
Dynamic Programming

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 22, 09 Nov 2023

Memoizing recursive implementations

def fib(n):

if n in fibtable.keys():

return(fibtable[n])

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

fibtable[n] = value

return(value)

In general

def f(x,y,z):

if (x,y,z) in ftable.keys():

return(ftable[(x,y,z)])

recursively compute value

from subproblems

ftable[(x,y,z)] = value

return(value)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 2 / 24

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 24

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 24

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 24

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 24

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 24

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 24

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 24

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 24

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 24

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 24

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 24

Brute force

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2
)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 5 / 24

Brute force

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2
)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 5 / 24

Brute force

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2
)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 5 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0  i  m

In general, LCW (m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 6 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0  i  m

In general, LCW (m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 6 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0  i  m

In general, LCW (m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 6 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0  i  m

In general, LCW (m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 6 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,

aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0  i  m

In general, LCW (m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 6 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

O

O

&

%
+

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Reading o↵ the solution

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Reading o↵ the solution

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by

row or column by column

Reading o↵ the solution

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 24

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Recall that brute force was

O(mn
2
)

Inductive solution is O(mn),

using dynamic programming or

memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 24

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was

O(mn
2
)

Inductive solution is O(mn),

using dynamic programming or

memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 24

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was

O(mn
2
)

Inductive solution is O(mn),

using dynamic programming or

memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 24

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was

O(mn
2
)

Inductive solution is O(mn),

using dynamic programming or

memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 24

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was

O(mn
2
)

Inductive solution is O(mn),

using dynamic programming or

memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 24

Longest common subsequence

Subsequence — can drop some letters in

between

Given two strings, find the (length of the)

longest common subsequence

"secret", "secretary" —

"secret", length 6

"bisect", "trisect" —

"isect", length 5

"bisect", "secret" —

"sect", length 4

"director", "secretary" —

"ectr", "retr", length 4

LCS is the longest path connecting

non-zero LCW entries, moving right/down

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 24

Longest common subsequence

Subsequence — can drop some letters in

between

Given two strings, find the (length of the)

longest common subsequence

"secret", "secretary" —

"secret", length 6

"bisect", "trisect" —

"isect", length 5

"bisect", "secret" —

"sect", length 4

"director", "secretary" —

"ectr", "retr", length 4

LCS is the longest path connecting

non-zero LCW entries, moving right/down

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 24

Longest common subsequence

Subsequence — can drop some letters in

between

Given two strings, find the (length of the)

longest common subsequence

"secret", "secretary" —

"secret", length 6

"bisect", "trisect" —

"isect", length 5

"bisect", "secret" —

"sect", length 4

"director", "secretary" —

"ectr", "retr", length 4

LCS is the longest path connecting

non-zero LCW entries, moving right/down

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 24

Applications

Analyzing genes

DNA is a long string over A, T, G, C

Two species are similar if their DNA has

long common subsequences

diff command in Unix/Linux

Compares text files

Find the longest matching subsequence

of lines

Each line of text is a “character”

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 10 / 24

Applications

Analyzing genes

DNA is a long string over A, T, G, C

Two species are similar if their DNA has

long common subsequences

diff command in Unix/Linux

Compares text files

Find the longest matching subsequence

of lines

Each line of text is a “character”

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 10 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 24

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

0

1

1

2

2

2

2

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

0

1

1

2

2

2

2

0

1

2

2

2

2

2

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

0

1

1

2

2

2

2

0

1

2

2

2

2

2

0

1

2

3

3

3

3

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

0

1

1

2

2

2

2

0

1

2

2

2

2

2

0

1

2

3

3

3

3

0

1

2

3

4

4

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Reading o↵ the solution

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

0

1

1

2

2

2

2

0

1

2

2

2

2

2

0

1

2

3

3

3

3

0

1

2

3

4

4

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Reading o↵ the solution

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

0

1

1

2

2

2

2

0

1

2

2

2

2

2

0

1

2

3

3

3

3

0

1

2

3

4

4

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 24

Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 13 / 24

Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Complexity

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 13 / 24

Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Complexity

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 13 / 24

Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Complexity

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 13 / 24

Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44

Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 24

Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44

Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 24

Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44

Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 24

Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Edit distance

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44

Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 24

Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Edit distance

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44

Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 24

Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Edit distance

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44

Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 24

Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Edit distance

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44

Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[LCS(i , j+1),
LCS(i+1, j)]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Edit distance — transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

ED(i , j) — edit distance for

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai 6= bj ,

ED(i , j) = 1 + min[ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1)]

