AVL Trees — Height-Balanced Search Trees

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 20, 02 Nov 2023

Operations on search trees
m find(), insert() and delete() all
walk down a single path
m Worst-case: height of the tree / \
m An unbalanced tree with n nodes may
have height O(n)
m Balanced trees have height O(log n) < v > s

m How can we maintain balance as tree
grows and shrinks

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 2/11

Operations on search trees

|n$wlr
m find(), insert () and delete() all ,lzl A ¢ "w ‘“ﬂ-'b o

walk down a single path

m Worst-case: height of the tree @ @
m An unbalanced tree with n nodes may ‘b
have height O(n)

m Balanced trees have height O(log n) l LA— E

m How can we maintain balance as tree

grows and shrinks 7“ 0(’\) \

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 2/11

Operations on search trees

Defining balance

m find(), insert() and delete() all m Left and right subtrees should be “equal”

walk down a single path m Two possible measures: size and

. height
m Worst-case: height of the tree e18

m An unbalanced tree with n nodes may
have height O(n)

m Balanced trees have height O(log n)

m How can we maintain balance as tree
grows and shrinks

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 2/11

Operations on search trees

Defining balance

m find(), insert() and delete() all m Left and right subtrees should be “equal”

walk down a single path m Two possible measures: size and

. height
m Worst-case: height of the tree e18

. 1f.left.si
m An unbalanced tree with n nodes may " =e ? Sl?eo and
. self.right.size() are equal?
have height O(n)

m Only possible for complete binary trees
m Balanced trees have height O(log n)

m How can we maintain balance as tree h

grows and shrinks !.& 2
248

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 2/11

Operations on search trees

Defining balance

m find(), insert() and delete() all m Left and right subtrees should be “equal”

walk down a single path m Two possible measures: size and

. height
m Worst-case: height of the tree e18

. 1f.left.si
m An unbalanced tree with n nodes may " =e ? Sl?eo and
. self.right.size() are equal?
have height O(n)

m Only possible for complete binary trees
m Balanced trees have height O(log n)
m self.left.size() and
m How can we maintain balance as tree self.right.size() differ by at most 17

grows and shrinks m Plausible, but difficult to maintain

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 2/11

Height balanced trees

m self.height () — number of nodes on
longest path from root to leaf

m 0 for empty tree
m 1 for tree with only a root node

m 1+ max of heights of left and right c\' "U
subtrees, in general

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 3/11

Height balanced trees

m self.height () — number of nodes on
longest path from root to leaf

m 0 for empty tree v Q

m 1 for tree with only a root node J \

m 1+ max of heights of left and right D
subtrees, in general

m Height balance

m self.left.height() and

self.right.height () differ by at most l\%w [0(‘95 K) ?
1
m AVL trees — Adelson-Velskii, Landis t\:“, ‘.. m\'w 9

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 3/11

Height balanced trees

m self.height () — number of nodes on
longest path from root to leaf

m 0 for empty tree
m 1 for tree with only a root node
m 1+ max of heights of left and right
subtrees, in general
m Height balance

m self.left.height() and

self .right.height () differ by at most
1

m AVL trees — Adelson-Velskii, Landis

m Does height balance guarantee O(log n)
height?

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 3/11

Height balanced trees

m self.height () — number of nodes on m Minimum size height-balanced trees
longest path from root to leaf ° ° v
m 0 for empty tree h=1 ./% AN
m 1 for tree with only a root node h=2
m 1+ max of heights of left and right
subtrees, in general h=3

m Height balance

m self.left.height() and
self .right.height () differ by at most
1

m AVL trees — Adelson-Velskii, Landis

m Does height balance guarantee O(log n)
height?

