Unification

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 25, 23 April 2024

Unification

- Start with a system of equations over terms

Unification

- Start with a system of equations over terms
- Find a substitution for variables that satisfies equations

Unification

- Start with a system of equations over terms
- Find a substitution for variables that satisfies equations
- Least constrained solution - most general unifier (mgu)

Terms

- Fix a set of function symbols and constants - signature

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables
- Every variable is a term

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables
- Every variable is a term
- If f is a k-ary function symbols and t_{1}, \ldots, t_{k} are terms, $f\left(t_{1}, \ldots, t_{k}\right)$ is also a term

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables
- Every variable is a term
- If f is a k-ary function symbols and t_{1}, \ldots, t_{k} are terms, $f\left(t_{1}, \ldots, t_{k}\right)$ is also a term
- Example - Types in λ-calculus

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables
- Every variable is a term
- If f is a k-ary function symbols and t_{1}, \ldots, t_{k} are terms, $f\left(t_{1}, \ldots, t_{k}\right)$ is also a term
- Example - Types in λ-calculus
- Int, Bool ...are constants

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables
- Every variable is a term
- If f is a k-ary function symbols and t_{1}, \ldots, t_{k} are terms, $f\left(t_{1}, \ldots, t_{k}\right)$ is also a term
- Example - Types in λ-calculus
- Int, Bool ... are constants
- \rightarrow, [], ($\cdot, \cdot)$...are function symbols

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables
- Every variable is a term
- If f is a k-ary function symbols and t_{1}, \ldots, t_{k} are terms, $f\left(t_{1}, \ldots, t_{k}\right)$ is also a term
- Example - Types in λ-calculus
- Int, Bool ...are constants
$\bullet \rightarrow,[],(\cdot, \cdot) \ldots$ are function symbols
- Notation

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables
- Every variable is a term
- If f is a k-ary function symbols and t_{1}, \ldots, t_{k} are terms, $f\left(t_{1}, \ldots, t_{k}\right)$ is also a term
- Example - Types in λ-calculus
- Int, Bool ...are constants
- \rightarrow, [], ($\cdot, \cdot)$...are function symbols
- Notation
- $a, b, c, \ldots, f, g, \ldots, x, y, \ldots$ are function symbols

Terms

- Fix a set of function symbols and constants - signature
- Each function symbol has an arity
- Constants are functions with arity o
- Terms are well-formed expressions, including variables
- Every variable is a term
- If f is a k-ary function symbols and t_{1}, \ldots, t_{k} are terms, $f\left(t_{1}, \ldots, t_{k}\right)$ is also a term
- Example - Types in λ-calculus
- Int, Bool ...are constants
- \rightarrow, [], ($\cdot, \cdot)$...are function symbols
- Notation
- $a, b, c, \ldots, f, g, \ldots, x, y, \ldots$ are function symbols
- A, B, C, F, X, Y, \ldots are variables

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X:=f(a), Y:=g(a), Z:=g(a)\}=\theta$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X:=f(a), Y:=g(a), Z:=g(a)\}=\theta$
- $t \theta$: apply substitution θ to term $t(\operatorname{not} \theta(t)!)$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X:=f(a), Y:=g(a), Z:=g(a)\}=\theta$
- $t \theta$: apply substitution θ to term $t(\operatorname{not} \theta(t)!)$
- Apply substitution in parallel

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X:=f(a), Y:=g(a), Z:=g(a)\}=\theta$
- $t \theta$: apply substitution θ to term $t(\operatorname{not} \theta(t)!)$
- Apply substitution in parallel
- $t=g(p(X), q(f(Y)))$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X:=f(a), Y:=g(a), Z:=g(a)\}=\theta$
- $t \theta$: apply substitution θ to term $t(\operatorname{not} \theta(t)!)$
- Apply substitution in parallel
- $t=g(p(X), q(f(Y)))$
- $Y=\{X:=Y, Y:=f(a)\}$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X:=f(a), Y:=g(a), Z:=g(a)\}=\theta$
- t θ : apply substitution θ to term $t(\operatorname{not} \theta(t)!)$
- Apply substitution in parallel
- $t=g(p(X), q(f(Y)))$
- $Y=\{X:=Y, Y:=f(a)\}$
- $t \gamma=g(p(Y), q(f(f(a))))-\quad g(p(Y)), \operatorname{not} g(p(f(a)))$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible
- $\theta=\{X:=f(a), Y:=g(a), Z:=g(a)\}$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible
- $\theta=\{X:=f(a), Y:=g(a), Z:=g(a)\}$
- $\theta^{\prime}=\{X:=f(a), Y:=a, Z:=a\}$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible
- $\theta=\{X:=f(a), Y:=g(a), Z:=g(a)\}$
- $\theta^{\prime}=\{X:=f(a), Y:=a, Z:=a\}$
- $\theta^{\prime \prime}=\{X:=f(a), Y:=Z\}$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible
- $\theta=\{X:=f(a), Y:=g(a), Z:=g(a)\}$
- $\theta^{\prime}=\{X:=f(a), Y:=a, Z:=a\}$
- $\theta^{\prime \prime}=\{X:=f(a), Y:=Z\}$
- $\theta^{\prime \prime}$ is the least constrained

