Madhavan Mukund, S P Suresh

Programming Language Concepts Lecture 25, 23 April 2024

• Start with a system of equations over terms

- Start with a system of equations over terms
- Find a **substitution** for variables that satisfies equations

- Start with a system of equations over terms
- Find a **substitution** for variables that satisfies equations
- Least constrained solution most general unifier (mgu)

• Fix a set of function symbols and constants – signature

3/11

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o

3/11

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables

3/11

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables
 - Every variable is a term

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables
 - Every variable is a term
 - If f is a k-ary function symbols and t_1, \ldots, t_k are terms, $f(t_1, \ldots, t_k)$ is also a term

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables
 - Every variable is a term
 - If f is a k-ary function symbols and t_1, \ldots, t_k are terms, $f(t_1, \ldots, t_k)$ is also a term
- **Example** Types in λ -calculus

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables
 - Every variable is a term
 - If f is a k-ary function symbols and t_1, \ldots, t_k are terms, $f(t_1, \ldots, t_k)$ is also a term
- **Example** Types in λ -calculus
 - Int, Bool ... are constants

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables
 - Every variable is a term
 - If f is a k-ary function symbols and t_1, \ldots, t_k are terms, $f(t_1, \ldots, t_k)$ is also a term
- **Example** Types in λ -calculus
 - Int, Bool ... are constants
 - \rightarrow , [], (\cdot, \cdot) ... are function symbols

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables
 - Every variable is a term
 - If f is a k-ary function symbols and t_1, \ldots, t_k are terms, $f(t_1, \ldots, t_k)$ is also a term
- **Example** Types in λ -calculus
 - Int, Bool ... are constants
 - \rightarrow , [], (\cdot, \cdot) ... are function symbols
- Notation

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables
 - Every variable is a term
 - If f is a k-ary function symbols and t_1, \ldots, t_k are terms, $f(t_1, \ldots, t_k)$ is also a term
- **Example** Types in λ -calculus
 - Int, Bool ... are constants
 - \rightarrow , [], (\cdot, \cdot) ... are function symbols
- Notation
 - $a, b, c, \ldots, f, g, \ldots, x, y, \ldots$ are function symbols

- Fix a set of function symbols and constants signature
 - Each function symbol has an arity
 - Constants are functions with arity o
- Terms are well-formed expressions, including variables
 - Every variable is a term
 - If f is a k-ary function symbols and t_1, \ldots, t_k are terms, $f(t_1, \ldots, t_k)$ is also a term
- **Example** Types in λ -calculus
 - Int, Bool ... are constants
 - \rightarrow , [], (\cdot, \cdot) ... are function symbols
- Notation
 - *a*, *b*, *c*, ..., *f*, *g*, ..., *x*, *y*, ... are function symbols
 - *A*, *B*, *C*, *F*, *X*, *Y*, ... are variables

f(X) = f(f(a))g(Y) = g(Z)

• **Substitution**: assigns a term to each variable X, Y, Z

4/11

- **Substitution**: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X := f(a), Y := g(a), Z := g(a)\} = \theta$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X := f(a), Y := g(a), Z := g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)

- **Substitution**: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X := f(a), Y := g(a), Z := g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
 - Apply substitution in parallel

- **Substitution**: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X := f(a), Y := g(a), Z := g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
 - Apply substitution in parallel
 - t = g(p(X), q(f(Y)))

- **Substitution**: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X := f(a), Y := g(a), Z := g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
 - Apply substitution in parallel
 - t = g(p(X), q(f(Y)))
 - $\gamma = \{X := Y, Y := f(a)\}$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X := f(a), Y := g(a), Z := g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
 - Apply substitution in parallel
 - t = g(p(X), q(f(Y)))
 - $\gamma = \{X := Y, Y := f(a)\}$
 - $t\gamma = g(p(Y), q(f(f(a)))) g(p(Y)), \text{not } g(p(f(a)))$

f(X) = f(f(a))g(Y) = g(Z)

• Many solutions are possible

- Many solutions are possible
 - $\theta = \{X := f(a), Y := g(a), Z := g(a)\}$

- Many solutions are possible
 - $\theta = \{X := f(a), Y := g(a), Z := g(a)\}$

•
$$\theta' = \{X := f(a), Y := a, Z := a\}$$

f(X) = f(f(a))g(Y) = g(Z)

• Many solutions are possible

• $\theta = \{X := f(a), Y := g(a), Z := g(a)\}$

•
$$\theta' = \{X := f(a), Y := a, Z := a\}$$

• $\theta'' = \{X := f(a), Y := Z\}$

- Many solutions are possible
 - $\theta = \{X := f(a), Y := g(a), Z := g(a)\}$
 - $\theta' = \{X := f(a), Y := a, Z := a\}$
 - $\theta'' = \{X := f(a), Y := Z\}$
- θ'' is the **least constrained**

