Interprocedural analysis: Sharir-Pnueli’s functional approach

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

24 September 2010
We want join over all “valid” paths at each program point.

Simply taking “JOP” on extended CFG would lose precision.

Can we compute “JVP” (Join over Valid Paths) values instead?

- JOP
- JVP (interprocedurally valid)
Example program: Available expressions analysis

- 0 (not available)
- 1 (available)
- ⊥

Lattice for Av-Exp analysis.

Is \(a \cdot b\) available at program point \(N\)?

read \(a, b\)

\[t := a \cdot b\]

call \(p\)

\[t := a \cdot b\]

print \(t\)
Example program: Available expressions analysis

- 0 (not available)
- 1 (available)
- \perp

Lattice for Av-Exp analysis.

- Is \(a*b\) available at program point \(N\)?
- No if we consider all paths.
Example program: Available expressions analysis

- 0 (not available)
- 1 (available)
- ⊥

Lattice for Av-Exp analysis.

- Is \(ab\) available at program point \(N\)?
- No if we consider all paths.
- Yes if we consider interprocedurally valid paths only.
Convention: r_p and e_p are respectively the root and return nodes of procedure p. Root of the main procedure is r_1.

A path ρ is interprocedurally valid and complete if the sequence of call nodes and return notes form a balanced parenthesis string.

A path in $IVP_0(r_1, D)$ for example program:

- C ("call p") \cdot O \cdots H ("call p") \cdot L \cdots J ("ret") \cdot M \cdots J ("ret") \cdot N \cdot D.

Note that "call p" must be matched by "ret$_p$."
A path ρ is **interprocedurally valid** if it is a prefix of a valid and complete path.

A path in $\text{IVP}(r_1, I)$ for example program:
Defining JVP

For a given program P and analysis $((D, \leq), f_{MN}, d_0)$, the join over all interprocedurally valid paths (JVP) at point N is defined to be:

$$\bigcup_{\rho \in IVP(r_1, N)} f_\rho(d_0).$$
In non-procedural case, we setup equations to capture JOP assuming distributivity. Least solution to these equations gave us exact/over-approx JOP depending on distributive/monotonic framework.

Try to set up similar equations for x_N (JVP at program point N).
Instead try to capture join over complete paths first

- Set up equations to capture join over complete paths.
- Now set up equations to capture JVP using join over complete path values.
Basic idea: Why join over complete paths help

An IVP path ρ from r_1 to N in procedure p can be written as $\delta \cdot \eta$ where δ is in $\text{IVP}(r_1, r_p)$, and η is in $\text{IVP}_0(r_p, N)$.

Consider point where procedure p was last entered.
For a procedure \(p \) and node \(N \) in \(p \), define:

\[
\phi_{r_p, N} : D \rightarrow D
\]

given by

\[
\phi_{r_p, n}(d) = \bigcup \text{paths } \rho \in \text{IVP}_0(r_p, N) f_{\rho}(d).
\]

\(\phi_{r_p, N} \) is thus the join of all functions \(f_{\rho} \) where \(\rho \) is an interprocedurally valid and complete path from \(r_p \) to \(N \).
Equations (1) to capture $\phi_{r_p,N}$

\[
\begin{align*}
\psi_{r_p,r_p} &= id_D \\
\psi_{r_p,N} &= f_{MN} \circ \psi_{r_p,M} \\
\psi_{r_p,N} &= \psi_{r_p,e_q} \circ \psi_{r_p,M} \\
\psi_{r_p,N} &= \psi_{r_p,L} \sqcup \psi_{r_p,M}.
\end{align*}
\]
Example: Equations for ϕ’s

\[
\begin{align*}
\psi_{A,A} &= \text{id} \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= \text{id} \circ \psi_{A,D} \\
\phi_{F,F} &= \text{id} \\
\phi_{F,G} &= \text{id} \circ \psi_{F,F} \\
\phi_{F,K} &= \text{id} \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \cup \psi_{F,K}
\end{align*}
\]
Equations (2) to capture JVP

\[
\begin{align*}
x_1 & \geq d_0 \\
x_{r_p} & = \bigcup_{\text{calls } c \text{ to } p \text{ in } q} \phi_{r_q,c}(x_{r_q}) \\
x_n & = \phi_{r_p,n}(x_{r_p}) \quad \text{for } n \in \mathbb{N}_p - \{r_p\}.
\end{align*}
\]
Example: Equations for x_N’s (JVP)

\[
\begin{align*}
 x_A & \geq 0 \\
 x_B & = 0(x_A) \\
 x_C & = 1(x_A) \\
 x_P & = 1(x_A) \\
 x_D & = 1(x_A) \\
 x_E & = 1(x_A) \\
 x_F & = 1(x_A) \sqcup 0(x_F) \\
 x_G & = id(x_F) \\
 x_K & = id(x_F) \\
 x_H & = 0(x_F) \\
 x_Q & = 0(x_F) \\
 x_I & = 1(x_F) \\
 x_J & = id(x_F).
\end{align*}
\]

Fig. shows values of $\phi_{r_p, N}$’s in bold.
Correctness and algo

- Consider lattice \((F, \leq)\) of functions from \(D\) to \(D\), obtained by closing the transfer functions, identity, and \(f_\perp : d \mapsto \perp\) (denoted \(f_\Omega\) by Sharir-Pnueil) under composition and join.
- Ordering is \(f \leq g\) iff \(f(d) \leq g(d)\) for each \(d \in D\).
- \((F, \leq)\) is also a complete lattice.
- \(\overline{f}\) induced by Eq (1) is a monotone function on the complete lattice \((\overline{F}, \overline{\leq})\).
- LFP / least solution exists.

Claim

\(\phi_{r_p, N}'s\) are the least solution to Eq (1) when \(f_{MN}'s\) are distributive. Otherwise \(\phi_{r_p, N}'s\) are dominated by the least solution to Eq (1).

Kleene/Kildall’s algo will compute LFP (assuming \(D\) finite).
Correctness and algo - II

- \(\overline{f} \) induced by Eq (2) is a monotone function on the complete lattice \((\overline{D}, \leq)\).
- LFP / least solution exists.

Claim

JVP\(_N\)'s are the least solution to Eq (2) when \(f_{MN} \)'s are distributive. Otherwise JVP\(_N\)'s are dominated by the least solution to Eq (2).

Kleene/Kildall’s algo will compute LFP (assuming \(D \) finite).
Example: Equations for ϕ’s

\[
\begin{align*}
\psi_{A,A} &= id \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_F, J \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= id \circ \psi_{A,D} \\
\phi_{F,F} &= id \\
\phi_{F,G} &= id \circ \psi_{F,F} \\
\phi_{F,K} &= id \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \sqcup \psi_{F,K} \\
\end{align*}
\]
Example: Equations for φ’s

\[
\begin{align*}
\psi_{A,A} &= \text{id} \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_F,J \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= \text{id} \circ \psi_{A,D} \\
\phi_{F,F} &= \text{id} \\
\phi_{F,G} &= \text{id} \circ \psi_{F,F} \\
\phi_{F,K} &= \text{id} \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \sqcup \psi_{F,K}
\end{align*}
\]
Example: Equations for ϕ’s

\[
\begin{align*}
\psi_{A,A} &= id \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= id \circ \psi_{A,D} \\
\phi_{F,F} &= id \\
\phi_{F,G} &= id \circ \psi_{F,F} \\
\phi_{F,K} &= id \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \sqcup \psi_{F,K}
\end{align*}
\]
Example: Equations for ϕ’s

$\psi_{A,A} = \text{id}$
$\psi_{A,B} = 0 \circ \psi_{A,A}$
$\psi_{A,C} = 1 \circ \psi_{A,B}$
$\psi_{A,P} = \phi_F, J \circ \psi_{A,C}$
$\psi_{A,D} = 1 \circ \psi_{A,P}$
$\psi_{A,E} = \text{id} \circ \psi_{A,D}$

$\phi_{F,F} = \text{id}$
$\phi_{F,G} = \text{id} \circ \psi_{F,F}$
$\phi_{F,K} = \text{id} \circ \psi_{F,F}$
$\phi_{F,H} = 0 \circ \psi_{F,G}$
$\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}$
$\phi_{F,I} = 1 \circ \psi_{F,Q}$
$\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$
Example: Equations for ϕ's

\[
\begin{align*}
\psi_{A,A} &= id \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= id \circ \psi_{A,D} \\
\phi_{F,F} &= id \\
\phi_{F,G} &= id \circ \psi_{F,F} \\
\phi_{F,K} &= id \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \sqcup \psi_{F,K} \\
\end{align*}
\]
Example: Equations for ϕ's

\[
\begin{align*}
\psi_{A,A} &= id \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= id \circ \psi_{A,D} \\
\phi_{F,F} &= id \\
\phi_{F,G} &= id \circ \psi_{F,F} \\
\phi_{F,K} &= id \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \sqcup \psi_{F,K}
\end{align*}
\]
Example: Equations for ϕ’s

\[
\begin{align*}
\psi_{A,A} & = id \\
\psi_{A,B} & = 0 \circ \psi_{A,A} \\
\psi_{A,C} & = 1 \circ \psi_{A,B} \\
\psi_{A,P} & = \phi_F,J \circ \psi_{A,C} \\
\psi_{A,D} & = 1 \circ \psi_{A,P} \\
\psi_{A,E} & = id \circ \psi_{A,D} \\
\phi_{F,F} & = id \\
\phi_{F,G} & = id \circ \psi_{F,F} \\
\phi_{F,K} & = id \circ \psi_{F,F} \\
\phi_{F,H} & = 0 \circ \psi_{F,G} \\
\phi_{F,Q} & = \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} & = 1 \circ \psi_{F,Q} \\
\phi_{F,J} & = \psi_{F,I} \cup \psi_{F,K}
\end{align*}
\]
Motivation Functional Approach

Example

Exercise 1 Iterative Approach

Example: Equations for φ’s

\[\psi_{A,A} = \text{id} \]
\[\psi_{A,B} = 0 \circ \psi_{A,A} \]
\[\psi_{A,C} = 1 \circ \psi_{A,B} \]
\[\psi_{A,P} = \phi_{F,J} \circ \psi_{A,C} \]
\[\psi_{A,D} = 1 \circ \psi_{A,P} \]
\[\psi_{A,E} = \text{id} \circ \psi_{A,D} \]

\[\phi_{F,F} = \text{id} \]
\[\phi_{F,G} = \text{id} \circ \psi_{F,F} \]
\[\phi_{F,K} = \text{id} \circ \psi_{F,F} \]
\[\phi_{F,H} = 0 \circ \psi_{F,G} \]
\[\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H} \]
\[\phi_{F,I} = 1 \circ \psi_{F,Q} \]
\[\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K} \]

Diagram:

- Node A: \(\text{id} \)
- Node B: 0
- Node C: 1
- Node D: \(f_\perp \)
- Node E: \(f_\perp \)
- Node F: \text{id}
- Node G: \text{id}
- Node H: 0
- Node I: 1
- Node J: \(f_\perp \)
- Node K: \text{id}
- Node L: \text{id}
- Node M: \text{id}
- Node N: \text{id}
- Node O: 6
- Node P: \text{id}
- Node Q: \text{id}
- Node R: \text{id}
- Node S: \text{id}
- Node T: \text{id}
- Node U: \text{id}
- Node V: \text{id}
- Node W: \text{id}
- Node X: \text{id}
- Node Y: \text{id}
- Node Z: \text{id}

Arrows:
- \(r_1 \)
- \(r_2 \)
- \(c_1 \)
- \(c_2 \)
- \(n_1 \)
- \(n_2 \)
- \(e_1 \)
- \(e_2 \)

Actions:
- \(\text{read a,b} \)
- \(\text{call p} \)
- \(\text{print t} \)
- \(\text{ret} \)
Example: Equations for ϕ's

\[
\begin{align*}
\psi_{A,A} &= \text{id} \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= \text{id} \circ \psi_{A,D} \\
\phi_{F,F} &= \text{id} \\
\phi_{F,G} &= \text{id} \circ \psi_{F,F} \\
\phi_{F,K} &= \text{id} \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \sqcup \psi_{F,K}
\end{align*}
\]
Example: Equations for ϕ’s

\[
\begin{align*}
\psi_{A,A} &= \text{id} \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= \text{id} \circ \psi_{A,D} \\
\phi_{F,F} &= \text{id} \\
\phi_{F,G} &= \text{id} \circ \psi_{F,F} \\
\phi_{F,K} &= \text{id} \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \sqcup \psi_{F,K}
\end{align*}
\]
Example: Equations for \(\phi \)'s

\[
\begin{align*}
\psi_{A,A} & = id \\
\psi_{A,B} & = 0 \circ \psi_{A,A} \\
\psi_{A,C} & = 1 \circ \psi_{A,B} \\
\psi_{A,P} & = \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} & = 1 \circ \psi_{A,P} \\
\psi_{A,E} & = id \circ \psi_{A,D} \\
\phi_{F,F} & = id \\
\phi_{F,G} & = id \circ \psi_{F,F} \\
\phi_{F,K} & = id \circ \psi_{F,F} \\
\phi_{F,H} & = 0 \circ \psi_{F,G} \\
\phi_{F,Q} & = \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} & = 1 \circ \psi_{F,Q} \\
\phi_{F,J} & = \psi_{F,I} \sqcup \psi_{F,K}
\end{align*}
\]
Example: Equations for ϕ’s

$\psi_{A,A} = id$

$\psi_{A,B} = 0 \circ \psi_{A,A}$

$\psi_{A,C} = 1 \circ \psi_{A,B}$

$\psi_{A,P} = \phi_F,J \circ \psi_{A,C}$

$\psi_{A,D} = 1 \circ \psi_{A,P}$

$\psi_{A,E} = id \circ \psi_{A,D}$

$\phi_{F,F} = id$

$\phi_{F,G} = id \circ \psi_{F,F}$

$\phi_{F,K} = id \circ \psi_{F,F}$

$\phi_{F,H} = 0 \circ \psi_{F,G}$

$\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}$

$\phi_{F,I} = 1 \circ \psi_{F,Q}$

$\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$

Motivation

Functional Approach

Example

Exercise 1

Iterative Approach
Example: Equations for ϕ’s

\[
\begin{align*}
\psi_{A,A} &= id \\
\psi_{A,B} &= 0 \circ \psi_{A,A} \\
\psi_{A,C} &= 1 \circ \psi_{A,B} \\
\psi_{A,P} &= \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} &= 1 \circ \psi_{A,P} \\
\psi_{A,E} &= id \circ \psi_{A,D}
\end{align*}
\]

\[
\begin{align*}
\phi_{F,F} &= id \\
\phi_{F,G} &= id \circ \psi_{F,F} \\
\phi_{F,K} &= id \circ \psi_{F,F} \\
\phi_{F,H} &= 0 \circ \psi_{F,G} \\
\phi_{F,Q} &= \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} &= 1 \circ \psi_{F,Q} \\
\phi_{F,J} &= \psi_{F,I} \sqcup \psi_{F,K}
\end{align*}
\]
Example: Equations for ϕ’s

- $\psi_{A,A} = id$
- $\psi_{A,B} = 0 \circ \psi_{A,A}$
- $\psi_{A,C} = 1 \circ \psi_{A,B}$
- $\psi_{A,P} = \phi_{F,J} \circ \psi_{A,C}$
- $\psi_{A,D} = 1 \circ \psi_{A,P}$
- $\psi_{A,E} = id \circ \psi_{A,D}$

- $\phi_{F,F} = id$
- $\phi_{F,G} = id \circ \psi_{F,F}$
- $\phi_{F,K} = id \circ \psi_{F,F}$
- $\phi_{F,H} = 0 \circ \psi_{F,G}$
- $\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}$
- $\phi_{F,I} = 1 \circ \psi_{F,Q}$
- $\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$
Example: Equations for ϕ’s

$\psi_{A,A} = id$
$\psi_{A,B} = 0 \circ \psi_{A,A}$
$\psi_{A,C} = 1 \circ \psi_{A,B}$
$\psi_{A,P} = \phi_{F,J} \circ \psi_{A,C}$
$\psi_{A,D} = 1 \circ \psi_{A,P}$
$\psi_{A,E} = id \circ \psi_{A,D}$

$\phi_{F,F} = id$
$\phi_{F,G} = id \circ \psi_{F,F}$
$\phi_{F,K} = id \circ \psi_{F,F}$
$\phi_{F,H} = 0 \circ \psi_{F,G}$
$\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}$
$\phi_{F,I} = 1 \circ \psi_{F,Q}$
$\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$
Example: Equations for ϕ's

$$
\begin{align*}
\psi_{A,A} & = id \\
\psi_{A,B} & = 0 \circ \psi_{A,A} \\
\psi_{A,C} & = 1 \circ \psi_{A,B} \\
\psi_{A,P} & = \phi_{F,J} \circ \psi_{A,C} \\
\psi_{A,D} & = 1 \circ \psi_{A,P} \\
\psi_{A,E} & = id \circ \psi_{A,D} \\
\phi_{F,F} & = id \\
\phi_{F,G} & = id \circ \psi_{F,F} \\
\phi_{F,K} & = id \circ \psi_{F,F} \\
\phi_{F,H} & = 0 \circ \psi_{F,G} \\
\phi_{F,Q} & = \psi_{F,J} \circ \psi_{F,H} \\
\phi_{F,I} & = 1 \circ \psi_{F,Q} \\
\phi_{F,J} & = \psi_{F,I} \sqcup \psi_{F,K}
\end{align*}
$$
Example: Equations for x_N’s (JVP)

\[
\begin{align*}
xA & \geq 0 \\
xB &= 0(x_A) \\
xC &= 1(x_A) \\
XP &= 1(x_A) \\
XD &= 1(x_A) \\
XE &= 1(x_A) \\
XF &= 1(x_A) \sqcup 0(x_F) \\
XG &= id(x_F) \\
XK &= id(x_F) \\
XH &= 0(x_F) \\
XQ &= 0(x_F) \\
XI &= 1(x_F) \\
XJ &= id(x_F).
\end{align*}
\]
Example: Equations for x_N's (JVP)

- $x_A \geq 0$
- $x_B = 0(x_A)$
- $x_C = 1(x_A)$
- $x_P = 1(x_A)$
- $x_D = 1(x_A)$
- $x_E = 1(x_A)$
- $x_F = 1(x_A) \sqcup 0(x_F)$
- $x_G = id(x_F)$
- $x_K = id(x_F)$
- $x_H = 0(x_F)$
- $x_Q = 0(x_F)$
- $x_I = 1(x_F)$
- $x_J = id(x_F)$

Fig shows initial (red) and final (blue) values.
Example: Equations for x_N’s (JVP)

\begin{align*}
 x_A & \geq 0 \\
 x_B & = 0(x_A) \\
 x_C & = 1(x_A) \\
 x_P & = 1(x_A) \\
 x_D & = 1(x_A) \\
 x_E & = 1(x_A) \\
 x_F & = 1(x_A) \uplus 0(x_F) \\
 x_G & = id(x_F) \\
 x_K & = id(x_F) \\
 x_H & = 0(x_F) \\
 x_Q & = 0(x_F) \\
 x_I & = 1(x_F) \\
 x_J & = id(x_F). \\
\end{align*}

Fig shows initial (red) and final (blue) values.
Exercise: Use the functional method to do interprocedural constant propagation analysis for the program below, with initial value \emptyset.

```
1. $a := a + 1$
2. $a := 0$
3. call p
4. print a
5. G
6. cond
7. G
8. $a := a + 1$
9. call p
10. $a := a - 1$
11. ret
```

Use the program structure to propagate constants through the program.
Summary of functional approach

- Uses a two step approach
 1. Compute $\phi_{r_p,N}$’s.
 2. Compute x_n’s (JVP’s) at each point.

