Analysis of algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 14, 10 Oct 2023

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

- Every SIM card needs to be linked to an Aadhaar card
- Validate Aadhaar number for each SIM card

▶ < ⊒ ▶

э

- Every SIM card needs to be linked to an Aadhaar card
- Validate Aadhaar number for each SIM card
- Simple nested loop

for each SIM card S:
 for each Aadhaar number A:
 check if Aadhaar number in S
 matches A

- Every SIM card needs to be linked to an Aadhaar card
- Validate Aadhaar number for each SIM card
- Simple nested loop
- How long will this take?
 - M SIM cards, N Aadhaar cards
 - Nested loops iterate M · N times

for each SIM card S: M for each Aadhaar number A: N check if Aadhaar number in S matches A

> N≈ pop 3 ludia >100cr >109 M≈ psp 3 ludia

- Every SIM card needs to be linked to an Aadhaar card
- Validate Aadhaar number for each SIM card
- Simple nested loop
- How long will this take?
 - M SIM cards, N Aadhaar cards
 - Nested loops iterate M · N times
- What are M and N
 - Almost everyone in India has an Aadhaar card: N > 10⁹
 - Number of SIM cards registered is similar: M > 10⁹

```
for each SIM card S:
  for each Aadhaar number A:
    check if Aadhaar number in S
    matches A
```

M-N - 109 x 109

PDSP Lecture 14

2/5

- Assume $M = N = 10^9$
- Nested loops execute 10¹⁸ times

for each SIM card S:
 for each Aadhaar number A:
 check if Aadhaar number in S
 matches A

- Assume $M = N = 10^9$
- Nested loops execute 10¹⁸ times
- We calculated that Python can perform 10⁷ operations in a second
- This will take at least 10¹¹ seconds

```
for each SIM card S:
  for each Aadhaar number A:
    check if Aadhaar number in S
    matches A
```

- Assume $M = N = 10^9$
- Nested loops execute 10¹⁸ times
- We calculated that Python can perform 10⁷ operations in a second
- This will take at least 10¹¹ seconds
 10¹¹/60 ≈ 1.67 × 10⁹ minutes

for each SIM card S:
 for each Aadhaar number A:
 check if Aadhaar number in S
 matches A

- Assume $M = N = 10^9$
- Nested loops execute 10¹⁸ times
- We calculated that Python can perform 10⁷ operations in a second
- This will take at least 10¹¹ seconds
 - $10^{11}/60 \approx 1.67 \times 10^9$ minutes
 - $\blacksquare~(1.67\times 10^9)/60\approx 2.8\times 10^7~hours$

```
for each SIM card S:
  for each Aadhaar number A:
    check if Aadhaar number in S
    matches A
```

- Assume $M = N = 10^9$
- Nested loops execute 10¹⁸ times
- We calculated that Python can perform 10⁷ operations in a second
- This will take at least 10¹¹ seconds
 - $10^{11}/60 \approx 1.67 \times 10^9$ minutes
 - $(1.67 \times 10^9)/60 \approx 2.8 \times 10^7$ hours
 - $\blacksquare~(2.8\times10^7)/24\approx1.17\times10^6~days$

```
for each SIM card S:
  for each Aadhaar number A:
    check if Aadhaar number in S
    matches A
```

3/5

- Assume $M = N = 10^9$
- Nested loops execute 10¹⁸ times
- We calculated that Python can perform 10⁷ operations in a second
- This will take at least 10¹¹ seconds
 - $10^{11}/60 \approx 1.67 \times 10^9$ minutes
 - $(1.67 \times 10^9)/60 \approx 2.8 \times 10^7$ hours
 - $\blacksquare~(2.8\times10^7)/24\approx1.17\times10^6~days$
 - $(1.17 \times 10^6)/365 \approx 3200$ years!

```
for each SIM card S:
  for each Aadhaar number A:
    check if Aadhaar number in S
    matches A
```

- Assume $M = N = 10^9$
- Nested loops execute 10¹⁸ times
- We calculated that Python can perform 10⁷ operations in a second
- This will take at least 10¹¹ seconds
 - $10^{11}/60 \approx 1.67 \times 10^9$ minutes
 - $(1.67\times 10^9)/60\approx 2.8\times 10^7$ hours
 - $(2.8 \times 10^7)/24 \approx 1.17 \times 10^6$ days
 - $(1.17 \times 10^6)/365 \approx 3200$ years!
- How can we fix this?

```
for each SIM card S:
  for each Aadhaar number A:
    check if Aadhaar number in S
    matches A
```

You propose a date (day and month)