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 3/11

Height balanced trees

m self . height () — number of nodes on m Minimum size height-balanced trees
longest path from root to leaf (.:)

(] [)
m 0 for empty tree h=1 ./ .,/ b

m 1 for tree with only a root node h—09

m 1+ max of heights of left and right >

subtrees, in general h=3

m Height balance c‘P ern

m self.left.height() and
self .right.height () differ by at most
1

m AVL trees — Adelson-Velskii, Landis

m Does height balance guarantee O(log n)
height?

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 3/11

Height balanced trees

m self . height () — number of nodes on m Minimum size height-balanced trees
longest path from root to leaf ° ° °
m 0 for empty tree h=1 ./ \. /
m 1 for tree with only a root node - /

[

. . [] ./ (|

m 1+ max of heights of left and right /
subtrees, in general h=3 !

m Height balance h=14

m self.left.height() and
self .right.height () differ by at most
1

m AVL trees — Adelson-Velskii, Landis

m Does height balance guarantee O(log n)
height?

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 3/11

Height balanced trees

m self . height () — number of nodes on m Minimum size height-balanced trees
longest path from root to leaf

[] ° [[]
m 0 for empty tree h=1 / / \ / \
. o o o | o

m 1 for tree with only a root node h— / /'\ /
m 1+ max of heights of left and right ¢ /. 9
subtrees, in general h=3 .
m Height balance h=4
m self.left.height() and m General strategy to build a small
self.right.height () differ by at most balanced tree of height h
1

m Smallest balanced tree of height
m AVL trees — Adelson-Velskii, Landis h — 1 as left subtree

m Smallest balanced tree of height

m Does height balance guarantee O(log n) h— 2 as right subtree

height?

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 3/11

Height balanced trees

m Minimum size height-balanced trees

A ANYAN

o2 | N
h=3 |

h=4

m General strategy to build a small
balanced tree of height h

m Smallest balanced tree of height
h — 1 as left subtree

m Smallest balanced tree of height
h — 2 as right subtree

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 4/11

Height balanced trees

m Minimum size height-balanced trees m S(h), size of smallest height-balanced tree
of height h

A AN oo -
o [f{’, >
h=3 | Sz)-2

h=4

m General strategy to build a small S(;’) z lk
balanced tree of height h
© S(q) - F

m Smallest balanced tree of height

h — 1 as left subtree w‘Mk Sw 1}0 LC

m Smallest balanced tree of height

h — 2 as right subtree W ™ &

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 4/11

Height balanced trees

m Minimum size height-balanced tree

SR
h

m 5(h), size of smallest height-balanced tree
> of height h

/\ m Recurrence

= 5(0)=0, S(1) =1
m S(h)=1+S(h—1)+S(h—2)

m General strategy to build a small ’\,'/(/ \
balanced tree of height h A "‘,@
m Smallest balanced tree of height &
* 4

h — 1 as left subtree

m Smallest balanced tree of height
h — 2 as right subtree

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 4/11

Height balanced trees

m Minimum size height-balanced trees m S(h), size of smallest height-balanced tree
° ° ° ° of height h
h=1 ./ o/ \o o/ \o m Recurrence
h=2 | /\/ = 5(0)=0, 5(1) =1
[o o o
h=3 | m S(h)y=1+S(h—1)+S(h—2)
[]
h—4 m Compare to Fibonacci sequence

m General strategy to build a small m F(0)=0 F(1)=1
balanced tree of height h m F(n)=F(n—1)+ F(n—2)

m Smallest balanced tree of height SCR) > F(}\) ‘en' A))

h — 1 as left subtree

m Smallest balanced tree of height
h — 2 as right subtree

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 4/11

Height balanced trees

m Minimum size height-balanced trees m S(h), size of smallest height-balanced tree
° ° ° ° of height h
h=1 ./ o/ \o o/ \o m Recurrence
h=2 | /\/ = 5(0)=0, 5(1) =1
[o o o
h=3 | m S(h)y=1+S(h—1)+S(h—2)
[]
h—4 m Compare to Fibonacci sequence

m General strategy to build a small m F(0)=0 F(1)=1
balanced tree of height h m F(n)=F(n—1)+ F(n—2)

