
Name:

Introduction to Programming in Python, I Semester, 2014–2015

Quiz 3, 3 September 2014

Answer all questions in the space provided. There are two questions on two pages.
Don’t forget to fill your name!

1. Consider the following function.

def f(l1,l2):

for i in range(len(l1)):

for j in range(len(l2)):

if l1[i] == l2[j]:

return False

else:

return True

(a) What does f(l1,l2) compute?

Returns True if l1 and l2 are disjoint (no common elements), False otherwise.

(b) What is the worst-case complexity of f(l1,l2)?

O(m · n) where m is len(l1) and n is len(l2).

(5 marks)

Rough Work:

. . .Question 2 on the back



2. Binary search is how we find words in dictionaries and other sorted lists. To search for
k in a list l, compare x with the middle position mid and then inductively search in
the first half or second half depending on whether k < l[mid] or k > l[mid].

Write a recurrence for T (n) and compute the worst-time complexity of binary search.

def binarysearch(l,k): # Search for k in l, l sorted ascending

if l == []:

return False

mid = len(l) // 2

if l[mid] == k:

return True

elif k < l[mid]:

return (binarysearch(l[:mid],k))

else:

return (binarysearch(l[mid+1:],k)) (5 marks)

f(1) = 1

f(n) = f(
n

2
) + 1

Expanding f(n) we get:

f(n) = f(
n

2
) + 1 = f(

n

4
) + 2 = · · · = f(

n

2k
) + k = · · ·

= f(
n

2log2 n
) + log2 n

= f(1) + log2 n

= O(log2 n)

Rough Work:


