
Name: Roll No:

Programming Language Concepts

Quiz 2, II Semester, 2023–2024
20 February, 2024

1. Consider the following Rust functions.

(i) fn fact1 (n : i32) -> i32{

let mut i = 1;

let mut fact = 1;

while i <= n {

fact = fact * i;

i = i + 1;

}

return fact;

}

(ii) fn fact2 (n : i32) -> i32{

let mut i = 1;

let fact = 1;

while i <= n {

let fact = fact * i;

i = i + 1;

}

return fact;

}

(iii) fn fact3 (n : i32) -> i32{

let mut i = 1;

let fact = 1;

while i <= n {

let fact = fact * i;

let i = i + 1;

}

return fact;

}

(iv) fn fact4 (n : i32) -> i32{

let fact = 1;

while n > 0 {

let fact = fact * n;

n = n - 1;

}

return fact;

}

Fill in each entry in the following table with Yes or No.

Compiles Runs Terminates Correct answer

fact1 Y Y Y Y
fact2 Y Y Y N
fact3 Y Y N N
fact4 N N N N

Explanations

(i) No problems.

(ii) fact redeclared inside the loop has a different scope from fact initialized to 1 initially.
The return value is the outer fact, which is always 1.

(iii) The i being tested in the while condition is the outer i. The i incremented inside the
loop is a fresh variable with a different scope and the increment is “lost” each time the
loop ends. This results in an infinite loop.

(iv) This code does not compile. To update n inside the function, the parameter should be
tagged as mut.

. . .Question 2 on reverse



2. Consider the following Rust functions.

(i) fn maxlen1(s1 : String, s2 : String)

-> String {

if s1.len() > s2.len() {s1}

else {s2}

}

fn main1(){

let x = String::from("Python");

let y = String::from("Java");

let z = maxlen1(x,y);

println!("maxlen1({}, {}) is {}",

x,y,z);

}

(ii) fn maxlen2(s1 : String, s2 : String)

-> (String,String,String) {

let s3 = if s1.len() > s2.len()

{s1} else {s2};

return(s1,s2,s3);

}

fn main2(){

let x = String::from("Python");

let y = String::from("Java");

let (x,y,z) = maxlen2(x,y);

println!("maxlen2({}, {}) is {}",

x,y,z);

}

(iii) fn maxlen3(s1 : String, s2 : String)

-> (String,String,String) {

let s3 = if s1.len() > s2.len()

{s1.clone()}

else {s2.clone()};

return(s1,s2,s3);

}

fn main3(){

let x = String::from("Python");

let y = String::from("Java");

let (x,y,z) = maxlen3(x,y);

println!("maxlen3({}, {}) is {}",

x,y,z);

}

(iv) fn maxlen4(s1 : &str, s2 : &str)

-> &str {

if s1.len() > s2.len() {s1}

else {s2}

}

fn main4(){

let x = String::from("Python");

let y = String::from("Java");

let z = maxlen4(&x,&y);

println!("maxlen4({}, {}) is {}",

x,y,z);

}

Fill in each entry in the following table with Yes or No.

Compiles Runs Terminates Correct answer

maxlen1,main1 N N N N
maxlen2,main2 N N N N
maxlen3,main3 Y Y Y Y
maxlen4,main4 N N N N

Explanations

(i) Ownership of the strings x and y is transferred to maxlen1(), so they are undefined in
main1() after the call to maxlen1().

(ii) Within maxlen2() the assignment to s3 moves the ownership of either s1 or s2 to s3.
There are only two string objects in scope at the return statement.

(iii) Since we are cloning s1 or s2 to assign to s3, this code works fine.

(iv) maxlen4() returns a reference corresponding to one of its two arguments. To avoid
dangling references, Rust requires us to annotate the lifetimes of the arguments and
the return value.


