Introduction to Programming, Aug-Dec 2006

Lecture 3, Friday 11 Aug 2006

Lists ...

We can implicitly decompose a list into its head and tail by providing a pattern with two
variables to denote the two components of a list, as follows:

length :: [Int] -> Int

length [] =0
length (x:xs) =1 + (length xs)

Here, in the second definition, the input list 1 is implicitly decomposed so that x gets
the value head 1 while xs gets the value tail 1. The bracket around (x:xs) is needed;
otherwise, Haskell will try to compute (length x) before dealing with the :. In this example,
the list is broken up into a single value x and a list of values xs. This is to be read as “the
list consists of an x followed by many x’s” and is a useful convention for naming lists.

Notice that in the second inductive definition of length, x plays no role in the right hand
side of the second definition, so we could also write:

length :: [Int] -> Int

length [] =0
length (_:xs) = 1 + (length xs)

We can rewrite sum using list pattern matching as follows.

sum :: [Int] -> Int
sum [] =0
sum (x:xs) = x + (sum xs)

Here are some more examples of functions over lists: The function concatenate combines
two lists into a single larger list.

concatenate :: [Int] -> [Int] -> [Int]
concatenate [] ys = ys
concatenate (x:xs) ys = x:(concatenate xs ys)

1



Concatenation is so useful that Haskell has a builtin binary operator ++ for this. Thus
[1,2,3] ++ [4,3] ~ [1,2,3,4,3], etc.

We can reverse a list by first reversing the tail of the list and then appending the head
of the list at the end, as follows.

reverse :: [Int] -> [Int]
reverse [] = []
reverse (x:xs) = (reverse xs)++[x]

The functions sum, length and reverse are actually basic list functions in Haskell, like
the functions head and tail. Some other useful builtin functions are:

e init 1 returns all but the last element of 1
init [1,2,3] ~ [1,2]
init [2] ~ []

e last ] returns the last element in |
last [1,2,3] ~ 3
last [2] ~ 2

An important builtin function is concat. This function takes a list of lists and “dissolves”
one level of brackets, merging its contents into a single long list. For instance:

concat [[1,2,3],[1,04,5],0],[6]]1 ~ [1,2,3,4,5,6]
We can write an inductive definition for concat in terms of ++:

concat [[Int]] -> [Int]
concat [] = []
concat (1:1s) = 1 ++ (concat 1s)

Lists are sequences of values, so the position of a value is important. In the list [1,2,1],
there are two copies of the value 1, at the first and third position. Haskell follows the
convention that positions are numbered from 0, so the set of positions in a list of length n is
{0,1,...,(length n) - 1}.

The notation xs!!i directly returns the element at position i in the list xs. Note that
accessing the element at position i in a list takes time proportional to 1i.

Two more useful built-in functions in Haskell are take and drop. The expression take n
1 will return the first n values in 1 while drop n 1 will return the list obtained by omitting
the first n values in 1. For any list 1 and any integer n we are guaranteed that:

1 == (take n 1) ++ (drop n 1)

In particular, this means that ifn < 0, take n 1lis [] anddrop n 1lis1, whileifn > (length 1),
take n 1lis 1 and drop n 1is [].



Polymorphism

Observe that functions such as length and reverse work in the same way for lists of any
type. It would be wasteful to have to write a separate version of such functions for each
different type of list. In Haskell, it is possible to say that a function works for multiple types
by using type variables. For instance, we can write:

length :: [a] -> Int
length [] =0
length (x:xs) = 1 + (length xs)

Here, the letter a in the type [a] -> Int isa type variable. The type [a] -> Intisto be
read as ””or any underlying type a, this function is of type [a] -> Int”. It is conventional
to use letters a, b, ...to denote types. Note that the variables used in type expressions
are disjoint from those used in actual function definitions so one could, in principle, use the
same variable in both parts, though it is probably not a good idea from the perspective of
readability.

In the same way, we can generalize the types of reverse and concat to read:

reverse :: [a] -> [a]

concat :: [[al]l -> [a]

Here it is significant that the same letter a appears on both sides of the -=>. This means,
for instance, that the type of the list returned by reverse is the same as the type of the
input list. In other words, all occurrences of a type variable a in a type declaration must be
instantiated to the same actual type. (Notice that this type of implicit pattern matching was
precisely what we disallowed when writing Haskell function definitions such as isequal x x
= True, so the way type variables are instantiated differs from the way variables in function
definitions are instantiated.)

Functions that work in the same way on different types are called polymorphic, which
means (in Greek) “taking different forms”.

We must be careful to distinguish polymorphism of the type we have seen with lists from
the ad hoc variety associated with overloading operators. For instance, in most programming
languages, we write + to denote addition for both integers and floating point numbers. How-
ever, since the underlying representations used for the two kinds of numbers are completely
different, we are actually using the same name (+, in this case) to designate functions that
are computed in a different manner for different base types. This type of situation is more
properly referred to as overloading.

In a nutshell, overloading uses the same symbol to denote similar operations on different
types, but the way the operation is evaluated for each type is different. On the other hand,
polymorphism refers to a single function definition with a fixed computation rule that works
for multiple types in the same way.

Note that we cannot assign a simple polymorphic type for sum. It would be wrong to
write



sum :: [a] -> a

because sum will work only for lists whose underlying type supports addition. We will see
later that it is possible to write a conditional type expression such as sum :: [a] -> a
provided the type a supports the operation +.

