
Introduction to Programming, Aug-Dec 2006

Lecture 2, Thursday 10 Aug 2006

Multiple definitions

Haskell does not limit us to a single definition for a function. We can give multiple definitions
which are scanned from top to bottom. The first definition that matches is used to compute
the value of the output. For instance, here is an alternative definition of xor.

xor :: Bool -> Bool -> Bool

xor True False = True

xor False True = True

xor b1 b2 = False

When does a function invocation match a definition? We have to check that it matches
for each argument. If the definition has a variable for an argument, then any value supplied
when invoking the function matches on that argument and the value supplied is uniformly
substituted for the variable throughout the definition. On the other hand, if the definition
has a constant value for an argument, the value supplied when invoking the function must
match precisely.

For instance, in the revised definition of xor, if we invoke the function as xor False

True, the first definition does not match, but the second one does. If we invoke the function
as xor True True, the first two definitions both fail to match and we end up using the third
one.

We can use multiple definitions to define a function inductively. For instance, here is a
definition of the function factorial.

factorial :: Int -> Int -> Int

factorial 0 = 1

factorial n = n*(factorial (n-1))

If we write, for instance, factorial 3, then only the second definition matches, leaving
us with the expression 3*(factorial 2), after uniformly substituting 3 for n and simpli-
fying (3-1) to 2. We use the second definition two more times to get 3*(2*(factorial

1)) and then 3*(2*(1*(factorial 0))). Now, the first definition matches, and we get
3*(2*(1*(1))) which Haskell can evaluate using its built-in rules for * to return 6.

Notice that there is no guarantee that an inductive definition in Haskell is correct, nor
that it terminates on all inputs. Reflect, for instance, on what would happen if we invoked
our function as factorial (-1).

1



Observe the bracketing in the second defintion above. We write n*(factorial (n-1)).
This says we should compute (n-1), then feed this to factorial and multiply the result by
n. If, instead, we write n*(factorial n-1), Haskell would interpret this as n*((factorial
n)-1)—in other words, feed n to factorial, subtract 1 from the result and then multiply
by n. For arithmetic and relational expressions, the normal precedence rules of arithmetic
apply, so an unbracketed expression such as x <= 5 || y > 6 would be implicitly bracketed
correctly as (x <= 5) || (y > 6). However, function application binds more tightly than
arithmetic operators, so factorial n-1 is interpreted as (factorial n)-1 rather than
factorial (n-1).

Function definitions with guards

Often, a function definition applies only if certain conditions are satisfied by the values of
the inputs. Here is an example of how to define factorial to work with negative inputs.
If the input is negative, we negate it and invoke factorial on the corresponding positive
quantity.

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

In this version of factorial , the second definition has two options depending on the
value of n. If n < 0, the first definition applies. If n > 0, the second definition applies.
These conditions are called guards, since they restrict entry to the definition that follows.
Each guarded definition is signalled using |. Notice that lines beginning with | are indented.
This tells Haskell that these lines are continuations of the current definition.

Observe that we can combine definitions of different types. In this example, the first
definition, factorial 0 is a simple expression while the second defintion is a conditional
one.

The guards in a conditional definition are scanned from top to bottom. They may overlap,
in which case the definition that is used is the one corresponding to the first guard that is
satisfied. For instance, we could write:

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

| n > 0 = n * (factorial (n-1))

2



Now, factorial 2 would match the guard n > 1 while factorial 1 would match the
guard n > 0.

The guards in a conditional defintion may also not cover all cases. For instance, suppose
we write:

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

factorial 1 = 1

Now, the invocation factorial 1 matches neither guard and falls through (fortunately)
to the third definition. If we had not supplied the third definition, any invocation other than
factorial 0 would eventually have tried to evaluate factorial 1, for which no match
would have been found, leading to the Haskell interpreter printing an error message like the
following:

Program error: pattern match failure: factorial 1

Often, we do want to catch all leftover cases in the last guard. Rather than tediously
specify the options that have been left out, we can use the word otherwise, as in the
following definition of xor:

xor :: Bool -> Bool -> Bool

xor b1 b2

| b1 && not(b2) = True

| not(b1) && b2 = True

| otherwise = False

In this definition, note that since b1 and b2 are of type Bool, we can directly write
b1 && not(b2) instead of the more explicit version b1 == True && b2 == False.