■ I answer, Yes, Earlier, Later

Later 15 Sep Earlier Nov 0 Ocl-5 Carlin Earlier Oct-0 30 Seg later 3 Oct later K sco 10 Nor 31 Dec 704

Jan

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- You propose a date (day and month)
- I answer, Yes, Earlier, Later
- Suppose my birthday is 12 April

- You propose a date (day and month)
- I answer, Yes, Earlier, Later
- Suppose my birthday is 12 April
- A possible sequence of questions
 - September 12? Earlier
 - February 23? Later
 - July 2? Earlier
 -

- You propose a date (day and month)
- I answer, Yes, Earlier, Later
- Suppose my birthday is 12 April
- A possible sequence of questions
 - September 12? Earlier
 - February 23? Later
 - July 2? Earlier
 - • •
- What is the best strategy?

- You propose a date (day and month)
- I answer, Yes, Earlier, Later
- Suppose my birthday is 12 April
- A possible sequence of questions
 - September 12? Earlier
 - February 23? Later
 - July 2? Earlier
 - • •
- What is the best strategy?

Interval of possibilities

- You propose a date (day and month)
- I answer, Yes, Earlier, Later
- Suppose my birthday is 12 April
- A possible sequence of questions
 - September 12? Earlier
 - February 23? Later
 - July 2? Earlier
 - • •
- What is the best strategy?

- Interval of possibilities
- Query midpoint halves the interval
 - June 30? Earlier
 - March 31? Later
 - May 15? Earlier
 - April 22? Earlier
 - April 11? Later
 - April 16? Earlier
 - April 13? Earlier
 - April 12? Yes

PDSP Lecture 14

N 4 E N

- You propose a date (day and month)
- I answer, Yes, Earlier, Later
- Suppose my birthday is 12 April
- A possible sequence of questions
 - September 12? Earlier
 - February 23? Later
 - July 2? Earlier
 - • •
- What is the best strategy?

- Interval of possibilities
- Query midpoint halves the interval
 - June 30? Earlier
 - March 31? Later
 - May 15? Earlier
 - April 22? Earlier
 - April 11? Later
 - April 16? Earlier
 - April 13? Earlier
 - April 12? Yes

Under 10 guestions

■ Interval shrinks from $365 \rightarrow 182 \rightarrow 91 \rightarrow 45 \rightarrow 22 \rightarrow 11 \rightarrow 5 \rightarrow 2 \rightarrow 1$

- Assume Aadhaar details are sorted by Aadhaar number
- Use the halving strategy to check each SIM card

- Assume Aadhaar details are sorted by Aadhaar number
- Use the halving strategy to check each SIM card
- Halving 10 times reduces the interval by a factor of 1000, because 2¹⁰ = 1024

```
for each SIM card S:
    probe sorted Aadhaar list to
    find a match with S
```

 $2^{?} = 1024$ 7 = 10 $10^{?} = 10g_{2}^{10}24$

- Assume Aadhaar details are sorted by Aadhaar number
- Use the halving strategy to check each SIM card
- Halving 10 times reduces the interval by a factor of 1000, because 2¹⁰ = 1024
- After 10 queries, interval shrinks to 10⁶
- After 20 queries, interval shrinks to 10³
- After 30 queries, interval shrinks to 1

```
for each SIM card S:
    probe sorted Aadhaar list to
    find a match with S
```

PDSP Lecture 14

5/5

- Assume Aadhaar details are sorted by Aadhaar number
- Use the halving strategy to check each SIM card
- Halving 10 times reduces the interval by a factor of 1000, because 2¹⁰ = 1024
- After 10 queries, interval shrinks to 10⁶
- After 20 queries, interval shrinks to 10^3
- After 30 queries, interval shrinks to 1
- Total time $\approx 10^9 \times 30$


```
for each SIM card S:
    probe sorted Aadhaar list to
    find a match with S
```

- Assume Aadhaar details are sorted by Aadhaar number
- Use the halving strategy to check each SIM card
- Halving 10 times reduces the interval by a factor of 1000, because 2¹⁰ = 1024
- After 10 queries, interval shrinks to 10⁶
- After 20 queries, interval shrinks to 10³
- After 30 queries, interval shrinks to 1
- Total time $\approx 10^9 \times 30$

```
for each SIM card S:
    probe sorted Aadhaar list to
    find a match with S
```

- 3000 seconds, or 50 minutes
- From 3200 years to 50 minutes!