Summary of conditions: For each property (column heading), the conjunction of the ticked conditions (row headings) are sufficient to ensure the property.

<table>
<thead>
<tr>
<th></th>
<th>Termination</th>
<th>Least Sol of Eq(2) \geq JVP</th>
<th>Least Sol of Eq(2) = JVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MN}’s monotonic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Finite underlying lattice</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributive</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Iterative/Tabulation Approach

- Maintain a table of values representing the current value of \(\phi_{r_p,N} \) for each program point \(N \) in procedure \(p \).
- Informally, at \(N \) in procedure \(p \), the table has an entry \(d \mapsto d' \) if we have seen valid paths \(\rho \) from \(r_1 \) to \(r_p \) with \(\bigcup \rho f_{\rho}(d_0) = d \), and valid and complete paths \(\delta \) from \(r_p \) to \(N \) with \(\bigcup \delta f_{\delta}(d) = d' \).
- Apply Kildall’s algo with initial value of \(d_0 \mapsto d_0 \) at \(r_1 \).
Propogation rules

- If \(d \mapsto d' \) at point \(M \), and statement corresponding to \(MN \) is not a call or \texttt{ret}, then propagate \(d \mapsto f_{MN}(d') \) to point \(N \).
- If \(d \mapsto d' \) at point \(M \), and statement after \(M \) is call \(q \), then
 - propagate \(d \mapsto d' \) to point \(r_q \),
 - propagate \(d \mapsto d'' \) to return site of \(N \) of \(M \), provided we have \(d' \mapsto d'' \) at point \(e_q \).
- If \(d \mapsto d' \) at point \(e_q \) (i.e. before \texttt{ret} in procedure \(q \)), then
 - If \(LN \) corresponds to a call \(q \) and \(d'' \mapsto d \) at \(L \), then
 - propagate \(d'' \mapsto d' \) to point \(N \). (Do this for all such \(N \).)
Example: Computing ϕ’s iteratively: 1

Motivation

Iterative Approach

Example

Exercise 1

Iterative Approach

Example: Computing ϕ’s iteratively: 1
Example: Computing \(\phi \)'s iteratively: 2

Motivation

Functional Approach

Example

Exercise 1

Iterative Approach

```
read a, b

\[ t := a \times b \]

call p

\[ t := a \times b \]

print t

```

```
\begin{align*}
a &:= a - 1 \\
\text{call p} \\
\text{print } t \\
\text{ret}
\end{align*}
```
Example: Computing ϕ's iteratively: 3

Iterative Approach

Example Exercise 1

Motivation

Functional Approach

Example

Exercise 1

Iterative Approach
Example: Computing ϕ's iteratively: 4

Iterative Approach Example Exercise 1

Iterative Approach

Motivation Functional Approach Example Exercise 1

Iterative Approach

Example: Computing ϕ's iteratively: 4

Iterative Approach Example Exercise 1

Iterative Approach

Example: Computing ϕ's iteratively: 4

Iterative Approach Example Exercise 1

Iterative Approach
Example: Computing ϕ’s iteratively: 5

Iterative Approach

Example: Computing ϕ’s iteratively: 5

Motivation Functional Approach Example Exercise 1 Iterative Approach

read a, b

\[\text{call p} \]

\[\text{print t} \]

\[t := a \times b \]

\[t := a \times b \]

\[\text{call p} \]

\[a == 0 \]

\[\text{call p} \]

\[a := a-1 \]

\[t := a \times b \]

\[\text{print t} \]

\[\text{ret} \]
Example: Computing ϕ’s iteratively: 6

Motivation

Iterative Approach

Example

Exercise 1
Example: Computing ϕ’s iteratively: 7

```
read a, b

\[ t := a \times b \]

\[ a := a - 1 \]

\[ \text{call } p \]

\[ t := a \times b \]

\[ \text{print } t \]
```

```
\[ t := a \times b \]

\[ a := a - 1 \]

\[ \text{call } p \]

\[ t := a \times b \]

\[ \text{ret} \]
```
Example: Computing ϕ’s iteratively: 8

