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A real world problem

m Every SIM card needs to be linked to
an Aadhaar card

m Validate Aadhaar number for each SIM
card
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A real world problem

m Every SIM card needs to be linked to
an Aadhaar card for each SIM card S:

m Validate Aadhaar number for each SIM for each Aadhaar number A:
card check if Aadhaar number in S

matches A
m Simple nested loop
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A real world problem

m Every SIM card needs to be linked to
an Aadhaar card for each SIM card S: M
for each Aadhaar number A: ”
check if Aadhaar number in S

m Validate Aadhaar number for each SIM

card
matches A
m Simple nested loop

m How long will this take?

m M SIM cards, N Aadhaar cards N ad P'P IL !“J“\ > ‘Wq‘

m Nested loops iterate M - N times > qu
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A real world problem

m Every SIM card needs to be linked to

an Aadhaar card for each SIM card S:
m Validate Aadhaar number for each SIM for each Aadhaar number A:
card check if Aadhaar number in S
matches A

m Simple nested loop

m How long will this take?

m M SIM cards, N Aadhaar cards ﬁ
m Nested loops iterate M - N times M -N = '0 S

m What are M and N

m Almost everyone in India has an
Aadhaar card: N > 10°

m Number of SIM cards registered is
similar: M > 10°
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A real world problem

m Assume M = N = 10°

for each SIM card S:
for each Aadhaar number A:

m Nested loops execute 108 times

check if Aadhaar number in S
matches A
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A real world problem

m Assume M = N = 10°

m Nested loops execute 108 times for each SIM card S:
for each Aadhaar number A:

check if Aadhaar number in S
matches A

m We calculated that Python can perform
107 operations in a second

m This will take at least 10! seconds
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A real world problem

m Assume M = N = 10°

m Nested loops execute 108 times for each SIM card S:
for each Aadhaar number A:

check if Aadhaar number in S
matches A

m We calculated that Python can perform
107 operations in a second

m This will take at least 10! seconds

m 10" /60 ~ 1.67 x 10° minutes
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A real world problem

m Assume M = N = 10°

m Nested loops execute 108 times for each SIM card S:
for each Aadhaar number A:

check if Aadhaar number in S
matches A

m We calculated that Python can perform
107 operations in a second

m This will take at least 10! seconds
m 10" /60 ~ 1.67 x 10° minutes
m (1.67 x 10%)/60 ~ 2.8 x 10" hours
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A real world problem

m Assume M = N = 10°

m Nested loops execute 108 times for each SIM card S:
for each Aadhaar number A:

check if Aadhaar number in S
matches A

m We calculated that Python can perform
107 operations in a second
m This will take at least 10'! seconds
m 10" /60 ~ 1.67 x 10° minutes
m (1.67 x 10%)/60 ~ 2.8 x 10" hours
m (2.8 x 107)/24 ~ 1.17 x 10° days
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A real world problem

m Assume M = N = 10°

m Nested loops execute 108 times for each SIM card S:
for each Aadhaar number A:

check if Aadhaar number in S
matches A

m We calculated that Python can perform
107 operations in a second
m This will take at least 10*! seconds
m 10" /60 ~ 1.67 x 10° minutes
m (1.67 x 10%)/60 ~ 2.8 x 10" hours
m (2.8 x 107)/24 ~ 1.17 x 10° days
m (1.17 x 10°)/365 ~ 3200 years!
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A real world problem

m Assume M = N = 10°

for each SIM card S:

for each Aadhaar number A:
m We calculated that Python can perform check if Aadhaar number in S

107 operations in a second matches A

m Nested loops execute 108 times

m This will take at least 10*! seconds
10 /60 ~ 1.67 x 10° minutes
(1.67 x 10%)/60 ~ 2.8 x 10" hours
(2.8 x 107)/24 ~ 1.17 x 10° days
(1.17 x 10°)/365 ~2 3200 years!

