Madhavan Mukund, S P Suresh

Programming Language Concepts Lecture 24, 18 April 2024

• Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual
- $\xrightarrow{*}_{\beta}$ is Church-Rosser

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual
- $\xrightarrow{*}_{\beta}$ is Church-Rosser
 - Same proof as for untyped λ -calculus

• A λ -expression is

- A λ -expression is
 - (weakly) normalizing if it has a normal form

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$
 - Counterexample: $(\lambda x \cdot y)\Omega$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$
 - Counterexample: $(\lambda x \cdot y)\Omega$
- A λ -calculus is **weakly normalizing** if every term in the calculus is weakly normalizing

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$
 - Counterexample: $(\lambda x \cdot y)\Omega$
- A λ -calculus is **weakly normalizing** if every term in the calculus is weakly normalizing
- A λ-calculus is **strongly normalizing** if every term in the calculus is strongly normalizing

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$
 - Counterexample: $(\lambda x \cdot y)\Omega$
- A λ -calculus is **weakly normalizing** if every term in the calculus is weakly normalizing
- A λ -calculus is **strongly normalizing** if every term in the calculus is strongly normalizing
- The typed λ -calculus is both strongly and weakly normalizing

• Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), \dots$

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), \dots$
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), \dots$
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming
- Principal type

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), \dots$
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming

Principal type

• a type for a term *M* such that every other type for *M* is got by uniformly replacing each variable by a type

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), \dots$
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming

Principal type

- a type for a term *M* such that every other type for *M* is got by uniformly replacing each variable by a type
- unique for each typable term modulo renaming of variables!

Definition (Typability problem)

Given a term M of the untyped λ -calculus, check whether it can be given a time (assuming

some types for free variables)

Definition (Typability problem)

Given a term *M* of the untyped λ -calculus, check whether it can be given a time (assuming some types for free variables)

Definition (Type inference)

Given a typable term *M*, compute its principal type

Definition (Typability problem)

Given a term *M* of the untyped λ -calculus, check whether it can be given a time (assuming some types for free variables)

Definition (Type inference)

Given a typable term *M*, compute its principal type

Theorem

Typability and type inference for simply typed λ -calculus is solvable in polynomial time

• For every λ -expression *M*, build

- For every λ -expression *M*, build
 - E_M, a system of equations (over types)

- For every λ -expression *M*, build
 - E_M , a system of equations (over types)
 - τ_M , a type

- For every λ -expression *M*, build
 - *E_M*, a system of equations (over types)
 - τ_M , a type
- E_M has a solution iff *M* is typable

- For every λ -expression *M*, build
 - *E_M*, a system of equations (over types)
 - τ_M, a type
- E_M has a solution iff *M* is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)

- For every λ -expression *M*, build
 - *E_M*, a system of equations (over types)
 - *τ*_M, a type
- E_M has a solution iff *M* is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)
- If S is the least constrained solution for E_M , $S(\tau_M)$ is a principal type for M

- For every λ -expression *M*, build
 - *E_M*, a system of equations (over types)
 - τ_M, a type
- E_M has a solution iff *M* is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)
- If S is the least constrained solution for E_M , $S(\tau_M)$ is a principal type for M
- Type variables in E_M and τ_M

- For every λ -expression *M*, build
 - *E_M*, a system of equations (over types)
 - *τ*_M, a type
- E_M has a solution iff *M* is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)
- If S is the least constrained solution for E_M , $S(\tau_M)$ is a principal type for M
- Type variables in E_M and τ_M
 - main $-p_x$, for $x \in \mathbf{fv}(M)$ (if $x \neq y$, $p_x \neq p_y$)

- For every λ -expression *M*, build
 - *E_M*, a system of equations (over types)
 - *τ*_M, a type
- E_M has a solution iff *M* is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)
- If S is the least constrained solution for E_M , $S(\tau_M)$ is a principal type for M
- Type variables in E_M and τ_M
 - main $-p_x$, for $x \in \mathbf{fv}(M)$ (if $x \neq y$, $p_x \neq p_y$)
 - **auxiliary** not of the form p_x
• *M* is the variable *x*