- Many solutions are possible
 - $\theta = \{X := f(a), Y := g(a), Z := g(a)\}$
 - $\theta' = \{X := f(a), Y := a, Z := a\}$
 - $\theta'' = \{X := f(a), Y := Z\}$
- θ'' is the **least constrained**
- Any solution γ can be broken up into θ'' followed by another substitution

f(X) = f(f(a))g(Y) = g(Z)

• Many solutions are possible

- $\theta = \{X := f(a), Y := g(a), Z := g(a)\}$
- $\theta' = \{X := f(a), Y := a, Z := a\}$
- $\theta'' = \{X := f(a), Y := Z\}$
- θ'' is the **least constrained**
- Any solution γ can be broken up into θ'' followed by another substitution
 - θ is θ'' followed by $\{Y := g(a)\}$

f(X) = f(f(a))g(Y) = g(Z)

• Many solutions are possible

- $\theta = \{X := f(a), Y := g(a), Z := g(a)\}$
- $\theta' = \{X := f(a), Y := a, Z := a\}$
- $\theta'' = \{X := f(a), Y := Z\}$
- θ'' is the **least constrained**
- Any solution γ can be broken up into θ'' followed by another substitution
 - θ is θ'' followed by $\{Y := g(a)\}$
- Least constrained solution most general unifier

• Equations of the form $p(\cdots) = q(\cdots)$

6/11

- Equations of the form $p(\cdots) = q(\cdots)$
 - Outermost function symbols do not agree

6/11

- Equations of the form $p(\cdots) = q(\cdots)$
 - Outermost function symbols do not agree
 - No substitution can equate the two sides

- Equations of the form $p(\cdots) = q(\cdots)$
 - Outermost function symbols do not agree
 - No substitution can equate the two sides
 - **Example**: No substitution for type variables can equate [p] and (q, r)

6/11

Obstacles to unification

- Equations of the form $p(\cdots) = q(\cdots)$
 - Outermost function symbols do not agree
 - No substitution can equate the two sides
 - **Example**: No substitution for type variables can equate [p] and (q, r)
- Equations of the form $X = f(\cdots X \cdots)$

Obstacles to unification

- Equations of the form $p(\cdots) = q(\cdots)$
 - Outermost function symbols do not agree
 - No substitution can equate the two sides
 - **Example**: No substitution for type variables can equate [p] and (q, r)
- Equations of the form $X = f(\cdots X \cdots)$
 - Any substitution for X applies also to the X nested inside f

Obstacles to unification

- Equations of the form $p(\cdots) = q(\cdots)$
 - Outermost function symbols do not agree
 - No substitution can equate the two sides
 - **Example**: No substitution for type variables can equate [p] and (q, r)
- Equations of the form $X = f(\cdots X \cdots)$
 - Any substitution for X applies also to the X nested inside f
- These are the **only two** obstacles to unification

A unification algorithm

• Start with system of equations

 $l_1 = r_1$ $l_2 = r_2$ \vdots $l_n = r_n$

A unification algorithm

• Start with system of equations

 $l_{1} = r_{1}$ $l_{2} = r_{2}$ \vdots $l_{n} = r_{n}$

• Perform a sequence of transformations on these equations till no more transformations apply

1) t = X, t not a variable $\rightarrow X = t$

- 1) t = X, t not a variable $\longrightarrow X = t$
- 2 Erase equations of the form X = X

- 1 t = X, t not a variable $\longrightarrow X = t$
- 2 Erase equations of the form X = X
- 3 Let t = t' where t is $f(\cdots)$ and t' is $f'(\cdots)$

- 1 t = X, t not a variable $\longrightarrow X = t$
- 2 Erase equations of the form X = X
- 3 Let t = t' where t is $f(\cdots)$ and t' is $f'(\cdots)$
 - $f \neq f' \quad \rightsquigarrow \quad \text{terminate: unification not possible}$

- 1 t = X, t not a variable $\rightsquigarrow X = t$
- 2 Erase equations of the form X = X
- 3 Let t = t' where t is $f(\cdots)$ and t' is $f'(\cdots)$
 - $f \neq f' \rightarrow$ terminate: unification not possible
 - $f(t_1,\ldots,t_k) = f(t'_1,\ldots,t'_k)$

- 1 t = X, t not a variable $\rightarrow X = t$
- 2 Erase equations of the form X = X
- 3 Let t = t' where t is $f(\cdots)$ and t' is $f'(\cdots)$
 - $f \neq f' \rightarrow$ terminate: unification not possible
 - $f(t_1,\ldots,t_k) = f(t'_1,\ldots,t'_k)$
 - Replace by k new equations $t_1 = t'_1, \ldots, t_k = t'_k$