1. **Iterative Approach**

Example: Computing ϕ’s iteratively:

- $a := a - 1$
- $t := a * b$
- $a := a - 1$
- $t := a * b$
- ...
Example: Computing ϕ's iteratively: 9

```
read a, b

A 0

B 0

t := a*b

C 1

call p

P 1

t := a*b

D 1

print t

E 1
```

```
a := a-1

F 0 1

G 0 1

a == 0

H 0 0

call p

I

t := a*b

J

ret
```

```
K 0 1
```

```
L

M

N

O
```

```
F 6
```

```
G 0 1
```

```
a := a-1
```

```
H 0 0
```

```
I
```

```
J
```

```
K 0 1
```

```
L

M

N

O
```

```
F 6
```

```
G 0 1
```

```
a := a-1
```

```
H 0 0
```

```
I
```

```
J
```

```
K 0 1
```
Example: Computing ϕ's iteratively: 10

```
a := a-1
F
G

read a, b
B

A

0

C

1

call p

P

1

t := a*b

D

1

call p

I

0

J

0

K

0

L

0

M

0

N

0

O

0

F

6

G

a == 0

H

0

0

K

0

1

L

O

1

M

1

N

1

ret

E

1

t := a*b

D

1

print t

E

1
```
Example: Computing ϕ’s iteratively: 11

```
read a, b

A 0

B 0

t := a*b

C 1

call p

P 1

t := a*b

D 1

print t

E 1

I 0

J 0

ret
```

```
a == 0

G 0

H 0

call p

Q 0

K 0
```

```
a := a-1

O

F 0

6
```

```
t := a*b

M

N
```

```
0 1
92x178
```

```
1
92x165
0
```

```
-0
92x131
-1
92x62
0 0
```

```
0 1
92x104
```

```
0 1
92x573
```
Example: Computing ϕ’s iteratively: 12
Example: Computing ϕ’s iteratively: 13

```
read a, b

t := a * b

call p

print t
```

```
a := a - 1

call p

t := a * b

ret
```
Example: Finally compute x_N’s from ϕ values

At each point N take join of reachable $\phi_{r_p,N}$ values.

```
read a, b

A

B

t := a * b

C

call p

P

t := a * b

D

print t

E
```

```
a := a - 1

F

G

a == 0

H

a := a - 1

I

call p

J

t := a * b

K

L

N

M

O

ret
```

Correctness of iterative algo

\[
\begin{align*}
 x_1 & \geq d_0 \\
 x_{r_p} &= \bigcup_{\text{calls } c \text{ to } p \text{ in } q} \psi_{r_q,c}^*(x_{r_q}) \\
 x_n &= \psi_{r_p,n}^*(x_{r_p}) \quad \text{for } n \in \mathbb{N}_p - \{r_p\}.
\end{align*}
\]

- Iterative algo terminates provided underlying lattice is finite.
- It computes the least solution to the equations above, where \(\psi^*(r_{p_N})\)'s are the least solution to Eq (1).
- It thus computes an overapproximation of JVP for monotonic transfer functions, and exact JVP when transfer functions are distributive.
Exercise 2: Iterative algo

Exercise: Use the iterative algo to do constant propagation analysis for the program below with initial value $∅$:

```
A := 0
B
Call p
C
Print a
D
```

```
cond
G
H
Call p
P
I
J
Ret
```

```
a := a + 1
```

```
a := a - 1
```
Comparing functional vs iterative approach

- Functional algo can terminate even when underlying lattice is infinite, provided we can represent and compose/join functions “symbolically”.
- Iterative is typically more efficient than functional since it only computes $\phi_{r_p,N}$’s for values reachable at start of procedure.