More on pattern matching

When we match a function invocation with a defintion involving variables, the variables are
uniformly substituted by the values supplied. However, each input variable in the function
definition would be distinct. Consider the following function, which checks if both its inputs
are equal:

isequal :: Int -> Int -> Bool

isequal x y = (x == y)

3



It is tempting to try and rewrite this function as follows:

isequal :: Int -> Int -> Bool

isequal x x = True

isequal x y = False

The idea would be that the first definition implicitly checks whether both arguments are
equal by forcing them to both match x and hence match each other. However, this is illegal
in Haskell: each variable on the left hand side of a definition should be distinct.

Sometimes, an argument is not used on the right hand side of a definition. Consider the
following definition that computes x^n.

power :: Float -> Int -> Float

power x 0 = 1.0

power x n | n > 0 = x * (power x (n-1)

Here, the value of x^0 is 1.0 for all values of x. In such a situation, we can use a
special variable _ that matches any argument but cannot be used on the right hand side of
a definition.

power :: Float -> Int -> Float

power _ 0 = 1.0

power x n | n > 0 = x * (power x (n-1)

Unlike normal variables, we can use more than one copy of _ in a definition, since the
corresponding value cannot be used on the righthand side in any case. As an example, here
is a function that checks if at least two of its three Bool arguments are True.

twoofthree :: Bool -> Bool -> Bool -> Bool

twoofthree True True _ = True

twoofthree True _ True = True

twoofthree _ True True = True

twoofthree _ _ _ = False

How Haskell ”computes”

Computation in Haskell is like simplifying expressions in algebra. Relatively early in school,
we learn that (a + b)2 is a2 + 2ab + b2. This means that wherever we see (x + y)2 in an
expression, we can replace it by x2 + 2xy + y2.

In the same way, Haskell computes by rewriting expressions using functions and operators.
We say rewriting rather than simpliyfing because it is not clear, sometimes, that the rewritten
expression is “simpler” than the original one!

4



To begin with, Haskell has rewriting rules for operations on built-in types. For instance,
the fact that 6 + 2 is 8 is embedded in a Haskell rewriting rule that says that 6+2 can be
rewritten as 8. In the same way, True && False can be rewritten to False, etc.

In addition to the builtin rules, the function definitions that we supply are also used for
rewriting. For instance, given the following definition of factorial

factorial :: Int -> Int -> Int

factorial 0 = 1

factorial n = n*(factorial (n-1))

here is how ”factorial 3” would be evaluated. In the following, we use ; to denote rewrite
to:

factorial 3 ; 3 * (factorial (3-1))

; 3 * (factorial (2))

; 3 * (2 * factorial (2-1))

; 3 * (2 * factorial (1))

; 3 * (2 * (1 * factorial (1-1)))

; 3 * (2 * (1 * factorial (0)))

; 3 * (2 * (1 * 1))

; 3 * (2 * 1)

; 3 * 2

; 6
When rewriting expressions, brackets may be opened up to change the order of evaluation.

Sometimes, more than one rewriting path may be available. For instance, we could have
completed the computation above as follows.

factorial 3 ; 3 * (factorial (3-1))

; 3 * (factorial (2))

; 3 * (2 * factorial (2-1))

; (3 * 2) * (factorial (2-1)) <== New expression

; 6 * (factorial (2-1)))

; 6 * (factorial (1))

; 6 * (1 * factorial (1-1))

; 6 * (1 * factorial (0))

; 6 * (1 * 1)

