Backtracking

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 24, 16 Nov 2023

Backtracking

* Systematically search for a solution
* Build the solution one step at a time
* If we hit a dead-end
* Undo the last step
* Try the next option

Eight queens

* Place 8 queens on a chess board so that none of them attack each other
* In chess, a queen can move any number of squares along a row column or diagonal

| | |
| :--- | :--- | :--- | :--- |
| | \square |

Eight queens

* Place 8 queens on a chess board so that none of them attack each other
* In chess, a queen can move any number of squares along a row column or diagonal

\square		
	\mathbf{a}	

Eight queens

* Place 8 queens on a chess board so that none of them attack each other
* In chess, a queen can move any number of squares along a row column or diagonal

Eight queens

* Place 8 queens on a chess board so that none of them attack each other
* In chess, a queen can move any number of squares along a row column or diagonal

N queens

* Place N queens on an $\mathrm{N} \times \mathrm{N}$ chess board so that
 none attack each other
* $\mathrm{N}=2,3$ impossible

N queens

* Place N queens on an $\mathrm{N} \times \mathrm{N}$ chess board so that none attack each other

a
 \square

* $\mathrm{N}=2$, 3 impossible

N queens

* Place N queens on an $\mathrm{N} \times \mathrm{N}$ chess board so that none attack each other
* $N=2,3$ impossible
* $N=4$ is possible

N queens

* Place N queens on an $\mathrm{N} \times \mathrm{N}$ chess board so that none attack each other
* $N=2,3$ impossible
* $N=4$ is possible
* And all bigger N as well

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column

8 queens

* Clearly, exactly one queen in each row, column
* Place queens row by row
* In each row, place a queen in the first available column
* Can't place a queen in the 8th row!

8 queens

* Can't place the a queen in the 8th row!

8 queens

* Can't place the a queen in the 8th row!
* Undo 7th queen, no other choice

8 queens

* Can't place the a queen in the 8th row!
* Undo 7th queen, no other choice
* Undo 6th queen, no other choice

8 queens

* Can't place the a queen in the 8th row!
* Undo 7th queen, no other choice
* Undo 6th queen, no other choice
* Undo 5th queen, try next

8 queens

* Can't place the a queen in the 8th row!
* Undo 7th queen, no other choice
* Undo 6th queen, no other choice
* Undo 5th queen, try next

Backtracking

* Keep trying to extend the next solution
* If we cannot, undo previous move and try again
* Exhaustively search through all possibilities
* ... but systematically!

Coding the solution

* How do we represent the board?
* $\mathrm{n} \times \mathrm{n}$ grid, number rows and columns from 0 to $\mathrm{n}-1$
* board $[i][j]==1$ indicates queen at (i, j)
* board $[i][j]==0$ indicates no queen
* We know there is only one queen per row
* Single list board of length n with entries 0 to $n-1$
* board $[i]==j$: queen in row i, column j, i.e. (i, j)
return(True) \# Last queen has been placed else:
extendsoln $=$ placequeen($i+1$, board $)$ if extendsoln:
return(True) \# This solution extends fully else:
undo this move and update board
else:
return($=a l s e)$ \# Row i failed

Updating the board

* Our 1-D and 2-D representations keep track of the queens
* Need an efficient way to compute which squares are free to place the next queen
* $\mathrm{n} \times \mathrm{n}$ attack grid
* attack[i][j]==1 if (i, j) is attacked by a queen
* $\operatorname{attack}[i][j]==0$ if (i, j) is currently available
* How do we undo the effect of placing a queen?
* Which attack[i][j] should be reset to 0?

Updating the board $-1=$ fere

* Queens are added row by row $\operatorname{kin}_{\mathrm{O}}^{\mathrm{O}} \mathrm{n}-1=$ first
* Number the queens 0 to $\mathrm{n}-1$
* Record earliest queen that attacks each square
* attack [i][j] == k if (i, j) was first attacked by queen k
* $\operatorname{attack}[i][j]=-1$ if (i, j) is free
* Remove queen k - reset attack[i][j] == k to -1
* All other squares still attacked by earlier queens

Updating the board

* attack requires n^{2} space
* Each update only requires O(n) time
* Only need to scan row, column, two diagonals
* Can we improve our representation to use only $\mathrm{O}(\mathrm{n})$ space?

A better representation

* How many queens attack row i?
* How many queens attack row j?
* An individual square (i, j) is attacked by upto 4 queens
* Queen on row i and on column j
* One queen on each diagonal through (i, j)

Numbering diagonals

* Decreasing diagonal: column - row is invariant

Numbering diagonals

$2 n-1$

* Decreasing diagonal: column - row is invariant

Numbering diagonals

* Decreasing diagonal: column - row is invariant
* Increasing diagonal: column + row is invariant

Numbering diagonals

* Decreasing diagonal: column - row is invariant
* Increasing diagonal: column + row is invariant
$n \times n$ board 0 (n)

Numbering diagonals

* Decreasing diagonal: column - row is invariant
* Increasing diagonal: column + row is invariant
* (i,j) is attacked if
* row i is attacked
* column j is attacked
* diagonal j-i is attacked