m Smallest balanced tree of height m S(h) grows exponentially with h
h — 1 as left subtree

m Smallest balanced tree of height
h — 2 as right subtree

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 4/11

Height balanced trees

m Minimum size height-balanced trees m S(h), size of smallest height-balanced tree
° ° ° ° of height h
h=1 ./ o/ \o o/ \o m Recurrence
h=2 | /\/ = 5(0)=0, 5(1) =1
[o o o
h=3 | m S(h)y=1+S(h—1)+S(h—2)
[]
h—4 m Compare to Fibonacci sequence

m General strategy to build a small m F(0)=0 F(1)=1
balanced tree of height h m F(n)=F(n—1)+ F(n—2)

m Smallest balanced tree of height
h — 1 as left subtree

m Smallest balanced tree of height m For size n, his O(log n)
h — 2 as right subtree

m S(h) grows exponentially with h

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 4/11

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 5/11

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()

m Balanced tree — slope is {—1,0,1}

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 5/11

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()
m Balanced tree — slope is {—1,0,1}

B t.insert(v), t.delete(v) can alter slope to —2 or +2

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 5/11

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()
m Balanced tree — slope is {—1,0,1}

B t.insert(v), t.delete(v) can alter slope to —2 or +2

Left rotation

A 4

— At lat- 2

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 5/11

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()
m Balanced tree — slope is {—1,0,1}

B t.insert(v), t.delete(v) can alter slope to —2 or +2

Left rotation

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 5/11

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()
m Balanced tree — slope is {—1,0,1}

B t.insert(v), t.delete(v) can alter slope to —2 or +2

Left rotation — converts slope —2 to {0, 1,2}

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()
m Balanced tree — slope is {—1,0,1}

B t.insert(v), t.delete(v) can alter slope to —2 or +2

Right rotation

A

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 5/11

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()
m Balanced tree — slope is {—1,0,1}

B t.insert(v), t.delete(v) can alter slope to —2 or +2

Right rotation

‘\A .
wh\ W

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 5/11

Correcting imbalance

m Slope of a node : self.left.height() - self.right.height()
m Balanced tree — slope is {—1,0,1}

B t.insert(v), t.delete(v) can alter slope to —2 or +2

Right rotation — converts slope +2 to {—2, —1,0}

- -
L
i\ /i

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20

Implementing

class Tree:

def leftrotate(self):
v = self.value

pl = self.left

Madhavan Mukund

newleft = Tree(v)
newleft.left = tl
self.value = vr

self.right = trr

return
AVL Trees — Height-Balanced Search Trees

newleft.right = trl

self.left = newleft

viL) v

ur = self.right.value

trl = self.right.left
trr = self.right.right

PDSP Lecture 20

Implementing rotations

class Tree:

def rightrotate(self):
v = self.value
vl = self.left.value
tll self.left.left
tlr self.left.right
tr = self.right

newright = Tree(v)
newright.left = tlr
v newright.right = tr

vl

self.value = vl
self.left = tll
self.right = newright

return
Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 7/11

Rebalancing, root has slope +2

m Rebalance bottom-up, assume subtrees - 12

are balanced |

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 8/11

Rebalancing, root has slope +2

m Rebalance bottom-up, assume subtrees lu,
are balanced “-

m Case 1: Slope at 4 isin {0,1}
L

>

+

7
755

T

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 8/11

Rebalancing, root has slope +2

m Rebalance bottom-up, assume subtrees
are balanced

m Case 1: Slope at 4 isin {0,1}
m Rotate right at e

m All nodes are balanced

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 8/11

Rebalancing, root has slope +2

m Rebalance bottom-up, assume subtrees
are balanced

m Case 1: Slope at 4 isin {0,1}
m Rotate right at e L R
m All nodes are balanced h h+1