PDSP Lecture 14

5/5

- Assume Aadhaar details are sorted by Aadhaar number
- Use the halving strategy to check each SIM card
- Halving 10 times reduces the interval by a factor of 1000, because 2¹⁰ = 1024
- After 10 queries, interval shrinks to 10⁶
- After 20 queries, interval shrinks to 10³
- After 30 queries, interval shrinks to 1
- Total time $\approx 10^9 \times 30$

```
for each SIM card S:
    probe sorted Aadhaar list to
    find a match with S
```

- 3000 seconds, or 50 minutes
- From 3200 years to 50 minutes!
- Of course, to achieve this we have to first sort the Aadhaar cards
- Arranging the data results in a much more efficient solution
- Both algorithms and data structures matter

Comparing orders of magnitude

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 14, 10 Oct 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Orders of magnitude

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors

• $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$

What is the size of
$$10^9$$
?
10 digits - not 10^9 digits
 $+\frac{62}{108}$ + $\frac{162}{508}$
Anthmetric - Input Size = # digits

Which inputs of size n?

Sorting lupit is already sorted

Input is reverse sorted

Many "random" permitations

Which me to evaluate ?

Sophishcuted - average

Orders of magnitude

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors

- N = 5000 5001 5002 ART 5001
- f(n) = n³ eventually grows faster than g(n) = 5000 n²
 STOO³ STOO³
 How do we compare functions with respect to orders of magnitude?

Upper bounds

 f(x) is said to be O(g(x)) if we can find constants c and x₀ such that c ⋅ g(x) is an upper bound for f(x) for x beyond x₀

→ < ∃→

э

Upper bounds

- f(x) is said to be O(g(x)) if we can find constants c and x₀ such that c ⋅ g(x) is an upper bound for f(x) for x beyond x₀
- $f(x) \leq cg(x)$ for every $x \geq x_0$

Upper bounds

- f(x) is said to be O(g(x)) if we can find constants c and x_0 such that $c \cdot g(x)$ is an upper bound for f(x) for x beyond x_0
- $f(x) \leq cg(x)$ for every $x \geq x_0$
- Graphs of typical functions we have seen
- f is O(1)4501

Examples

■ 100n + 5 is $O(n^2)$ ■ $100n + 5 \le 100n + n = 101n$, for $n \ge 5$

- $101n \le 101n^2$
- Choose $n_0 = 5$, c = 101

< E

Examples

■ 100n + 5 is $O(n^2)$

- $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
- $101n \le 101n^2$
- Choose $n_0 = 5$, c = 101
- Alternatively
 - $100n + 5 \le 100n + 5n = 105n$, for $n \ge 1$
 - $105n \le 105n^2$
 - Choose $n_0 = 1$, c = 105

Examples

■ 100n + 5 is $O(n^2)$

- $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
- $101n \le 101n^2$
- Choose $n_0 = 5$, c = 101
- Alternatively
 - $100n + 5 \le 100n + 5n = 105n$, for $n \ge 1$
 - $105n \le 105n^2$
 - Choose $n_0 = 1$, c = 105
- Choice of n_0 , c not unique

Examples . . .

- $100n^2 + 20n + 5$ is $O(n^2)$
 - $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
 - $100n^2 + 20n + 5 \le 125n^2$, for $n \ge 1$
 - Choose $n_0 = 1$, c = 125

- $100n^2 + 20n + 5$ is $O(n^2)$
 - $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
 - $100n^2 + 20n + 5 \le 125n^2$, for $n \ge 1$
 - Choose $n_0 = 1$, c = 125
- What matters is the highest term
 - 20n + 5 is dominated by $100n^2$

5/9

Examples . . .

■ $100n^2 + 20n + 5$ is $O(n^2)$

- $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
- $100n^2 + 20n + 5 \le 125n^2$, for $n \ge 1$
- Choose $n_0 = 1$, c = 125
- What matters is the highest term
 - 20n + 5 is dominated by $100n^2$
- n^3 is not $O(n^2)$
 - No matter what c we choose, cn² will be dominated by n³ for n ≥ c

- Algorithm has two phases
 - Phase 1 takes time O(g₁(n)) Sort Ardhan Cards
 Phase 2 takes time O(g₂(n)) Scan each SiM cand

What can we say about the algorithm as a whole?

- Algorithm has two phases
 - Phase 1 takes time $O(g_1(n))$
 - Phase 2 takes time $O(g_2(n))$

What can we say about the algorithm as a whole?

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

- Algorithm has two phases
 - Phase 1 takes time $O(g_1(n))$
 - Phase 2 takes time $O(g_2(n))$

What can we say about the algorithm as a whole?

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

f, 150(9,) f, 150

Proof

• $f_1(n) \le c_1g_1(n)$ for $n > n_1$, $f_2(n) \le c_2g_2(n)$ for $n > n_2$

- Algorithm has two phases
 - Phase 1 takes time $O(g_1(n))$
 - Phase 2 takes time $O(g_2(n))$

What can we say about the algorithm as a whole?

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof
 - $f_1(n) \le c_1g_1(n)$ for $n > n_1$, $f_2(n) \le c_2g_2(n)$ for $n > n_2$
 - Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$

- Algorithm has two phases
 - Phase 1 takes time $O(g_1(n))$
 - Phase 2 takes time $O(g_2(n))$

What can we say about the algorithm as a whole?

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1g_1(n)$ for $n > n_1$, $f_2(n) \le c_2g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n) \le c_1g_1(n) + c_2g_2(n)$

- Algorithm has two phases
 - Phase 1 takes time $O(g_1(n))$
 - Phase 2 takes time $O(g_2(n))$

What can we say about the algorithm as a whole?

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1g_1(n)$ for $n > n_1$, $f_2(n) \le c_2g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n) \le c_1g_1(n) + c_2g_2(n) \le c_3(g_1(n) + g_2(n))$

12

4

32

2- max (17,32)

- Algorithm has two phases
 - Phase 1 takes time $O(g_1(n))$
 - Phase 2 takes time $O(g_2(n))$

What can we say about the algorithm as a whole?

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1g_1(n)$ for $n > n_1$, $f_2(n) \le c_2g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n) \le c_1g_1(n) + c_2g_2(n) \le c_3(g_1(n) + g_2(n))$ $\le 2c_3(\max(g_1(n), g_2(n)))$

- Algorithm has two phases
 - Phase 1 takes time $O(g_1(n))$
 - Phase 2 takes time $O(g_2(n))$

What can we say about the algorithm as a whole?

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Algorithm as a whole takes time max(O(g₁(n), g₂(n)))
- Least efficient phase is the upper bound for the whole algorithm

Lower bounds

- f(x) is said to be Ω(g(x)) if we can find constants c and x₀ such that cg(x) is a lower bound for f(x) for x beyond x₀
 - $f(x) \ge cg(x)$ for every $x \ge x_0$

< □ > < 向

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

э

Lower bounds

- f(x) is said to be Ω(g(x)) if we can find constants c and x₀ such that cg(x) is a lower bound for f(x) for x beyond x₀
 - $f(x) \ge cg(x)$ for every $x \ge x_0$
- n^3 is $\Omega(n^2)$
 - $n^3 > n^2$ for all *n*, so $n_0 = 1$, c = 1

▶ < ⊒ ▶

э

Lower bounds

- f(x) is said to be Ω(g(x)) if we can find constants c and x₀ such that cg(x) is a lower bound for f(x) for x beyond x₀
 - $f(x) \ge cg(x)$ for every $x \ge x_0$
- n^3 is $\Omega(n^2)$
 - $n^3 > n^2$ for all *n*, so $n_0 = 1$, c = 1
- Typically we establish lower bounds for a problem rather than an individual algorithm
 - If we sort a list by comparing elements and swapping them, we require $\Omega(n \log n)$ comparisons
 - This is independent of the algorithm we use for sorting

▶ < ∃ ▶</p>

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

A B M A B M

э

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

■ n(n-1)/2 is $\Theta(n^2)$

< □ > < 向

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

■ n(n-1)/2 is $\Theta(n^2)$

Upper bound

■
$$n(n-1)/2 = n^2/2 - n/2 \le n^2/2$$
 for all $n \ge 0$

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

■ n(n-1)/2 is $\Theta(n^2)$

- Upper bound
 - $n(n-1)/2 = n^2/2 n/2 \le n^2/2$ for all $n \ge 0$
- Lower bound

■
$$n(n-1)/2 = n^2/2 - n/2 \ge n^2/2 - (n/2 \times n/2) \ge n^2/4$$
 for $n \ge 2$

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

■ n(n-1)/2 is $\Theta(n^2)$

- Upper bound
 - $n(n-1)/2 = n^2/2 n/2 \le n^2/2$ for all $n \ge 0$
- Lower bound

■
$$n(n-1)/2 = n^2/2 - n/2 \ge n^2/2 - (n/2 \times n/2) \ge n^2/4$$
 for $n \ge 2$

• Choose $n_0 = 2$, $c_1 = 1/4$, $c_2 = 1/2$

A B < A B </p>

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time

▶ < ∃ ▶</p>

э

Summary

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time
- f(n) is $\Omega(g(n))$ means g(n) is a lower bound for f(n)
 - Typically used for a problem as a whole, rather than an individual algorihm

Summary

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time
- f(n) is $\Omega(g(n))$ means g(n) is a lower bound for f(n)
 - Typically used for a problem as a whole, rather than an individual algorihm
- f(n) is $\Theta(g(n))$: matching upper and lower bounds
 - We have found an optimal algorithm for a problem