
Recursive functions and Turing machines

1 Primitive recursive and partial recursive functions
Definition 1.1 (Initial functions). The following are the initial functions:

Zero Z(n) = 0;

Successor S(n) = n+ 1; and

Projection Πki (n1, . . . ,nk) = ni (one projection for every pair k, i with i ¶ k).
Definition 1.2 (Composition). A function f :Nk→N is obtained by composition from g :Nl→N and
h1, . . . ,hl :Nk→N if

f(n⃗) = g(h1(n⃗), . . . ,hl(n⃗)).
We use the notation f = g ◦ (h1,h2, . . . ,hl).

Definition 1.3 (Primitive recursion). A function f :Nk+1→N is obtained by primitive recursion from
g :Nk→N and h :Nk+2→N if

f(0, n⃗) = g(n⃗)
f(i+ 1, n⃗) = h(i, f(i, n⃗), n⃗)

If g and h are total functions, f is also total.

Definition 1.4 (µ-recursion). A function f : Nk→ N is obtained by µ-recursion orminimization from
g :Nk+1→N if

f(n⃗) =
(
i if g(i, n⃗) = 0 and ∀j < i : g(j, n⃗) > 0
undefined otherwise

We use the notation f(n⃗) = µi(g(i, n⃗) = 0). Note that f need not be total even when g is, and that if f(n⃗) = i,
then g(j, n⃗) is defined for all j ¶ i.
Definition 1.5 (Primitive recursive, recursive functions). The class of primitive recursive func-
tions is the smallest class of functions containing the initial functions, and closed under composition and
primitive recursion.
The class of (partial) recursive functions is the smallest class of functions containing the initial func-

tions, and closed under composition, primitive recursion and µ-recursion.

1

2 Recursive functions are Turing computable
Since we know that Turing machines can simulate simple while programs, we show how recur-
sive functions can be translated to programs.

• The initial functions have trivial programs.

• If f : Nk → N is defined by f = g ◦ (h1, . . . ,hl), the following program computes f, assuming
programs already exist for g and the hi’s.
int f(int x1, int x2, FF., int xk) {

y1 = h1(x1, x2, FF., xk);
y2 = h2(x1, x2, FF., xk);
FF.
yl = hl(x1, x2, FF., xk);
return g(y1, y2, FF., yl);

}

• If f : Nk+1 → N is defined from g : Nk → N and h : Nk+2 → N by primitive recursion, the
following program computes f, assuming programs already exist for g and h.
int f(int y, int x1, FF., int xk) {

result = g(x1, FF., xk); // f(0, x1, FF., xk)
for (i = 0; i < y; iF+) { // computing f(i+1, x1, FF., xk)

result = h(i, result, x1, FF., xk);
}
return result;

}

• If f :Nk→N is defined from g :Nk+1→N by µ-recursion, then here is the program for f.
int f(int x1, FF., int xk) {

i = 0;
while (g(i, x1, FF., xk) > 0) {

i = i + 1;
}
return i;

}

3 Primitive recursive functions and relations – examples
The first few examples are written strictly in the official template, specifying the exact g and
h used to obtain the function. Then we slip to an informal notation and just write recursive

2

equations. The reader can convert them to the official template.

• f(n) = n+ 2 is S ◦S

• plus(n,m) = n + m is got by primitive recursion from g = Π11 and h = S ◦Π
3
2. It is easily

verified that plus(0,m) = g(m) = Π11(m) = m, and that plus(n + 1,m) = h(n,plus(n,m),m) =
(S ◦Π32)(n,plus(n,m),m) = S(plus(n,m)) = (n+m) + 1 = (n+ 1) +m.

• mult(n,m) = nm is got by primitive recursion from g = Z and h = plus ◦ (Π32,Π33). Verifying
the equations is left as an exercise.

• exp(n,m) = mn is got by primitive recursion from g = S ◦Z and h = mult ◦ (Π32,Π33). Verifying
the equations is again left as an exercise.

• sum(n) =∑ni=0 i is defined as sum′ ◦ (Π11,Π11), where sum′(n,m) =∑ni=0 i is definedbyprimitive
recursion from g = Z and h = plus ◦ (S ◦Π31 ,Π

3
2).