m How can we fix this?
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Guess my daughter’s birthday

m You propose a date (day and month)
m | answer, Yes, Earlier, Later

m Suppose my birthday is 12 April

Madhavan Mukund Analysis of algorithms PDSP Lecture 14 4/5



Guess my daughter’s birthday

m You propose a date (day and month)
m | answer, Yes, Earlier, Later
m Suppose my birthday is 12 April

m A possible sequence of questions
m September 127 Earlier
m February 237 Later
m July 27 Earlier
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Guess my daughter’s birthday

m You propose a date (day and month)
m | answer, Yes, Earlier, Later
m Suppose my birthday is 12 April

m A possible sequence of questions
m September 127 Earlier
m February 237 Later
m July 27 Earlier

m What is the best strategy?
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Guess my daughter’s birthday

m You propose a date (day and month) m Interval of possibilities
m | answer, Yes, Earlier, Later
m Suppose my birthday is 12 April

m A possible sequence of questions
m September 127 Earlier
m February 237 Later
m July 27 Earlier

m What is the best strategy?
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Guess my daughter’s birthday

m You propose a date (day and month) m Interval of possibilities
m | answer, Yes, Earlier, Later m Query midpoint — halves the interval
. . ? i
m Suppose my birthday |s m June 307 Earlier
m March 317 Later
m A possible sequence of questions m May 157 Earlier
m September 127 Earlier m April 227 Earlier
m February 237 Later m April 117 Later
a0 .
u July 27 Earlier m April 167 Earlier
m April 137 Earlier
. m April 127 Yes

m What is the best strategy?
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Guess my daughter’s birthday

m You propose a date (day and month)

m | answer, Yes, Earlier, Later
m Suppose my birthday is 12 April

m A possible sequence of questions
m September 127 Earlier
m February 237 Later
m July 27 Earlier

m What is the best strategy?

Madhavan Mukund

m Interval of possibilities

m Query midpoint — halves the interval

June 307 Earlier
March 317 Later
May 157 Earlier
April 227 Earlier
April 117 Later

April 167 Earlier
April 137 Earlier
April 127 Yes

1

m Interval shrinks from 365 — 182 —

91 445 —-22 —-11—-5—-2—>1
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m Under 10 questions

Analysis of algorithms

PDSP Lecture 14 4/5



A real world problem

m Assume Aadhaar details are sorted by for each SIM card S:

Aadhaar number W Radhaar 1@
m Use the halving strategy to check each find a match with 3

SIM card
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A real world problem

m Assume Aadhaar details are sorted by

for each SIM card S:
Aadhaar number

probe sorted Aadhaar list to

m Use the halving strategy to check each find a match with S
SIM card
. . . 9
m Halving 10 times reduces the interval by .
a factor of 1000, because 20 = 1024 2- = ln“

\0" = l"jz ozl
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A real world problem

Assume Aadhaar details are sorted by
Aadhaar number

for each SIM card S:
probe sorted Aadhaar list to

Use the halving strategy to check each find a match with 3
SIM card

Halving 10 times reduces the interval by
a factor of 1000, because 210 = 1024

After 10 queries, interval shrinks to 10°
After 20 queries, interval shrinks to 103

After 30 queries, interval shrinks to 1
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A real world problem

m Assume Aadhaar details are sorted by
Aadhaar number

for each SIM card S:
probe sorted Aadhaar list to

m Use the halving strategy to check each find a match with 3
SIM card

m Halving 10 times reduces the interval by
a factor of 1000, because 210 = 1024

m After 10 queries, interval shrinks to 10°
m After 20 queries, interval shrinks to 10°
m After 30 queries, interval shrinks to 1

m Total time ~ 10° x 30

M x logeN

Madhavan Mukund Analysis of algorithms PDSP Lecture 14 5/5



A real world problem

m Assume Aadhaar details are sorted by
Aadhaar number

for each SIM card S:
probe sorted Aadhaar list to

m Use the halving strategy to check each find a match with 3

SIM card
m 3000 seconds, or 50 minutes

m Halving 10 times reduces the interval by ]
3 factor of 1000 because 210 — 1024 m From 3200 years to 50 minutes!