Haskell allows us to pass any type to a function, including another function. Consider the
function apply, that takes as input a function f and a value x and returns the value (f x).
In other words, this functions applies £ to x. The definition of apply is very straightforward:

apply £ x = £ x

What is the type of apply? The first argument is any function, so we can denote its
type as a => b for some arbitrary types a and b. The second argument x has to be fed as
an input to f, so its type must be a. The output of apply is £ x, which has type b. Thus,
we have,

apply :: (@ -=>b) ->a > b

Notice that we must put brackets around (a->b) to ensure that this is not seen as a function
of three variables.
What if we change the function to apply f twice to x?

twice f x = f (f x)

In this case, we see that the output (£ x) is fed back as an input to £. This means that the

input and output types a and b must be the same, so f :: a -> a and the type of twice
is given by
twice :: (a > a) -> a -> a

The analysis we did by hand when trying to deduce the type of apply and twice is built
in to Haskell. Thus, if we do not provide an explicit type for a function, Haskell will start
with the most general assumption about the type and impose the constraints inferred from
the function definitions to arrive at a final type.

As a last remark, recall that in our discussion of functions with multiple inputs we said
that each input transforms the original function into a new one. Thus, when we write plus
m n = m+n, after the input m is provided, we get a new function (plus m) which is of type
Int -> Int. This intermediate function actually does exist in “real” life. For instance, if
we write apply (plus 7) 8, we get the answer 15.



The datatype Char

In Haskell, character constants are written within single quotes, like *a’, 37, *%’, #’,
... Like all other datatypes, characters are encoded in a table.

Two functions are provided that allow us to interpret characters in terms of their internal
position in the table and vice versa.

ord :: Char -> Int
chr :: Int -> Char

These are inverses of each other, so for each Char ¢, ¢ == chr(ord c), and for each Int
i that is a valid encoding of a Char, i == ord (chr i).

The actual way in which characters are organized in a table may vary from one system to
another. In practice, most current systems use the encoding called ASCII in which characters
are represented by positive binary numbers from 0 to 255. However, some languages use a
larger range of encodings to accommodate characters from alphabets of different languages.

We shall assume only the following facts about the encoding of characters in Haskell.

e The characters *a’, ’b’, ..., ’z’ occur consecutively.

e The characters *A’, B, ..., *Z’ occur consecutively.

e The characters 0’, ’1’, ..., *9’ occur consecutively.

This means that ord ’b’ is always (ord ’a’) + 1, and (ord ’A’ - ord ’a’) == (ord
"B’ - ord ’b’) etc

Let us define a function capitalize that maps ’a’, ’b’, ..., ’z’ to ’A’, ’B’, ..., ’Z’

and leaves all other characters unchanged.
Here is a brute force definition of capitalize that makes use of the fact that we have
26 values to transform.

capitalize :: Char -> Char
capitalize ’a’ = A’
capitalize ’b’ = ’B’
capitalize ’y’ =Y’
capitalize ’z’ = ’Z°

capitalize c = ¢

The first 26 lines do the capitalization. The last line preserves all values other than ’a’,

)b) ’Z’.

e
Here is a slightly smarter version of the same function that uses the fact that the dis-
placement between a lower case letter and its capitalized version is a constant.



capitalize :: Char -> Char

capitalize c
| (a’ <= c && c <= ’z’) = chr (ord ¢ + (ord ’A’ - ord ’a’))
| otherwise =c

Notice that we are allowed compare the order of characters—this is used to check if ¢
lies between ’a’ and ’z’. Comparison is based on the ord value of a character : character
x is less than character y if ord x < ord y.

However, we cannot perform arithmetic on characters. Expressions such as *a’ + 2 are
illegal. Thus, while it is true that ’c’ == chr (ord ’a’ + 2), it is nonsensical to claim
that ’c’ = ’a’ + 2.

Strings

Programs that manipulate text deal with sequences of characters, not single characters.
A sequence of characters is normally called a string. In Haskell, a sequence of charac-
ters is just a list of Char, or a value of type [Char]. The word String is a synonym
for [Char]. Also, instead of writing strings using somewhat tedious list notation such
as [’h’,’e’,’1’,°1’,°0’] we are allowed to directly write the string in double quotes,
"hello" in this case.

Manipulating a String is easy—a String is just a list of Char so all list function work
on String just like any other list. Thus, length can be used to get the length of a String,
concat can be used to collapse a list of Strings into a single long String etc.

length "hello" ~ 5

concat ["hello"," ","world"] ~» "hello world"

It is important to remember that single quotes denote character constants while double
quotes denote strings. For instance, *a’ is the character a while "a" is the list [’a’].

Here is an example of a function on String. This function uses the function capitalize
we wrote earlier to convert each letter in a String to uppercase.

touppercase :: String -> String

touppercase "" = ""
touppercase (c:cs) = (capitalize c):(touppercase cs)

Notice that in the inductive definition we use "" to denote the empty string. This is trans-
lated to [], the empty list of Char.

Here is another example of a function on Strings—exists checks whether a given char-
acter occurs in a given string.



exists :: Char -> String -> Bool

exists ¢ "" = False
exists ¢ (x:xs)
| ¢ == x = True

| otherwise = exists c xs

Thus, as we march along the String, if we find a copy of the Char we are looking for,
we report True and stop. Otherwise, we continue looking along the rest of the String. If
we don’t find a copy of what we are looking for, we eventually reach the empty string and
return False.

Exercise Write a function position :: Char -> String -> Int such that position
¢ s returns the first position in s where ¢ occurs and returns -1 if ¢ does not occur in
s. Note that a valid answer for this function must be either -1 or a number in the range
{0,1,...,length s - 1}.