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible
- $\theta=\{X:=f(a), Y:=g(a), Z:=g(a)\}$
- $\theta^{\prime}=\{X:=f(a), Y:=a, Z:=a\}$
- $\theta^{\prime \prime}=\{X:=f(a), Y:=Z\}$
- $\theta^{\prime \prime}$ is the least constrained
- Any solution γ can be broken up into $\theta^{\prime \prime}$ followed by another substitution

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible
- $\theta=\{X:=f(a), Y:=g(a), Z:=g(a)\}$
- $\theta^{\prime}=\{X:=f(a), Y:=a, Z:=a\}$
- $\theta^{\prime \prime}=\{X:=f(a), Y:=Z\}$
- $\theta^{\prime \prime}$ is the least constrained
- Any solution γ can be broken up into $\theta^{\prime \prime}$ followed by another substitution
- θ is $\theta^{\prime \prime}$ followed by $\{Y:=g(a)\}$

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible
- $\theta=\{X:=f(a), Y:=g(a), Z:=g(a)\}$
- $\theta^{\prime}=\{X:=f(a), Y:=a, Z:=a\}$
- $\theta^{\prime \prime}=\{X:=f(a), Y:=Z\}$
- $\theta^{\prime \prime}$ is the least constrained
- Any solution γ can be broken up into $\theta^{\prime \prime}$ followed by another substitution
- θ is $\theta^{\prime \prime}$ followed by $\{Y:=g(a)\}$
- Least constrained solution - most general unifier

Obstacles to unification

- Equations of the form $p(\cdots)=q(\cdots)$

Obstacles to unification

- Equations of the form $p(\cdots)=q(\cdots)$
- Outermost function symbols do not agree

Obstacles to unification

- Equations of the form $p(\cdots)=q(\cdots)$
- Outermost function symbols do not agree
- No substitution can equate the two sides

Obstacles to unification

- Equations of the form $p(\cdots)=q(\cdots)$
- Outermost function symbols do not agree
- No substitution can equate the two sides
- Example: No substitution for type variables can equate $[p]$ and (q, r)

Obstacles to unification

- Equations of the form $p(\cdots)=q(\cdots)$
- Outermost function symbols do not agree
- No substitution can equate the two sides
- Example: No substitution for type variables can equate $[p]$ and (q, r)
- Equations of the form $X=f(\cdots X \cdots)$

Obstacles to unification

- Equations of the form $p(\cdots)=q(\cdots)$
- Outermost function symbols do not agree
- No substitution can equate the two sides
- Example: No substitution for type variables can equate $[p]$ and (q, r)
- Equations of the form $X=f(\cdots \times \cdots)$
- Any substitution for X applies also to the X nested inside f

Obstacles to unification

- Equations of the form $p(\cdots)=q(\cdots)$
- Outermost function symbols do not agree
- No substitution can equate the two sides
- Example: No substitution for type variables can equate $[p]$ and (q, r)
- Equations of the form $X=f(\cdots \times \cdots)$
- Any substitution for X applies also to the X nested inside f
- These are the only two obstacles to unification

A unification algorithm

- Start with system of equations

$$
\begin{gathered}
I_{1}=r_{1} \\
I_{2}=r_{2} \\
\vdots \\
I_{n}=r_{n}
\end{gathered}
$$

A unification algorithm

- Start with system of equations

$$
\begin{gathered}
I_{1}=r_{1} \\
I_{2}=r_{2} \\
\vdots \\
I_{n}=r_{n}
\end{gathered}
$$