; 6 * 1

; 6
In Haskell, the “result” of a computation is an expression that cannot be further sim-

plified. In general, it is guaranteed that any path we follow leads to the same “result”, if
a “result” is found. It could be that one choice of simplification could yield a result while
another may not. For instance, using our definition of power

power :: Float -> Int -> Float

power _ 0 = 1.0

power x n | n > 0 = x * (power x (n-1)

5



we could consider the expression power (8.0/0.0) 0.
Using the first rule, this reduces as

power (8.0/0.0) 0 ; 1.0

However, if we first try to simplify (8.0/0.0), we get an expression without a value so, in
a sense, we have

power (8.0/0.0) 0 ; Error

Alternatively, we could even try to evaluate an expression such as

power (1.0 * factorial (-1)) 0

where the first rule for power yields the result 1.0 while repeatedly trying to simplify the
argument (1.0 * factorial (-1)) will go into an unending sequence of simplifications
yielding no result.

Haskell uses a form of simplification that is called lazy—it does not simplify the argument
to a function until the value of the argument is actually needed in the evaluation of the
function. In particular, Haskell would evaluate both the expressions above to 1.0. We will
examine the consequences of having such a lazy evaluation strategy at a later stage in the
course.

Lists

Suppose we want a function that finds the maximum of all values from a collection. We
cannot use an individual variable to represent each value in the collection because when we
write our function definition we have to fix the number of variables we use, which limits our
function to work only with collections that have exactly that many variables.

Instead, we need a way to collectively associate a group of values with a variable. In
Haskell, the most basic way of collecting a group of values is to form a list. A list is a sequence
of values of a fixed type and is written within square brackets separated by commas. Thus,
[1,2,3,1] is a list of Int, while [True,False,True] is a list of Bool. The underlying type
of a list must be uniform: we cannot write lists such as [1,2,True] or [3.0,’a’]. A list of
underlying type T has type [T]. Thus, [1,2,3,1] is of type [Int], [True,False,True] is
of type [Bool], . . .

Lists can be nested: we can have lists of lists. For instance, [[1,2],[3],[4,4]] is a list
each of whose members is a list of Int, so the type of this list is [[Int]].

The empty list is uniformly denoted [] for all list types.

6



Internal representation of lists

Internally, Haskell builds lists incrementally, one element at a time, starting with the empty
list. This incremental building can be done from left to right (each new element is tagged
on at the end of the current list) or from right to left (each new element is tagged on at the
beginning of the current list). For historical reasons, Haskell chooses the latter, so all lists
are built up right to left, starting with the empty list.

The basic listbuilding operator, denoted :, takes an element and a list and returns a new
list. For instance 1:[2,3,4] returns [1,2,3,4]. As mentioned earlier, all lists in Haskell
are built up right to left, starting with the empty list. So, internally the list [1,2,3,4] is
actually 1:(2:(3:(4:[]))). We always bracket the binary operator : from right to left,
so we can unambiguously leave out the brackets and write [1,2,3,4] as 1:2:3:4:[]. It
is important to note that all the human readable forms of a list [x1,x2,x3,...,xn] are
internally represented canonically as x1:x2:x3:...:xn:[]. Thus, there is no difference
between the lists [1,2,3], 1:[2,3], 1:2:[3] and 1:2:3:[].

Defining functions on lists

Most functions on lists are defined by induction on the structure of the list. The base case
specifies a value for the empty list. The inductive case specifies a way to combine the leftmost
element with an inductive evaluation of the function on the rest of the list. The functions
head and tail return the first element and the rest of the list for all nonempty lists. These
functions are undefined for the empty list. We can use head and tail in our inductive
definitions.

Here is a function that computes the length of a list of Int.

length :: [Int] -> Int

length [] = 0

length l = 1 + (length (tail l))

Notice that if the second definition matches, we know that l is nonempty, so tail l

retuns a valid value.
In general, the inductive step in a list based computation will use both the head and the

tail of the list to build up the final value. Here is a function that computes the sum of the
elements of a list of Int.

sum :: [Int] -> Int

sum [] = 0

sum l = (head l) + (sum (tail l))

7