- 1 t = X, t not a variable $\rightarrow X = t$
- 2 Erase equations of the form X = X
- 3 Let t = t' where t is $f(\cdots)$ and t' is $f'(\cdots)$
 - $f \neq f' \rightarrow$ terminate: unification not possible
 - $f(t_1,...,t_k) = f(t'_1,...,t'_k)$
 - Replace by k new equations $t_1 = t'_1, \ldots, t_k = t'_k$
- **4** X = t, X is a proper subterm of $t \rightarrow t$ terminate: unification not possible

- 1 t = X, t not a variable $\rightarrow X = t$
- 2 Erase equations of the form X = X
- 3 Let t = t' where t is $f(\cdots)$ and t' is $f'(\cdots)$
 - $f \neq f' \rightarrow$ terminate: unification not possible
 - $f(t_1,...,t_k) = f(t'_1,...,t'_k)$
 - Replace by k new equations $t_1 = t'_1, \ldots, t_k = t'_k$
- **4** X = t, X is a proper subterm of $t \rightarrow t$ terminate: unification not possible
- **(5)** X = t, X does not occur in $t \rightarrow Replace$ all other occurrences of X by t

• The algorithm terminates

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_i = t_i$

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_i = t_i$
 - exactly one occurrence of X_i

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_i = t_i$
 - exactly one occurrence of X_i
- Define a substitution $\{X_1 := t_1, \dots, X_m := t_m\}$

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_i = t_i$
 - exactly one occurrence of X_i
- Define a substitution $\{X_1 := t_1, \dots, X_m := t_m\}$
- This substitution is a unifier

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_i = t_i$
 - exactly one occurrence of X_i
- Define a substitution $\{X_1 := t_1, \dots, X_m := t_m\}$
- This substitution is a unifier
 - Each of the transformations preserves solutions

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_i = t_i$
 - exactly one occurrence of X_i
- Define a substitution $\{X_1 := t_1, \dots, X_m := t_m\}$
- This substitution is a unifier
 - Each of the transformations preserves solutions
- The substitution is also an mgu

g(Y) = Xf(X, h(X), Y) = f(g(Z), W, Z)

g(Y) = Xf(X, h(X), Y) = f(g(Z), W, Z)

X = g(Y)f(X, h(X), Y) = f(g(Z), W, Z)

$$g(Y) = X \qquad X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z) \qquad X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

$$X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$g(Y) = X \qquad X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z) \qquad X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

$$X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$g(Z) = g(Y)$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

g(Y) = X	X = g(Y)	Z = Y
f(X, h(X), Y) = f(g(Z), W, Z)	X = g(Z)	X = g(Z)
	h(X) = W	h(g(Z)) = W
	Y = Z	Y = Z
X = g(Y)		
f(X,h(X),Y) = f(g(Z),W,Z)		
	g(Z) = g(Y)	
	X = g(Z)	
	h(g(Z)) = W	
	Y = Z	

g(Y) = X	X = g(Y)	Z = Y
f(X,h(X),Y) = f(g(Z),W,Z)	X = g(Z)	X = g(Z)
	h(X) = W	h(g(Z)) = W
	Y = Z	Y = Z
X = g(Y)		
f(X,h(X),Y) = f(g(Z),W,Z)		
	g(Z) = g(Y)	Z = Z
	X = g(Z)	X = g(Z)
	h(g(Z)) = W	h(g(Z)) = W
	Y = Z	Y = Z

g(Y) = X	X = g(Y)	Z = Y	X = g(Z)
f(X,h(X),Y)=f(g(Z),W,Z)	X = g(Z)	X = g(Z)	h(g(Z)) = W
	h(X) = W	h(g(Z)) = W	Y = Z
	Y = Z	Y = Z	
X = g(Y)			
f(X, h(X), Y) = f(g(Z), W, Z)			
	g(Z) = g(Y)	Z = Z	
	X = g(Z)	X = g(Z)	
	h(g(Z)) = W	h(g(Z)) = W	
	Y = Z	Y = Z	

g(Y) = X	X = g(Y)	Z = Y	X = g(Z)
f(X,h(X),Y) = f(g(Z),W,Z)	X = g(Z)	X = g(Z)	h(g(Z)) = W
	h(X) = W	h(g(Z)) = W	Y = Z
	Y = Z	Y = Z	
X = g(Y)			
f(X,h(X),Y) = f(g(Z),W,Z)			X = g(Z)
	g(Z) = g(Y)	Z = Z	W = h(g(Z))
	X = g(Z)	X = g(Z)	Y = Z
	h(g(Z)) = W	h(g(Z)) = W	
	Y = Z	Y = Z	

Equations: g(Y) = X f(X, h(X), Y) = f(g(Z), W, Z)**Unifier:** $\{X := g(Z), Y := Z, W := h(g(Z))\}$