- Perform a sequence of transformations on these equations till no more transformations apply

Unification algorithm - transformations

(1) $t=X, t$ not a variable $\leadsto x=t$

Unification algorithm - transformations

(1) $t=X, t$ not a variable $m \quad X=t$
(2) Erase equations of the form $X=X$

Unification algorithm - transformations

(1) $t=X, t$ not a variable $m \quad X=t$
(2) Erase equations of the form $X=X$
(3) Let $t=t^{\prime}$ where t is $f(\cdots)$ and t^{\prime} is $f^{\prime}(\cdots)$

Unification algorithm - transformations

(1) $t=X, t$ not a variable $m \quad X=t$
(2) Erase equations of the form $X=X$
(3) Let $t=t^{\prime}$ where t is $f(\cdots)$ and t^{\prime} is $f^{\prime}(\cdots)$

- $f \neq f^{\prime} \leadsto$ terminate: unification not possible

Unification algorithm - transformations

(1) $t=X, t$ not a variable $m \quad X=t$
(2) Erase equations of the form $X=X$
(3) Let $t=t^{\prime}$ where t is $f(\cdots)$ and t^{\prime} is $f^{\prime}(\cdots)$

- $f \neq f^{\prime} \rightsquigarrow$ terminate: unification not possible
- $f\left(t_{1}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$

Unification algorithm - transformations

(1) $t=X, t$ not a variable $m \quad X=t$
(2) Erase equations of the form $X=X$
(3) Let $t=t^{\prime}$ where t is $f(\cdots)$ and t^{\prime} is $f^{\prime}(\cdots)$

- $f \neq f^{\prime} \rightsquigarrow$ terminate: unification not possible
- $f\left(t_{1}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$
- Replace by k new equations $t_{1}=t_{1}^{\prime}, \ldots, t_{k}=t_{k}^{\prime}$

Unification algorithm - transformations

(1) $t=X, t$ not a variable $m \quad X=t$
(2) Erase equations of the form $X=X$
(3) Let $t=t^{\prime}$ where t is $f(\cdots)$ and t^{\prime} is $f^{\prime}(\cdots)$

- $f \neq f^{\prime} \rightsquigarrow$ terminate: unification not possible
- $f\left(t_{1}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$
- Replace by k new equations $t_{1}=t_{1}^{\prime}, \ldots, t_{k}=t_{k}^{\prime}$
(4) $X=t, X$ is a proper subterm of $t \leadsto$ terminate: unification not possible

Unification algorithm - transformations

(1) $t=X, t$ not a variable $m \quad X=t$
(2) Erase equations of the form $X=X$
(3) Let $t=t^{\prime}$ where t is $f(\cdots)$ and t^{\prime} is $f^{\prime}(\cdots)$

- $f \neq f^{\prime} \rightsquigarrow$ terminate: unification not possible
- $f\left(t_{1}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$
- Replace by k new equations $t_{1}=t_{1}^{\prime}, \ldots, t_{k}=t_{k}^{\prime}$
(4) $X=t, X$ is a proper subterm of $t \leadsto$ terminate: unification not possible
(5) $X=t, X$ does not occur in $t \leadsto$ Replace all other occurrences of X by t

Unification algorithm - correctness

- The algorithm terminates

Unification algorithm - correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5

Unification algorithm - correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable

Unification algorithm - correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_{i}=t_{i}$

Unification algorithm - correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_{i}=t_{i}$
- exactly one occurrence of X_{i}

Unification algorithm - correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_{i}=t_{i}$
- exactly one occurrence of X_{i}
- Define a substitution $\left\{X_{1}:=t_{1}, \ldots, X_{m}:=t_{m}\right\}$

Unification algorithm - correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_{i}=t_{i}$
- exactly one occurrence of X_{i}
- Define a substitution $\left\{X_{1}:=t_{1}, \ldots, X_{m}:=t_{m}\right\}$
- This substitution is a unifier

Unification algorithm - correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_{i}=t_{i}$
- exactly one occurrence of X_{i}
- Define a substitution $\left\{X_{1}:=t_{1}, \ldots, X_{m}:=t_{m}\right\}$
- This substitution is a unifier
- Each of the transformations preserves solutions

Unification algorithm - correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_{i}=t_{i}$
- exactly one occurrence of X_{i}
- Define a substitution $\left\{X_{1}:=t_{1}, \ldots, X_{m}:=t_{m}\right\}$
- This substitution is a unifier
- Each of the transformations preserves solutions
- The substitution is also an mgu