Clearly sum′(0,m) = Z(m) = 0 as desired, while

sum′(n+1,m) = h(n, sum′(n,m),m) = (plus ◦ (S ◦Π31 ,Π
3
2)) (n, sum

′(n,m),m) = (n+1)+
n∑
i=0
i =

n+1∑
i=0
i.

• The predecessor function on natural numbers is defined as follows:

pred(n) =
(
0 if n = 0
n− 1 otherwise

It is primitive recursive: pred = pred′ ◦ (Π11,Π11)where pred
′ is obtainedbyprimitive recursion

from g = Z and h =Π31 .

• Cutoff subtraction m−n on natural numbers is defined as usual, except thatm−n = 0 ifm ¶ n.
It can be defined using primitive recursion from g =Π11 and h = pred ◦Π

3
2.

• Factorial

0! = 1
(n+ 1)! = (n+ 1) · n!

• Bounded sums g(z, x⃗) =
∑
y¶z
f(y, x⃗) is defined as follows:

g(0, x⃗) = f(0, x⃗)
g(y+ 1, x⃗) = g(y, x⃗) + f(y+ 1, x⃗)

3

• Bounded products g(z, x⃗) =
∏
y¶z
f(y, x⃗) is defined as follows:

g(0, x⃗) = f(0, x⃗)
g(y+ 1, x⃗) = g(y, x⃗) · f(y+ 1, x⃗)

Definition 3.1. A relation R ⊆Nk is primitive recursive if its characteristic function cR is primitive recursive.
• iszero is primitive recursive since ciszero is a primitive recursive function.

iszero(0) = true ciszero(0) = succ(Z(0))
iszero(n+ 1) = false ciszero(n+ 1) = Z(n)

• x ¶ y iff iszero(x− y), so c¶(x,y) = ciszero(x− y), and hence ¶ is a primitive recursive relation.

• c¬φ = 1 − cφ , cφ∧ψ = cφ · cψ, so primitive recursive relations are closed under boolean opera-
tions.

• For φ(z, x⃗) = (∀y ¶ z)ψ(y, x⃗), cφ(z, x⃗) =
∏
y¶z
cψ(y, x⃗), hence primitive recursive relations are

closed under bounded universal quantification.

• x = y, x < y, φ ∨ψ, φ → ψ, (∃y ¶ z)φ(y, x⃗)etc. are obtained easily by combining the above
logical operators.

• Boundedµ-recursion: Ifφ(y, x⃗) is a relation, thenµy : φ(y, x⃗) is defined tobeµy.(1−cφ(y, x⃗) = 0),
the smallest y forwhichφ(y, x⃗) holds. This is not necessarily primitive recursive, butwhen
we apply a bound on the search, it is. Bounded µ-recursion is defined as follows:

µy¶z φ(y, x⃗) =
(
µy.φ(y, x⃗) if (∃y ¶ z)φ(y, x⃗)
z+ 1 otherwise

It can be shown to be primitive recursive ifφ is. Letψ′(y, x⃗) be (∀w < y)¬φ(w, x⃗) andψ(y, x⃗)
be φ(y, x⃗)∧ψ′(y, x⃗). If φ is primitive recursive, so are ψ′ and ψ, and

µy¶z φ(y, x⃗) =
�∑
y¶z
y · cψ(y, x⃗)
�
+ (z+ 1) · cψ′(z+ 1, x⃗).

• x divides y
x|y iff (∃z ¶ y) (x · z = y)

• x is even
even(x) iff 2|x

4

• x is odd
odd(x) iff ¬even(x)

• x is a prime
prime(x) iff x ¾ 2 ∧ (∀y ¶ x)(y|x→ y = 1∨ y = x)

• the n-th prime (this is a function)

Pr(0) = 2
Pr(n+ 1) = the smallest prime greater than Pr(n)

= µy¶Pr(n)!+1 (prime(y)∧ y > Pr(n))
The (very loose) bound is guaranteed by Euclid’s proof. You can use Bertrand’s postulate
to get better bounds.

