], L[i])
        i = i - 1
      # Now L[:i+1] is sorted
   return(L)
```

• • = • • = •

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \dots + (n-1)$
 - T(n) = n(n-1)/2

```
def InsertionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in L
      i = i
      while(L[j] < L[j-1]):
        (L[i], L[i-1]) = (L[i-1], L[i])
        i = i - 1
      # Now L[:i+1] is sorted
   return(L)
```

• • = • • = •

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \dots + (n-1)$
 - T(n) = n(n-1)/2
- T(n) is $O(n^2)$

```
def InsertionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in L
      i = i
      while(L[j] < L[j-1]):
        (L[i], L[i-1]) = (L[i-1], L[i])
        i = i - 1
      # Now L[:i+1] is sorted
   return(L)
```

Summary

Selection sort and insertion sort are intuitive sorting algorithms

Summary

- Selection sort and insertion sort are intuitive sorting algorithms
- Selection sort
 - Repeatedly find the minimum (or maximum) and append to sorted list
 - Worst case complexity is $O(n^2)$
 - Every input takes this much time
 - No advantage even if list is arranged carefully before sorting

▶ < ⊒ ▶

Summary

- Selection sort and insertion sort are intuitive sorting algorithms
- Selection sort
 - Repeatedly find the minimum (or maximum) and append to sorted list
 - Worst case complexity is $O(n^2)$
 - Every input takes this much time
 - No advantage even if list is arranged carefully before sorting
- Insertion sort
 - Create a new sorted list and repeatedly insert elements into the sorted list
 - Worst case complexity is $O(n^2)$
 - Unlike selection sort, not all cases take time n^2
 - If list is already sorted, Insert stops in 1 step
 - Overall time can be close to O(n)