Base cases

ED(m, n) = 0

ED(i , n) = m � i for all 0  i  m

Delete aiai+1 . . . am�1 from u

ED(m, j) = n � j for all 0  j  n

Insert bjbj+1 . . . bn�1 into u

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Edit distance — transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

ED(i , j) — edit distance for

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai 6= bj ,

ED(i , j) = 1 + min[ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1)]

Base cases

ED(m, n) = 0

ED(i , n) = m � i for all 0  i  m

Delete aiai+1 . . . am�1 from u

ED(m, j) = n � j for all 0  j  n

Insert bjbj+1 . . . bn�1 into u

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Edit distance — transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

ED(i , j) — edit distance for

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai 6= bj ,

ED(i , j) = 1 + min[ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1)]

Base cases

ED(m, n) = 0

ED(i , n) = m � i for all 0  i  m

Delete aiai+1 . . . am�1 from u

ED(m, j) = n � j for all 0  j  n

Insert bjbj+1 . . . bn�1 into u

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Edit distance — transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

ED(i , j) — edit distance for

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai 6= bj ,

ED(i , j) = 1 + min[ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1)]

Base cases

ED(m, n) = 0

ED(i , n) = m � i for all 0  i  m

Delete aiai+1 . . . am�1 from u

ED(m, j) = n � j for all 0  j  n

Insert bjbj+1 . . . bn�1 into u

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Edit distance — transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

ED(i , j) — edit distance for

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai 6= bj ,

ED(i , j) = 1 + min[ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1)]

Base cases

ED(m, n) = 0

ED(i , n) = m � i for all 0  i  m

Delete aiai+1 . . . am�1 from u

ED(m, j) = n � j for all 0  j  n

Insert bjbj+1 . . . bn�1 into u

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Edit distance — transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

ED(i , j) — edit distance for

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai 6= bj ,

ED(i , j) = 1 + min[ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1)]

Base cases

ED(m, n) = 0

ED(i , n) = m � i for all 0  i  m

Delete aiai+1 . . . am�1 from u

ED(m, j) = n � j for all 0  j  n

Insert bjbj+1 . . . bn�1 into u

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 24

Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Edit distance — transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

ED(i , j) — edit distance for

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai 6= bj ,

ED(i , j) = 1 + min[ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1)]

Base cases

ED(m, n) = 0

ED(i , n) = m � i for all 0  i  m

Delete aiai+1 . . . am�1 from u

ED(m, j) = n � j for all 0  j  n

Insert bjbj+1 . . . bn�1 into u

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

4

3

2

3

3

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

4

3

2

3

3

3

4

5

4

3

2

3

4

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

4

3

2

3

3

3

4

5

4

3

2

3

4

4

6

5

4

3

2

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Reading o↵ the solution

Transform bisect to secret

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

4

3

2

3

3

3

4

5

4

3

2

3

4

4

6

5

4

3

2

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Reading o↵ the solution

Transform bisect to secret

Delete b

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

4

3

2

3

3

3

4

5

4

3

2

3

4

4

6

5

4

3

2

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Reading o↵ the solution

Transform bisect to secret

Delete b , Delete i

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

4

3

2

3

3

3

4

5

4

3

2

3

4

4

6

5

4

3

2

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Reading o↵ the solution

Transform bisect to secret

Delete b , Delete i , Insert r

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

4

3

2

3

3

3

4

5

4

3

2

3

4

4

6

5

4

3

2

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Reading o↵ the solution

Transform bisect to secret

Delete b , Delete i , Insert r , Insert e

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

1

1

2

3

4

3

2

2

2

2

3

4

4

3

2

3

3

3

4

5

4

3

2

3

4

4

6

5

4

3

2

3

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 24

Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
ed[i,j] = ed[i+1,j+1]

else:
ed[i,j] = 1 + min(ed[i+1,j+1],

ed[i,j+1],
ed[i+1,j])

return(ed[0,0])

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 24

Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
ed[i,j] = ed[i+1,j+1]

else:
ed[i,j] = 1 + min(ed[i+1,j+1],

ed[i,j+1],
ed[i+1,j])

return(ed[0,0])

Complexity

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 24

Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
ed[i,j] = ed[i+1,j+1]

else:
ed[i,j] = 1 + min(ed[i+1,j+1],

ed[i,j+1],
ed[i+1,j])

return(ed[0,0])

Complexity

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 24

Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
ed[i,j] = ed[i+1,j+1]

else:
ed[i,j] = 1 + min(ed[i+1,j+1],

ed[i,j+1],
ed[i+1,j])

return(ed[0,0])

Complexity

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 24