• the exponent of (the prime) k in the decomposition of y

exp(y, k) = µx¶y
�
kx|y∧¬(kx+1|y)�

• x
2
= µy¶x(2y ¾ x)

• There is a primitive coding of the plane innatural numbers. The standardCantor bijection
betweenN×N andN is primitive recursive, defined by

pair(x,y) =
(x+ y)2 + 3x+ y

2

• The inverses are also primitive recursive:

fst(z) = µx¶z
�
(∃y ¶ z)(z = pair(x,y))�

snd(z) = µy¶z
�
(∃x ¶ z)(z = pair(x,y))�

• Finally, finite sequences of natural numbers can be coded in a primitive recursive fashion.

– The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn
– n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

– length of sequence coded by x
ln(x) = (x)0

– x is a sequence number, i.e. codes a sequence (this is a predicate)

Seq(x) iff (∀n ¶ x) �(n > 0∧ (x)n ̸= 0)→ n ¶ ln(x)�
5

4 Turing computable functions are recursive
Definition 4.1 (Turing machines). A (two-way infinite, non-deterministic) Turing machine M is a
triple (Q ,Σ,∆) where:

• Q = {q0, q1, . . . , ql} is a finite set of states (we adopt the convention that the first one listed, q0, is the
initial state, and that the next one, q1, is the final state);

• Σ = {0, 1} is the tape alphabet; and

• ∆ is a finite set of transitions, each of the form

(qi,a) −−→ (qj, b,d),
where i, j ¶ l, a, b � Σ, d � {L,R}. A transition of the above form means that the machine, in state qi
and reading symbol a on the tape, switches to state qj, overwriting the tape cell with the symbol b, and
moves in direction specified by d (either left or right).

Definition 4.2 (Turing machine configurations). Suppose M = (Q ,Σ,∆) is Turing machine. A con-
figuration is a triple (q, t, i) where:

• q � Q is the current state;

• t : Z→ Σ is the tape contents (we are assuming that the tape cells are indexed by the integers), such
that t(i) = 0 for all but finitely many i � Z; and

• i � Z is the position of the tape head.
An initial configuration is a triple (q, t, i) where q = q0 (the initial state) and t(j) = 0 for all j > i.
A final configuration is a triple (q, t, i) where q = q1 (the final state) and t(j) = 0 for all j > i.
For any binary string w = bn−1bn−2 . . . b0 (where n ¾ 0), the number it represents, denoted val(w), is defined

to be
∑
0¶i<n
bi · 2i. When n = 0, then w is the empty word, and val(w) = 0.

For any configuration C = (q, t, i), if t(j) = 0 for all j � Z, define L(C) = R(C) = 0. Otherwise let j and k
being the smallest and largest indices such that t(j) = 1 and t(k) = 1. We define L(C) and R(C) as below:

• L(C) = val
�
t(j)t(j+ 1) · · · t(i)� (if i < j, the string is empty and its value is 0); and

• R(C) = val
�
t(k)t(k− 1) · · · t(i+ 1)� (if k ¶ i, the string is empty and represents 0). We read the tape

to the right of the head in reverse, to make it easy to define L(C′) and R(C′) from L(C) and R(C), when
there is a transition from C to C′.

We can always define our machines in such a way that there is always some transition out of
every non-final configuration, but there is no transition out of any final configuration. Then a
machine halts on an input if and only if it reaches a final configuration, starting from the initial
configuration representing the input.

6

Definition 4.3 (Turing computability). A (partial) function f : N→ N is Turing computable if there is
a Turing machine M such that for all n � N, f(n) = m iff M started with initial configuration Ci such that
L(Ci) = n eventually halts in a final configuration Cf such that L(Cf) = m.
We emphasize thatM does not halt on inputs where f is not defined. It suffices to consider unary functions,

since we can code up multiple inputs into one number.

Coding configurations Fix a Turing machineM = ({q0, q1, . . . , ql}, {0, 1},∆). The following en-
codings are primitive recursive.

• A configuration C = (qj, t, i) ofM is coded by the number pair(j,pair(L(C),R(C))).

• The state of a configuration coded by n is given by state(n) = fst(n).

• The tape contents to the left of the head in a configuration coded by n is given by left(n) =
fst(snd(n)).

• The tape contents to the right of thehead in a configuration codedby n is givenby right(n) =
snd(snd(n)).