m After 10 queries, interval shrinks to 10°
m After 20 queries, interval shrinks to 10°
m After 30 queries, interval shrinks to 1

m Total time ~ 10° x 30
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A real world problem

m Assume Aadhaar details are sorted by
Aadhaar number

for each SIM card S:
probe sorted Aadhaar list to

m Use the halving strategy to check each find a match with S

SIM card .
m 3000 seconds, or 50 minutes

m Halving 10 times reduces the interval by ]
3 factor of 1000 because 210 — 1024 m From 3200 years to 50 minutes!

m After 10 queries, interval shrinks to 10° " O_f course, to achieve this we have to
first sort the Aadhaar cards

m After 20 queries, interval shrinks to 103 _ )
m Arranging the data results in a much

m After 30 queries, interval shrinks to 1 more efficient solution
m Total time ~ 10° x 30 m Both algorithms and data structures
matter
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Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

m f(n) = n® eventually grows faster than g(n) = 5000n?

EA) e b osdve o plem | wpk sz n
et lkforny [gums — lings
U\L!JUS \t’ o nmder 8 ‘mm?

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 14 2/9



bbelst = _ — twn thmgle 4,2, 0

\c fkdnl\w == [\,r\_) " ’ﬂu W;,WL b N

-
———D

N W ‘vivwb

Aws aljwi{'l\“ A—jramd, kwtld, Cexera
x 2002
Frse P’l war alr bv»
1
promaliy






What & D S22 l\ |0q?

b dgts —wix 07 dgh
b2 j62
k4t ¥ 3kt
109 502

Mhomdne — \v\ka sie = H# 4«"6%5



w ‘
“h S
‘\

Qor
ot
v\f«k
°a.o wa.wgw:‘:'-A

Wdu me fo W‘ Mc-“

oK |

91) ehed ~ MWaa? 0 (
‘



’NMZ" o ided, Luk Vm)\ull-] wetalle b coleulede
|w.\u-ol - rumuw\.()'.c, Lhnale - * wevsh tne’

Werst cere Imf\m)q

Mawﬁlqwm

How does twr "™ wihe n’ ”Asy.wxc:‘



Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors Nn= gm o
00\
m f(n)=n3 evenéually grows faster than g(n) = 5000n° 2 S
Lvroo STOO SOk YV9)

m How do we compare functions with respect to orders of magnitude?
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Upper bounds

m f(x) is said to be O(g(x)) if we can find
constants ¢ and xp such that ¢ - g(x) is an
upper bound for f(x) for x beyond xp
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Upper bounds

m f(x) is said to be O(g(x)) if we can find
constants ¢ and xp such that ¢ - g(x) is an
upper bound for f(x) for x beyond xp

m f(x) < cg(x) for every x > xp
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Upper bounds

m f(x) is said to be O(g(x)) if we can find 100 ”!?"i”z LS
constants ¢ and xp such that ¢ - g(x) is an ah ] Pl
bound for f(x) for x beyond x § o
upper 0 i 1' Muwd. d,“{' 7
m f(x) < cg(x) for every x > xg 0 :,I ’_\ »//
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m 100n +5is O(n?)
m 100n +m 101n, forn > 5
m 101n < 101n?
m Choose ng =5, ¢ = 101
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m 100n + 5 is O(n?)
m 100n+5<100n+n=101n, forn>5
m 101n < 101n?
m Choose ng =5, ¢ = 101

m Alternatively
m 100n+5 <100n+ 5n =105n, for n >1
m 1050 < 105n?
m Choose ng =1, ¢ =105
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m 100n + 5 is O(n?)
m 100n+5<100n+n=101n, forn>5
m 101n < 101n?
m Choose ng =5, ¢ = 101

m Alternatively
m 100n+5 <100n+ 5n =105n, for n >1
m 1050 < 105n?
m Choose ng =1, ¢ =105

m Choice of ng, ¢ not unique
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m 100n? +20n + 5 is O(n?)

m 10012 +20n + 5 < 10002 + 20n? + 5n?, for
n>1

m 100n% +20n+5 < 125n2, for n > 1
m Choose np =1, c =125
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m 100n? +20n + 5 is O(n?)