m Case 2: Slope at ¢ is —1

/ k\—l

hH ’\

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 8/11

Rebalancing, root has slope +2

m Rebalance bottom-up, assume subtrees
are balanced

m Case 1: Slope at 4 isin {0,1}
m Rotate right at e

m All nodes are balanced

m Case 2: Slope at ¢ is —1
m Expand R

Madhavan Mukund AVL Trees — Height-Balanced Search Trees

=hi\

h1h1[M’l¢MJ*
one (th

PDSP Lecture 20 8/

Rebalancing, root has slope +2

m Rebalance bottom-up, assume subtrees
are balanced

m Case 1: Slope at 4 isin {0,1}
m Rotate right at e

m All nodes are balanced

m Case 2: Slope at ¢ is —1 hh—/l
m Expand R
h
m Rotate left at ¢ h—/l

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 8/11

Rebalancing, root has slope +2

m Rebalance bottom-up, assume subtrees
are balanced

m Case 1: Slope at 4 isin {0,1}

m Rotate right at e

m All nodes are balanced
m Case 2: Slope at ¢ is —1

m Expand R

m Rotate left at ¢ h/ h/
h—1 h-1
m Rotate left at e

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 8/11

Rebalancing, root has slope +2

m Rebalance bottom-up, assume subtrees
are balanced

m Case 1: Slope at 4 isin {0,1}

m Rotate right at e
m All nodes are balanced
m Case 2: Slope at ¢ is —1
m Expand R
m Rotate left at ¢ h/ h/
h—1 h—1
m Rotate left at

m Rebalance with root slope —2 is
symmetric

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 8/11

Update insert () and delete()

class Tree:

m Use the rebalancing strategy to def insert(self,v):

define a function rebalance () if self.isempty():
self.value = v
self.left = Tree()

m Rebalance each time the tree is)
self.right = Tree()

modified
. if self.value == v:
m Automatically rebalances bottom return
up

if v < self.value:
self.left.insert(v)
self.left.rebalance()
return

if v > self.value:
self.right.insert(v)
self.right.rebalance()
return

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 9/11

Update insert () and delete()

class Tree:

def delete(self,v):

m Use the rebalancing strategy to
define a function rebalance ()

m Rebalance each time the tree is
modified

m Automatically rebalances bottom
up

if v < self.value:
self.left.delete(v)
self.left.rebalance()
return
if v > self.value:
self.right.delete(v)
self.right.rebalance()
return
if v == self.value:
if self.isleaf():
self.makeempty ()
elif self.left.isempty():
self.copyright ()
elif self.right.isempty():
self.copyleft()
else:
self.value = self.left.maxval()
self.left.delete(self.left.maxval())
return

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 9/11

Computing slope

m To compute the slope we need
heights of subtrees

class Tree:

def height(self):
if self.isempty():
return(0)
else:

m But, computing height is O(n)

return(l +
max(self.left.height(),
self.right.height())

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 10/11

Computing slope

m To compute the slope we need class Tree:
heights of subtrees o
def height(self):

if self.isempty():
m Instead, maintain a field return(0)

lse:
self .height e

m But, computing height is O(n)

return(l +
max(self.left.height(),
self.right.height())

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 10/11

Computing slope

class Tree:

m To compute the slope we need
heights of subtrees

def insert(self,v):

if v < self.value:
self.left.insert(v)
self.left.rebalance()
self .height = 1 +
max (self.left.height,
self.right.height)

m But, computing height is O(n)

m Instead, maintain a field
self .height

m After each modification, update

. return
self .height based on
self.left.height, if v > self.value:
self.right.height self.right.insert(v)

self.right.rebalance()
self.height = 1 +
max(self.left.height,
self.right.height)
return

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 10/11

m Using rotations, we can maintain height balance
m Height balanced trees have height O(log n)

m find(), insert() and delete() all walk down a single path, take time O(log n)

Madhavan Mukund AVL Trees — Height-Balanced Search Trees PDSP Lecture 20 11/11