	1	2	3	45	56	7
0						
1						
2						
3						
4						
5				$r=12$		
6						
7						

* diagonal $j+i$ is attacked

$O(n)$ representation

* $\operatorname{row}[i]==1$ if row i is attacked, 0 . . $\mathrm{N}-1$
* $\operatorname{col}[\mathrm{i}]=1$ if column i is attacked, 0 . . $\mathrm{N}-1$
* NWtoSE[i] == 1 if NW to SE diagonal i is attacked, $-(\mathrm{N}-1)$ to ($\mathrm{N}-1$)
* SWtoNW[i] == 1 if SW to NE diagonal i is attacked, 0 to $2(\mathrm{~N}-1)$

Updating the board

* (i, j) is free if $\operatorname{row}[i]==c o l[j]==N W t o S E[j-i]==S W t o N E[j+i]==0$
* Add queen at (i, j) board[i] = j
(row[i],col[j],NWtoSE[j-i],SWtoNE[j+i]) =

$$
(1,1,1,1)
$$

* Remove queen at (i, j)
board[i] = -1 $(\operatorname{row}[i], \operatorname{col}[j], N W t o S E[j-i], S W t o N E[j+i])=$

$$
(0,0,0,0)
$$

Implementation details

* Maintain board as nested dictionary
* board['queen'][i] = j : Queen located at (i, j)
* board['row'][i] = 1: Row i attacked
* board['col'][i] = 1 : Column i attacked
* board['nwtose'][i] = 1 : NWtoSW diagonal i attacked
$1-(n-1)$ to $n-1$
* board['swtone'][i] = 1:SWtoNE diagonal i attacked

0 to $2(-1)$

Overall structure

```
def placequeen(i,board): # Trying row i
```

 for each c such that (i,c) is available:
 place queen at (i,c) and update board
 if \(\mathrm{i}=\mathrm{n}\)-1:
 return(True) \# Last queen has been placed
 else:
 extendsoln = placequeen(i+1, board)
 if extendsoln:
 return(True) \# This solution extends fully
 else:
 undo this move and update board
 else:
 return(False) \# Row i failed

All solutions?

def placequeen(i,board): \# Try row i
for each c such that (i, c) is available:
place queen at (i, c) and update board
if $\mathrm{i}==\mathrm{n}-1$:
record solution \# Last queen placed else:
extendsoln = placequeen($i+1$, board) undo this move and update board

Global variables

* Can we avoid passing board explicitly to each function?
* Can we have a single global copy of board that all functions can update?

Scope of name

* Scope of name is the portion of code where it is available to read and update
* By default, in Python, scope is local to functions
* But actually, only if we update the name inside the function

Two examples

$$
\begin{aligned}
& \text { def } f() \text {) } \\
& y=\text { impliathy } \\
& \text { prig } n t(y) \\
& x=7 y^{\prime \prime} \text { glibain" code } \\
& f() \quad \text { Fine! }
\end{aligned}
$$

Two examples

$$
\begin{aligned}
& \operatorname{def} f(): \\
& y=x \\
& \quad \operatorname{print}(y) \\
& x=7 \\
& f()
\end{aligned}
$$

def $f()$:
$y=0$ Error - undefined value
print (y)
$x=22 \times$ becomes bed
$x=7$
f()

Fine!

Two examples

$$
\begin{aligned}
& \operatorname{def} f() \text { : } \\
& y=x \\
& \text { print }(y) \\
& x=7 \\
& f() \\
& 7
\end{aligned}
$$

Fine!

* If x is not found in $f()$, Python looks at enclosing function for global x
* If x is updated in $f()$, it becomes a local name!

Global variables

$x=[22]+x[1$,

* Actually, this applies only to immutable values
* Global names that point to mutable values can be updated within a function

$$
\begin{aligned}
& \text { def } f() \text { : } \\
& y=x[0] \\
& \text { print }(y) \\
& x[0]=22 \\
& x=[7] \\
& f()
\end{aligned}
$$

Fine!

Global immutable values

count $=0$ def ($)$:
glow counts

* What if we want a global integer
* Count the number of times a function is called
* Declare a name to be global

```
def f():
    global x
        print(y)
```


Global immutable values

* What if we want a global integer
* Count the number of times a function is called
* Declare a name to be global

$$
\begin{aligned}
& \text { def f(): } \\
& \quad \text { global } x \\
& y=x \\
& \text { print }(y) \\
& x=22 \\
& x=7 \\
& f() \\
& \text { print }(x) \quad \mathbf{2 2}
\end{aligned}
$$

Nest function definitions

* Can define local "helper" functions
* g() and h() are only visible to f()
* Cannot be called directly from outside

$\operatorname{def} f()$
$\operatorname{def} g(a)$:

$$
y=g(x)+h(x)^{n} \underbrace{n}_{x \text { chages }}
$$

global x
$x=x+a \approx$ local to g
$h(b)$

$$
d y h(b)
$$

glosal $x \quad 2 k b+x$

Nest function definitions

* If we look up x, y inside g() or $h()$ it will first look in f(), then outside
* Can also declare names global inside g(), h()
* Intermediate scope declaration: nonlocal
* See Python documentation

```
def f():
def g(a):
                return(a+1)
def h(b):
        return(2*b)
```


