Backtracking

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 24, 16 Nov 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Backtracking

- Systematically search for a solution
- * Build the solution one step at a time
- * If we hit a dead-end
 - * Undo the last step
 - Try the next option

- Place 8 queens on a chess board so that none of them attack each other
- In chess, a queen can move any number of squares along a row column or diagonal

- Place 8 queens on a chess board so that none of them attack each other
- In chess, a queen can move any number of squares along a row column or diagonal

- Place 8 queens on a chess board so that none of them attack each other
- In chess, a queen can move any number of squares along a row column or diagonal

- Place 8 queens on a chess board so that none of them attack each other
- In chess, a queen can move any number of squares along a row column or diagonal

- Place N queens on an N x N chess board so that none attack each other
- * N = 2, 3 impossible

- Place N queens on an N x N chess board so that none attack each other
- * N = 2, 3 impossible

- Place N queens on an N x N chess board so that none attack each other
- * N = 2, 3 impossible
- * N = 4 is possible

- Place N queens on an N x N chess board so that none attack each other
- * N = 2, 3 impossible
- * N = 4 is possible
- * And all bigger N as well

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column

- Clearly, exactly one queen in each row, column
- * Place queens row by row
- In each row, place a queen in the first available column
- Can't place a queen in the 8th row!

Can't place the a queen in the 8th row!

- Can't place the a queen in the 8th row!
- Undo 7th queen, no other choice

- Can't place the a queen in the 8th row!
- Undo 7th queen, no other choice
- Undo 6th queen, no other choice

- Can't place the a queen in the 8th row!
- Undo 7th queen, no other choice
- Undo 6th queen, no other choice
- * Undo 5th queen, try next

- Can't place the a queen in the 8th row!
- Undo 7th queen, no other choice
- Undo 6th queen, no other choice
- * Undo 5th queen, try next

Backtracking

- Keep trying to extend the next solution
- * If we cannot, undo previous move and try again
- Exhaustively search through all possibilities
- * ... but systematically!

Coding the solution

- * How do we represent the board?
- * n x n grid, number rows and columns from 0 to n-1
 - * board[i][j] == 1 indicates queen at (i,j)
 - * board[i][j] == 0 indicates no queen
- * We know there is only one queen per row
- Single list board of length n with entries 0 to n-1
 - * board[i] == j:queen in row i, column j, i.e. (i,j)

Updating the board

- Our 1-D and 2-D representations keep track of the queens
- Need an efficient way to compute which squares are free to place the next queen
- * n x n attack grid
 - * attack[i][j] == 1 if (i,j) is attacked by a queen
 - * attack[i][j] == 0 if (i, j) is currently available
- * How do we undo the effect of placing a queen?
 - Which attack[i][j] should be reset to 0?

Updating the board -1 = free $k_{in} 0 - n - i = free$

- * Queens are added row by row
- Number the queens 0 to n-1
- Record earliest queen that attacks each square
 - * attack[i][j] == k if (i,j) was first attacked by queen k
 - * attack[i][j] == -1 if (i,j) is free
- * Remove queen k reset attack[i][j] == k to -1
 - * All other squares still attacked by earlier queens

Updating the board

- attack requires n² space
 - * Each update only requires O(n) time
 - Only need to scan row, column, two diagonals
- Can we improve our representation to use only O(n) space?

A better representation

- How many queens attack row i?
- How many queens attack row j?
- An individual square (i,j) is attacked by upto 4 queens
 - Queen on row i and on column j
 - * One queen on each diagonal through (i,j)

Numbering diagonals

 Decreasing diagonal: column - row is invariant

Numbering diagonals

- Decreasing diagonal: column - row is invariant
- Increasing diagonal: column + row is invariant

Numbering diagonals

- Decreasing diagonal: column - row is invariant
- Increasing diagonal: column + row is invariant

Numbering diagonals

- Decreasing diagonal: column - row is invariant
- Increasing diagonal: column + row is invariant
- * (i,j) is attacked if
 - row i is attacked
 - column j is attacked
 - diagonal j-i is attacked
 - * diagonal j+i is attacked

O(n) representation

- * row[i] == 1 if row i is attacked, 0...N-1
- * col[i] == 1 if column i is attacked, 0..N-1
- * NWtoSE[i] == 1 if NW to SE diagonal i is attacked, -(N-1) to (N-1)
- SWtoNW[i] == 1 if SW to NE diagonal i is attacked, 0 to 2(N-1)

э.

Updating the board

```
* (i,j) is free if
  row[i]==col[j]==NWtoSE[j-i]==SWtoNE[j+i]==0
* Add queen at (i, j)
  board[i] = i
  (row[i].col[i].NWtoSE[i-i].SWtoNE[i+i]) =
                                       (1.1.1.1)
Remove queen at (i,j)
  board[i] = -1
  (row[i],col[j],NWtoSE[j-i],SWtoNE[j+i]) =
                                       (0, 0, 0, 0)
```

Implementation details

- Maintain board as nested dictionary
 - * board['queen'][i] = j : Queen located at (i,j)
 - * board['row'][i] = 1:Row i attacked
 - * board['col'][i] = 1:Column i attacked

 - board['swtone'][i] = 1: SWtoNE diagonal i
 attacked
 0 + 26-1)

```
Overall structure
def placequeen(i,board): # Trying row i
  for each c such that (i,c) is available:
    place queen at (i,c) and update board
    if i == n-1:
      return(True) # Last queen has been placed
    else:
      extendsoln = placequeen(i+1, board)
    if extendsoln:
      return(True) # This solution extends fully
    else:
      undo this move and update board
  else:
    return(False) # Row i failed
```

All solutions? def placequeen(i,board): # Try row i for each c such that (i,c) is available: place queen at (i,c) and update board if i == n-1: record solution # Last queen placed else: extendsoln = placequeen(i+1, board)undo this move and update board

Global variables

- Can we avoid passing board explicitly to each function?
- Can we have a single global copy of board that all functions can update?

Scope of name

 Scope of name is the portion of code where it is available to read and update

def $f(\pi)$:

- By default, in Python, scope is local to functions
 - But actually, only if we update the name inside the function

Two examples def f(): _ implicitly y =/ x = 7] "main" code Fine!

```
Two examples
                         def f():
def f():
                           y = 10 Em - undefind value
  V = X
  print(y)
                                    x become head in all of
                           x = 22
x = 7
                                                   10)
                         x = 7
f()
           Fine!
                         f()
                                     Error!
                                                    æ
                                        P
```


Global variables

- Actually, this applies only to immutable values
- Global names that point to mutable values can be updated within a function

X=[22]+×[1] def f(): y = x[0]print(y) x[0] = 22X = [7]f()Fine!

Global immutable values

- What if we want a global integer
 - Count the number of times a function is called
- Declare a name to be global

count =0 def f(): global countif countif = countifies def f(): global x V = Xprint(y)- Without the line x is implicitly global x = 22f()print(x)

Global immutable values

- What if we want a global integer
 - Count the number of times a function is called
- Declare a name to be global

def f():
 global x
 y = x
 print(y)
 x = 22
x = 7
f()
print(x)

22

Nest function definitions

- Can define local
 "helper" functions
- * g() and h() are only visible to f()
- Cannot be called directly from outside

def rn(a+1)def alobal + h(x)= q(x)= 22

Nest function definitions

- If we look up x, y inside g() or h() it will first look in f(), then outside
- Can also declare names global inside g(), h()
- Intermediate scope declaration: nonlocal

 See Python documentation

def f(): def q(a): return(a+1) def h(b): return(2*b) global x 22 y = q(x) + h(x)print(v) x = 22x = 7