m 10012 +20n + 5 < 10002 + 20n? + 5n?, for
n>1

m 100n% +20n+5 < 125n2, for n > 1
m Choose np =1, c =125

m What matters is the highest term
m 20n + 5 is dominated by 100n?
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m 100n? +20n + 5 is O(n?)

m 10012 +20n + 5 < 10002 + 20n? + 5n?, for
n>1

m 100n% +20n+5 < 125n2, for n > 1
m Choose np =1, c =125

m What matters is the highest term

m 20n + 5 is dominated by 100n?

m n%is not O(n?)

m No matter what ¢ we choose, cn® will be
dominated by n® for n > ¢
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Useful properties

m Algorithm has two phases

m Phase 1 takes time O(gi(n)) = Cort Podbon Cowd
m Phase 2 takes time O(g2(n)) — gCAm e SWM M

What can we say about the algorithm as a whole?
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Useful properties

m Algorithm has two phases
m Phase 1 takes time O(gi1(n))
m Phase 2 takes time O(g»(n))
What can we say about the algorithm as a whole?

m If f1(n)is O(gi(n)) and f2(n) is O(g2(n)), then fi(n) + f2(n) is
O(max(g1(n), g2(n)))
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Useful properties

m Algorithm has two phases
m Phase 1 takes time O(gi1(n))

m Phase 2 takes time O(g»(n)) . ﬂ\ ‘gao(ﬁ')
What can we say about the algorithm as a whole? — > gy“ 06)

m If f1(n)is O(gi(n)) and f2(n) is O(g2(n)), then fi(n) + f2(n) is
O(max(g1(n), g2(n)))

m Proof

\

s

m f1(n) < agi(n) for n > ny, H(n) < cga(n) for n > n,
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Useful properties

m Algorithm has two phases
m Phase 1 takes time O(gi1(n))
m Phase 2 takes time O(g»(n))
What can we say about the algorithm as a whole?

m If fi(n)is O(gi(n)) and f2(n) is O(g2(n)), then fi(n) + f(n) is
O(max(g1(n), g2(n)))
m Proof
m f1(n) < agi(n) for n > ny, H(n) < cga(n) for n > n,

m Let 3 = max(c1, ¢2), n3 = max(ny, n2)
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Useful properties

m Algorithm has two phases
m Phase 1 takes time O(gi1(n))
m Phase 2 takes time O(g»(n))
What can we say about the algorithm as a whole?

m If f1(n)is O(gi(n)) and f2(n) is O(g2(n)), then fi(n) + f2(n) is
O(max(g1(n), g2(n)))
m Proof
m f1(n) < agi(n) for n > ny, H(n) < cga(n) for n > n,
m Let 3 = max(c1, ¢2), n3 = max(ny, n2)
m For n > n3, fi(n) + f(n) < c1g1(n) + cog2(n)
- ¢ -
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Useful properties

m Algorithm has two phases l} 22
m Phase 1 takes time O(gi1(n))
m Phase 2 takes time O(g»(n))

What can we say about the algorithm as a whole? é 2- m(\ql ZZ)

m If fi(n)is O(gi(n)) and f2(n) is O(g2(n)), then fi(n) + f(n) is
O(max(g1(n), g2(n)))
m Proof
m f1(n) < agi(n) for n > ny, H(n) < cga(n) for n > n,
m Let ¢ = max(ci, ), n3 = max(ny, ny)

m For n> n3, fi(n) + fa(n) < cig1(n) + c2g2(n) < c3(g1(n) + g2(n))
p—————
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Useful properties

m Algorithm has two phases
m Phase 1 takes time O(gi1(n))
m Phase 2 takes time O(g»(n))
What can we say about the algorithm as a whole?

m If fi(n)is O(gi(n)) and f2(n) is O(g2(n)), then fi(n) + f(n) is
O(max(g1(n), g2(n)))
m Proof
m f1(n) < agi(n) for n > ny, H(n) < cga(n) for n > n,
m Let ¢ = max(ci, ), n3 = max(ny, ny)

m For n > n3, fi(n) + f(n) < cig1(n) + c2g2(n) < cs(g1(n) + g2(n))
< 2c3(max(g1(n), g2(n)))
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Useful properties

m Algorithm has two phases
m Phase 1 takes time O(gi1(n))

m Phase 2 takes time O(g»(n))
What can we say about the algorithm as a whole?

