AVL Trees - Height-Balanced Search Trees

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 20, 02 Nov 2023

Operations on search trees

- find(), insert() and delete() all walk down a single path
- Worst-case: height of the tree
- An unbalanced tree with n nodes may have height $O(n)$
- Balanced trees have height $O(\log n)$

- How can we maintain balance as tree grows and shrinks

Operations on search trees

■ find(), insert() and delete() all walk down a single path

- Worst-case: height of the tree
- An unbalanced tree with n nodes may have height $O(n)$
- Balanced trees have height $O(\log n)$
- How can we maintain balance as tree grows and shrinks

Insert $1,2 \ldots$ in into euply to
(1)

Operations on search trees

Defining balance

■ find(), insert() and delete() all walk down a single path

■ Worst-case: height of the tree

- An unbalanced tree with n nodes may have height $O(n)$
- Balanced trees have height $O(\log n)$
- How can we maintain balance as tree grows and shrinks

■ Left and right subtrees should be "equal"

- Two possible measures: size and height

Operations on search trees

Defining balance

■ find(), insert() and delete() all walk down a single path

■ Worst-case: height of the tree

- An unbalanced tree with n nodes may have height $O(n)$
- Balanced trees have height $O(\log n)$
- How can we maintain balance as tree grows and shrinks

■ Left and right subtrees should be "equal"

- Two possible measures: size and height

■ self.left.size() and self.right.size() are equal?

- Only possible for complete binary trees

Operations on search trees

Defining balance

■ find(), insert() and delete() all walk down a single path

■ Worst-case: height of the tree

- An unbalanced tree with n nodes may have height $O(n)$
- Balanced trees have height $O(\log n)$
- How can we maintain balance as tree grows and shrinks

■ Left and right subtrees should be "equal"

- Two possible measures: size and height

■ self.left.size() and self.right.size() are equal?

- Only possible for complete binary trees

■ self.left.size() and self.right.size() differ by at most 1 ?

- Plausible, but difficult to maintain

Height balanced trees

■ self.height() - number of nodes on
longest path from root to leaf

- 0 for empty tree
- 1 for tree with only a root node
- $1+$ max of heights of left and right subtrees, in general

Height balanced trees

■ self.height () - number of nodes on
longest path from root to leaf

- 0 for empty tree
- 1 for tree with only a root node

■ $1+$ max of heights of left and right subtrees, in general

■ Height balance
■ self.left.height() and self.right.height() differ by at most 1

- AVL trees - Adelson-Velskii, Landis

Height balanced trees

■ self.height() - number of nodes on longest path from root to leaf

- 0 for empty tree
- 1 for tree with only a root node
- $1+$ max of heights of left and right subtrees, in general
- Height balance

■ self.left.height() and self.right.height () differ by at most 1

- AVL trees - Adelson-Velskii, Landis
- Does height balance guarantee $O(\log n)$ height?

Height balanced trees

■ self.height() — number of nodes on longest path from root to leaf

- 0 for empty tree
- 1 for tree with only a root node
- $1+$ max of heights of left and right subtrees, in general

■ Height balance
■ self.left.height() and self.right. height() differ by at most 1

- AVL trees - Adelson-Velskii, Landis
- Does height balance guarantee $O(\log n)$ height?

■ Minimum size height-balanced trees

$$
h=3
$$

Height balanced trees

■ self.height() - number of nodes on longest path from root to leaf

- 0 for empty tree
- 1 for tree with only a root node
- $1+$ max of heights of left and right subtrees, in general

■ Height balance
■ self.left.height() and self.right. height() differ by at most 1

- AVL trees - Adelson-Velskii, Landis
- Does height balance guarantee $O(\log n)$ height?
- Minimum size height-balanced trees

Paltern

Height balanced trees

■ self.height() — number of nodes on longest path from root to leaf

- 0 for empty tree
- 1 for tree with only a root node
- $1+$ max of heights of left and right subtrees, in general

■ Height balance
■ self.left.height() and self.right.height () differ by at most 1

- AVL trees - Adelson-Velskii, Landis
- Does height balance guarantee $O(\log n)$ height?

■ Minimum size height-balanced trees

Height balanced trees

■ self.height() — number of nodes on longest path from root to leaf

- 0 for empty tree
- 1 for tree with only a root node
- $1+$ max of heights of left and right subtrees, in general

■ Height balance

- self.left.height() and self.right.height() differ by at most 1
- AVL trees - Adelson-Velskii, Landis
- Does height balance guarantee $O(\log n)$ height?