• The predicate config(n), that says that n codes up a configuration ofM, is defined by 0 ¶
state(n) ¶ l.

• initial(n)⇔ state(n) = 0∧ right(n) = 0 says that n codes up an initial configuration.
• final(n)⇔ state(n) = 1∧ right(n) = 0 says that n codes up a final configuration.

Coding transitions Fix a Turing machine M = ({q0, q1, . . . , ql}, {0, 1},∆) like before. We show
how to code transitions by primitive recursive predicates, by way of two examples.

• Suppose t � ∆ is the transition (q4, 0) −−→ (q8, 1,L). We define the primitive recursive
predicate stept(c, c′) meaning that t can be fired in configuration coded by c, yielding a con-
figuration coded by c′. Letting c = pair(i,pair(l, r)) and c′ = pair(i′,pair(l′, r′)), we have the
following constraints:

– i = 4 and i′ = 8;

– rightmost bit of l is 0, i.e. even(l) holds;

– l′ is got by dropping the last bit of l, .i.e. l′ = l
2
; and

– r′ acquires a new rightmost bit, which is 1, i.e. r′ = 2r+ 1.

We can define stept(c, c′) as follows:

7

config(c) ∧ config(c′) ∧ state(c) = 4 ∧ state(c′) = 8 ∧ even(left(c)) ∧
2 · left(c′) = left(c) ∧ right(c′) = 2 · right(c) + 1

• Suppose t � ∆ is the transition (q7, 1) −−→ (q2, 0,R). Letting c = pair(i,pair(l, r)) and c′ =
pair(i′,pair(l′, r′)), we have the following constraints:

– i = 7 and i′ = 2;

– rightmost bit of l is 1, i.e. odd(l) holds;

– if we let b be the rightmost bit of r, i.e. b = codd(r), l′ acquires b as its rightmost bit, and
its second bit from right changes from 1 to 0, i.e..i.e. l′ = 2(l− 1) + b; and

– r′ is got by dropping the rightmost bit of r i.e. r′ = r
2
.

We can define stept(c, c′) as follows:

config(c) ∧ config(c′) ∧ state(c) = 7 ∧ state(c′) = 2 ∧ odd(left(c)) ∧
left(c′) = 2(left(c) − 1) + codd(right(c)) ∧ 2 · right(c′) = right(c)

Coding transitions and runs Fix a TuringmachineM = ({q0, q1, . . . , ql}, {0, 1},∆) like before. We
present primitive recursive encodings of runs.

• stepM(c, c′)⇔
∨
t�∆
stept(c, c

′).

• A (terminating) run ofM on input n is a sequence of configurations c1, . . . , ck such that:

– c1 is an initial configuration with left(c1) = n;

– ck is a final configuration, with the output recoverable as left(ck); and

– for all i < k, stepM(ci, ci+1) holds.

• Here is the primitive recursive predicate runM(n, s), which says that s codes up a terminat-
ing run ofM on input n (we always put the result m, which is recoverable from the last
configuration of the run, in an easily accessible position of s):

∃r, k,m ¶ s { s = pair(m, r) ∧ Seq(r)∧ k = ln(r) ∧ initial((r)1) ∧ final((r)k) ∧
left((r)1) = n ∧ left((r)k) = m ∧ (∀i < k)[stepM((r)i, (r)i+1)] }

• If s codes a run ofM, fst(s) returns the output of the run.

8

Turing computable functions are recursive

Theorem 4.4. If f :N→N is a Turing computable (partial) function, it is also partial recursive.
Proof. Suppose f is computed by a Turing machineM. We define f on input n � N as follows:

f(n) = fst
�
µs.runM(n, s)
�
. ♣

A consequence is Kleene’s normal form theorem, which states that recursive functions are pre-
cisely those that can be expressed as fst(µs.T(n, s)) for a primitive recursive predicate T. (Any-
thing of the form fst(µs.T(n, s)) for primitive recursive T is clearly recursive. In the other di-
rection, given a recursive function f, simply translate it to its Turing machine description, and
translate back using the above theorem.)

9

	Primitive recursive and partial recursive functions
	Recursive functions are Turing computable
	Primitive recursive functions and relations – examples
	Turing computable functions are recursive