Unification algorithm - example

$$
\begin{aligned}
g(Y) & =X \\
f(X, h(X), Y) & =f(g(Z), W, Z)
\end{aligned}
$$

Unification algorithm - example

$$
\begin{aligned}
g(Y) & =X \\
f(X, h(X), Y) & =f(g(Z), W, Z) \\
X & =g(Y) \\
f(X, h(X), Y) & =f(g(Z), W, Z)
\end{aligned}
$$

Unification algorithm - example

$$
\begin{array}{rlrl}
g(Y) & =X & X & =g(Y) \\
f(X, h(X), Y) & =f(g(Z), W, Z) & X & =g(Z) \\
& h(X) & =W \\
X & =g(Y) & Y & =Z \\
f(X, h(X), Y) & =f(g(Z), W, Z) & &
\end{array}
$$

Unification algorithm - example

$$
\begin{array}{rlrl}
g(Y) & =X & X & =g(Y) \\
f(X, h(X), Y) & =f(g(Z), W, Z) & X & =g(Z) \\
h(X) & =W \\
Y & =Z \\
X=g(Y) & & \\
f(X, h(X), Y)=f(g(Z), W, Z) & g(Z) & =g(Y) \\
X & =g(Z) \\
h(g(Z)) & =W \\
Y & =Z
\end{array}
$$

Unification algorithm - example

$$
\begin{array}{rlrl}
g(Y) & =X & X & =g(Y) \\
f(X, h(X), Y)=f(g(Z), W, Z) & X & =g(Z) & X \\
& h(X) & =W & \\
Y & =Z(Z) \\
X=g(Y) & & \\
f(X, h(X), Y)=f(g(Z), W, Z) & & \\
& & \\
g(Z) & =g(Y) \\
X & =g(Z) & \\
h(g(Z)) & =W \\
Y & =Z
\end{array}
$$

Unification algorithm - example

$$
\begin{aligned}
& g(Y)=X \\
& f(X, h(X), Y)=f(g(Z), W, Z) \\
& X=g(Y) \\
& X=g(Z) \\
& h(X)=W \\
& Y=Z \\
& X=g(Y) \\
& f(X, h(X), Y)=f(g(Z), W, Z) \\
& g(Z)=g(Y) \\
& X=g(Z) \\
& h(g(Z))=W \\
& Y=Z \\
& Z=Y \\
& X=g(Z) \\
& h(g(Z))=W \\
& Y=Z \\
& Z=Z \\
& X=g(Z) \\
& h(g(Z))=W \\
& Y=Z
\end{aligned}
$$

Unification algorithm - example

$$
\begin{aligned}
& g(Y)=X \\
& f(X, h(X), Y)=f(g(Z), W, Z) \\
& X=g(Y) \\
& X=g(Z) \\
& h(X)=W \\
& Y=Z \\
& X=g(Y) \\
& f(X, h(X), Y)=f(g(Z), W, Z) \\
& g(Z)=g(Y) \\
& X=g(Z) \\
& h(g(Z))=W \\
& Y=Z \\
& Z=Y \\
& X=g(Z) \\
& h(g(Z))=W \\
& h(g(Z))=W \\
& Y=Z \\
& Y=Z \\
& Z=Z \\
& X=g(Z) \\
& h(g(Z))=W \\
& Y=Z
\end{aligned}
$$

Unification algorithm - example

$$
\begin{aligned}
& g(Y)=X \\
& f(X, h(X), Y)=f(g(Z), W, Z) \\
& X=g(Y) \\
& X=g(Z) \\
& h(X)=W \\
& Y=Z \\
& X=g(Y) \\
& f(X, h(X), Y)=f(g(Z), W, Z) \\
& g(Z)=g(Y) \\
& X=g(Z) \\
& h(g(Z))=W \\
& Y=Z \\
& Z=Y \\
& X=g(Z) \\
& h(g(Z))=W \\
& Y=Z \\
& Z=Z \\
& X=g(Z) \\
& h(g(Z))=W \\
& Y=Z
\end{aligned}
$$

Unification algorithm - example

Equations: $g(Y)=X \quad f(X, h(X), Y)=f(g(Z), W, Z)$
Unifier: $\{X:=g(Z), Y:=Z, W:=h(g(Z))\}$