m If f1(n)is O(gi(n)) and f2(n) is O(g2(n)), then fi(n) + f2(n) is
O(max(g1(n), g2(n)))

m Algorithm as a whole takes time max(O(gi(n), g2(n)))

m Least efficient phase is the upper bound for the whole algorithm
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m f(x) is said to be Q(g(x)) if we can find constants ¢ and xp such that cg(x) is a
lower bound for 7(x) for x beyond xp

m (x) > cg(x) for every x > xg
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m f(x) is said to be Q(g(x)) if we can find constants ¢ and xp such that cg(x) is a
lower bound for 7(x) for x beyond xp

m (x) > cg(x) for every x > xg
m ndis Q(n?)

m®>n’forallnsong=1c=1
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m f(x) is said to be Q(g(x)) if we can find constants ¢ and xp such that cg(x) is a
lower bound for f(x) for x beyond xp

m (x) > cg(x) for every x > xg
m ndis Q(n?)
m®>n’forallnsong=1c=1
m Typically we establish lower bounds for a problem rather than an individual algorithm

m If we sort a list by comparing elements and swapping them, we require Q(nlog n)
comparisons

m This is independent of the algorithm we use for sorting
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Tight bounds

m f(x) is said to be ©(g(x)) if it is both O(g(x)) and Q(g(x))

m Find constants ¢, ¢, xp such that c;g(x) < f(x) < cg(x) for every x > xg
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Tight bounds

m f(x) is said to be ©(g(x)) if it is both O(g(x)) and Q(g(x))

(
m Find constants ¢, ¢, xp such that c;g(x) < f(x) < cg(x) for every x > xg

m n(n—1)/2is ©(n?)
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Tight bounds

m f(x) is said to be ©(g(x)) if it is both O(g(x)) and Q(g(x))

(
m Find constants ¢, ¢, xp such that c;g(x) < f(x) < cg(x) for every x > xg

m n(n—1)/2is ©(n?)
m Upper bound
m n(n—1)/2=n?/2—-n/2<n*/2forall n>0
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Tight bounds

m f(x) is said to be ©(g(x)) if it is both O(g(x)) and Q(g(x))
m Find constants ¢, ¢, xp such that c;g(x) < f(x) < cg(x) for every x > xg
m n(n—1)/2is ©(n?)
m Upper bound
m n(n—1)/2=n?/2—-n/2<n*/2forall n>0
m Lower bound

mn(n—1)/2=n*/2—n/2>n*/2—(n/2 x n/2) > n*/4 for n > 2
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Tight bounds

m f(x) is said to be ©(g(x)) if it is both O(g(x)) and Q(g(x))
m Find constants ¢, ¢, xp such that c;g(x) < f(x) < cg(x) for every x > xg
m n(n—1)/2is ©(n?)
m Upper bound
m n(n—1)/2=n?/2—-n/2<n*/2forall n>0
m Lower bound
mn(n—1)/2=n*/2—n/2>n*/2—(n/2 x n/2) > n*/4 for n > 2
m Choose np =2, ¢, =1/4, o =1/2
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m f(n)is O(g(n)) means g(n) is an upper bound for f(n)

m Useful to describe asymptotic worst case running time
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m f(n)is O(g(n)) means g(n) is an upper bound for f(n)

m Useful to describe asymptotic worst case running time

m f(n)is Q(g(n)) means g(n) is a lower bound for f(n)

m Typically used for a problem as a whole, rather than an individual algorihm
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m f(n)is O(g(n)) means g(n) is an upper bound for f(n)

m Useful to describe asymptotic worst case running time

m f(n)is Q(g(n)) means g(n) is a lower bound for f(n)

m Typically used for a problem as a whole, rather than an individual algorihm

m f(n)is ©(g(n)): matching upper and lower bounds

m We have found an optimal algorithm for a problem
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