■ Minimum size height-balanced trees

$$
h=4
$$

- General strategy to build a small balanced tree of height h
- Smallest balanced tree of height $h-1$ as left subtree
- Smallest balanced tree of height $h-2$ as right subtree

Height balanced trees

■ Minimum size height-balanced trees
$\stackrel{\bullet}{h}=1$

$h=3$

$$
h=4
$$

- General strategy to build a small balanced tree of height h
- Smallest balanced tree of height $h-1$ as left subtree
- Smallest balanced tree of height $h-2$ as right subtree

Height balanced trees

■ Minimum size height-balanced trees
$h=1$

$$
h=4
$$

- General strategy to build a small balanced tree of height h
- Smallest balanced tree of height $h-1$ as left subtree
- Smallest balanced tree of height $h-2$ as right subtree
- $S(h)$, size of smallest height-balanced tree of height h

$$
\begin{aligned}
& s(0)=0 \\
& s(1)=1 \\
& s(2)=2 \\
& s(3)=4 \\
& s(4)=7 \\
& \text { Want } s(k) \text { do be } \\
& \text { expo in } h
\end{aligned}
$$

Height balanced trees

- Minimum size height-balanced trees $\quad \square S(h)$, size of smallest height-balanced tree of height h
- Recurrence
- $S(0)=0, S(1)=1$
- $S(h)=1+S(h-1)+S(h-2)$

- General strategy to build a small balanced tree of height h
- Smallest balanced tree of height $h-1$ as left subtree
- Smallest balanced tree of height $h-2$ as right subtree

Height balanced trees

■ Minimum size height-balanced trees
$h=1$
$\dot{j}_{h=2}^{\bullet}$

$$
h=4
$$

$\bullet h=3$

$$
h=3
$$

- General strategy to build a small balanced tree of height h
- Smallest balanced tree of height $h-1$ as left subtree
- Smallest balanced tree of height $h-2$ as right subtree
- $S(h)$, size of smallest height-balanced tree of height h
- Recurrence
- $S(0)=0, S(1)=1$
- $S(h)=1+S(h-1)+S(h-2)$
- Compare to Fibonacci sequence
- $F(0)=0, F(1)=1$
- $F(n)=F(n-1)+F(n-2)$
$S(h)>F(h)$ for $h>1$

Height balanced trees

■ Minimum size height-balanced trees
$h=1$

$$
h=4
$$

- General strategy to build a small balanced tree of height h
- Smallest balanced tree of height $h-1$ as left subtree
- Smallest balanced tree of height $h-2$ as right subtree
- $S(h)$, size of smallest height-balanced tree of height h
- Recurrence
- $S(0)=0, S(1)=1$
- $S(h)=1+S(h-1)+S(h-2)$
- Compare to Fibonacci sequence
- $F(0)=0, F(1)=1$
- $F(n)=F(n-1)+F(n-2)$
- $S(h)$ grows exponentially with h

Height balanced trees

■ Minimum size height-balanced trees
$h=1$

$$
h=4
$$

- General strategy to build a small balanced tree of height h
- Smallest balanced tree of height $h-1$ as left subtree
- Smallest balanced tree of height $h-2$ as right subtree
- $S(h)$, size of smallest height-balanced tree of height h
- Recurrence
- $S(0)=0, S(1)=1$
- $S(h)=1+S(h-1)+S(h-2)$
- Compare to Fibonacci sequence
- $F(0)=0, F(1)=1$
- $F(n)=F(n-1)+F(n-2)$
- $S(h)$ grows exponentially with h
- For size n, h is $O(\log n)$

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

- Balanced tree - slope is $\{-1,0,1\}$

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

- Balanced tree - slope is $\{-1,0,1\}$

■ t.insert(v), t.delete (v) can alter slope to -2 or +2

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

- Balanced tree - slope is $\{-1,0,1\}$

■ t.insert(v), t.delete (v) can alter slope to -2 or +2

Left rotation

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

- Balanced tree - slope is $\{-1,0,1\}$

■ t.insert(v), t.delete (v) can alter slope to -2 or +2

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

- Balanced tree - slope is $\{-1,0,1\}$

■ t.insert(v), t.delete (v) can alter slope to -2 or +2

Left rotation - converts slope -2 to $\{0,1,2\}$

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

- Balanced tree - slope is $\{-1,0,1\}$

■ t.insert(v), t.delete (v) can alter slope to -2 or +2

Right rotation

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

- Balanced tree - slope is $\{-1,0,1\}$

■ t.insert(v), t.delete (v) can alter slope to -2 or +2

Right rotation

Correcting imbalance

■ Slope of a node: self.left.height() - self.right.height()

- Balanced tree - slope is $\{-1,0,1\}$

■ t.insert(v), t.delete (v) can alter slope to -2 or +2

Right rotation - converts slope +2 to $\{-2,-1,0\}$

Implementing rotations

Tre|r

def leftrotate(self):
v = self.value
yr = self.right.value畃 = self.left
trl = self.right.left
trr $=$ self.right.right
newleft $=$ Tree(v)
newleft.left = tl

$$
\text { newleft.right }=\text { trl }
$$

self.value = vr
self.left = newleft
self.right = trr
return

Implementing rotations

class Tree:

> def rightrotate(self): v = self.value vl = self.left.value tll $=$ self.left.left tlr $=$ self.left.right tr $=$ self.right

$$
\begin{aligned}
& \text { newright = Tree(v) } \\
& \text { newright.left = tlr } \\
& \text { newright.right = tr } \\
& \text { self.value = vl } \\
& \text { self.left = tll } \\
& \text { self.right = newright } \\
& \text { return }
\end{aligned}
$$

Rebalancing, root has slope +2

- Rebalance bottom-up, assume subtrees are balanced

Rebalancing, root has slope +2

■ Rebalance bottom-up, assume subtrees are balanced

■ Case 1: Slope at is in $\{0,1\}$

Rebalancing, root has slope +2

■ Rebalance bottom-up, assume subtrees are balanced

■ Case 1: Slope at is in $\{0,1\}$

- Rotate right at •
- All nodes are balanced

Rebalancing, root has slope +2

■ Rebalance bottom-up, assume subtrees are balanced

■ Case 1: Slope at is in $\{0,1\}$

- Rotate right at •
- All nodes are balanced

- Case 2: Slope at is -1

Rebalancing, root has slope +2

■ Rebalance bottom-up, assume subtrees are balanced

- Case 1: Slope at is in $\{0,1\}$
- Rotate right at •
- All nodes are balanced
- Case 2: Slope at is -1
- Expand R

Rebalancing, root has slope +2

■ Rebalance bottom-up, assume subtrees are balanced

■ Case 1: Slope at is in $\{0,1\}$

- Rotate right at •
- All nodes are balanced
- Case 2: Slope at is -1
- Expand R
- Rotate left at \downarrow

Rebalancing, root has slope +2

■ Rebalance bottom-up, assume subtrees are balanced

- Case 1: Slope at is in $\{0,1\}$
- Rotate right at •
- All nodes are balanced
- Case 2: Slope at is -1
- Expand R
- Rotate left at
- Rotate left at •

Rebalancing, root has slope +2

- Rebalance bottom-up, assume subtrees are balanced
- Case 1: Slope at is in $\{0,1\}$
- Rotate right at •
- All nodes are balanced
- Case 2: Slope at is -1
- Expand R
- Rotate left at

■ Rotate left at •

- Rebalance with root slope -2 is symmetric

Update insert () and delete()

■ Use the rebalancing strategy to define a function rebalance()

- Rebalance each time the tree is modified

■ Automatically rebalances bottom up

```
class Tree:
    def insert(self,v):
    if self.isempty():
        self.value = v
        self.left = Tree()
        self.right = Tree()
    if self.value == v:
        return
    if v < self.value:
        self.left.insert(v)
        self.left.rebalance()
        return
    if v > self.value:
        self.right.insert(v)
        self.right.rebalance()
        return
```


Update insert () and delete()

■ Use the rebalancing strategy to define a function rebalance()

- Rebalance each time the tree is modified

■ Automatically rebalances bottom up

```
class Tree:
def delete(self,v):
    ...
    if v < self.value:
        self.left.delete(v)
        self.left.rebalance()
        return
    if v > self.value:
        self.right.delete(v)
        self.right.rebalance()
        return
    if v == self.value:
    if self.isleaf():
        self.makeempty()
    elif self.left.isempty():
        self.copyright()
    elif self.right.isempty():
        self.copyleft()
    else:
        self.value = self.left.maxval()
        self.left.delete(self.left.maxval())
```

 return

Computing slope

- To compute the slope we need heights of subtrees

■ But, computing height is $O(n)$

```
class Tree:
    def height(self):
        if self.isempty():
        return(0)
        else:
        return(1 +
                        max(self.left.height(),
                            self.right.height())
```


Computing slope

■ To compute the slope we need heights of subtrees

- But, computing height is $O(n)$
- Instead, maintain a field self.height

```
class Tree:
    def height(self):
        if self.isempty():
        return(0)
    else:
        return(1 +
                        max(self.left.height(),
                                    self.right.height())
```


Computing slope

- To compute the slope we need heights of subtrees
- But, computing height is $O(n)$
- Instead, maintain a field self.height
- After each modification, update
self.height based on self.left.height, self.right.height

```
    def insert(self,v):
    if v < self.value:
        self.left.insert(v)
        self.left.rebalance()
        self.height = 1 +
            max(self.left.height,
                                    self.right.height)
```

 return
 if $v>$ self.value:
self.right.insert (v)
self.right.rebalance()
self.height = 1 +
$\max (s e l f . l e f t . h e i g h t$,
self.right.height)
return

Summary

■ Using rotations, we can maintain height balance

- Height balanced trees have height $O(\log n)$

■ find(), insert() and delete() all walk down a single path, take time $O(\log n)$
Red-black tree