• *M* is the variable *x*

•
$$E_M = \emptyset$$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable p

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable p
 - Define $\tau_M = p$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable p
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable p
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$
- *M* is $\lambda x \cdot P$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable p
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$
- *M* is $\lambda x \cdot P$
 - Choose a fresh auxilliary type variable p

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable p
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$
- *M* is $\lambda x \cdot P$
 - Choose a fresh auxilliary type variable p
 - $E_M = E_P[p_x := p]$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- *M* is *PQ*
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable p
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$
- *M* is $\lambda x \cdot P$
 - Choose a fresh auxilliary type variable p
 - $E_M = E_P[p_x := p]$
 - Define $\tau_M = p \rightarrow \tau_p[p_x := p]$

• $M = \lambda xyz \cdot N$ where N = x(yz)

- $M = \lambda xyz \cdot N$ where N = x(yz)
 - $\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$

• $M = \lambda xyz \cdot N$ where N = x(yz)

•
$$\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$$

•
$$E_x = E_y = E_z = \emptyset$$

- $M = \lambda xyz \cdot N$ where N = x(yz)
 - $\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$
 - $E_x = E_y = E_z = \emptyset$
 - $\tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\}$

- $M = \lambda xyz \cdot N$ where N = x(yz)
 - $\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$
 - $E_x = E_y = E_z = \emptyset$
 - $\tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\}$
 - $\tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\}$

- $M = \lambda xyz \cdot N$ where N = x(yz)
 - $\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$
 - $E_x = E_y = E_z = \emptyset$
 - $\tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\}$
 - $\tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\}$

- $M = \lambda xyz \cdot N$ where N = x(yz)
 - $\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$
 - $E_x = E_y = E_z = \emptyset$
 - $\tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\}$
 - $\tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda_{Z} \cdot N} = r \rightarrow q, E_{\lambda_{Z} \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda yz \cdot N} = s \rightarrow r \rightarrow q, E_{\lambda yz \cdot N} = \{s = r \rightarrow p, p_x = p \rightarrow q\}$

- $M = \lambda xyz \cdot N$ where N = x(yz)
 - $\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$
 - $E_x = E_y = E_z = \emptyset$
 - $\tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\}$
 - $\tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda yz \cdot N} = s \rightarrow r \rightarrow q, E_{\lambda yz \cdot N} = \{s = r \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_M = t \rightarrow s \rightarrow r \rightarrow q, E_M = \{s = r \rightarrow p, t = p \rightarrow q\}$

- $M = \lambda xyz \cdot N$ where N = x(yz)
 - $\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$
 - $E_x = E_y = E_z = \emptyset$
 - $\tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\}$
 - $\tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda yz \cdot N} = s \longrightarrow r \longrightarrow q, E_{\lambda yz \cdot N} = \{s = r \longrightarrow p, p_x = p \longrightarrow q\}$
 - $\tau_M = t \rightarrow s \rightarrow r \rightarrow q, E_M = \{s = r \rightarrow p, t = p \rightarrow q\}$
- A minimal solution for E_M is $S = \{s := r \rightarrow p, t := p \rightarrow q\}$

- $M = \lambda xyz \cdot N$ where N = x(yz)
 - $\tau_x = \rho_x, \tau_y = \rho_y, \tau_z = \rho_z$
 - $E_x = E_y = E_z = \emptyset$
 - $\tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\}$
 - $\tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_{\lambda yz \cdot N} = s \rightarrow r \rightarrow q, E_{\lambda yz \cdot N} = \{s = r \rightarrow p, p_x = p \rightarrow q\}$
 - $\tau_M = t \rightarrow s \rightarrow r \rightarrow q, E_M = \{s = r \rightarrow p, t = p \rightarrow q\}$
- A minimal solution for E_M is $S = \{s := r \rightarrow p, t := p \rightarrow q\}$
- The principal type of M: $S(\tau_M) = (p \to q) \to (r \to p) \to (r \to q)$

• M = PQ where $P = Q = \lambda x \cdot x$

- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x, E_x = \emptyset$

- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x, E_x = \emptyset$
 - $\tau_p = p \rightarrow p, E_p = \emptyset$

- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x, E_x = \emptyset$
 - $\tau_p = p \rightarrow p, E_p = \emptyset$
 - $\tau_Q = q \rightarrow q, E_Q = \emptyset$

- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x, E_x = \emptyset$
 - $\tau_p = p \rightarrow p, E_p = \emptyset$
 - $\tau_Q = q \rightarrow q, E_Q = \emptyset$
 - $\tau_{PQ} = r, E_{PQ} = \{p \rightarrow p = (q \rightarrow q) \rightarrow r\}$

- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x, E_x = \emptyset$
 - $\tau_p = p \rightarrow p, E_p = \emptyset$
 - $\tau_Q = q \rightarrow q, E_Q = \emptyset$
 - $\tau_{PQ} = r, E_{PQ} = \{p \rightarrow p = (q \rightarrow q) \rightarrow r\}$
- A minimal solution for E_M is $S = \{p := q \rightarrow q, r := q \rightarrow q\}$

- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x, E_x = \emptyset$
 - $\tau_p = p \rightarrow p, E_p = \emptyset$
 - $\tau_Q = q \rightarrow q, E_Q = \emptyset$
 - $\tau_{PQ} = r, E_{PQ} = \{p \rightarrow p = (q \rightarrow q) \rightarrow r\}$
- A minimal solution for E_M is $S = \{p := q \rightarrow q, r := q \rightarrow q\}$
- The principal type of M: $S(\tau_M) = q \rightarrow q$

• Can introduce constant types – Int, Bool, ...

- Can introduce constant types Int, Bool, ...
- Type constructors too [a], (a,b), ...

- Can introduce constant types Int, Bool, ...
- Type constructors too [a], (a,b), ...
- constant terms and constant functions

- Can introduce constant types Int, Bool, ...
- Type constructors too [a], (a,b), ...
- constant terms and constant functions
 - o : Int, True : Bool

- Can introduce constant types Int, Bool, ...
- Type constructors too [a], (a,b), ...
- constant terms and constant functions
 - o : Int, True : Bool
 - cons : $a \rightarrow [a] \rightarrow [a]$

- Can introduce constant types Int, Bool, ...
- Type constructors too [a], (a,b), ...
- constant terms and constant functions
 - o : Int, True : Bool
 - cons : $a \rightarrow [a] \rightarrow [a]$
 - *if* : Bool $\rightarrow a \rightarrow a \rightarrow a$

- Can introduce constant types Int, Bool, ...
- Type constructors too [a], (a,b), ...
- constant terms and constant functions
 - o : Int, True : Bool
 - cons : $a \rightarrow [a] \rightarrow [a]$
 - if : Bool $\rightarrow a \rightarrow a \rightarrow a$
- Polymorphic each occurrence of *if*, *cons*, etc. is given a fresh instance of the types
Type inference: constant types

- Can introduce constant types Int, Bool, ...
- Type constructors too [a], (a,b), ...
- constant terms and constant functions
 - o : Int, True : Bool
 - cons : $a \rightarrow [a] \rightarrow [a]$
 - if : Bool $\rightarrow a \rightarrow a \rightarrow a$
- Polymorphic each occurrence of *if, cons*, etc. is given a fresh instance of the types
- The type inference algorithm is more or less unchanged!

• $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot yy)(\lambda x \cdot x)$

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot yy)(\lambda x \cdot x)$
- M_1 is equivalent to M and has the same principal type

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot yy)(\lambda x \cdot x)$
- M_1 is equivalent to M and has the same principal type
- M_2 is not typable, because $\lambda y \cdot yy$ is not typable

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot yy)(\lambda x \cdot x)$
- M_1 is equivalent to M and has the same principal type
- M_2 is not typable, because $\lambda y \cdot yy$ is not typable
- M_1 is typable despite the occurrence of *yy*

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot yy)(\lambda x \cdot x)$
- M_1 is equivalent to M and has the same principal type
- M_2 is not typable, because $\lambda y \cdot yy$ is not typable
- M_1 is typable despite the occurrence of *yy*
 - variable defined by local definition treated differently

• M is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in N

- M is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in N
 - Find principal types of M_1, \ldots, M_n

- *M* is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$

- *M* is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of *N* as usual, using the above definition for τ_{χ} 's

- *M* is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of N as usual, using the above definition for τ_x 's
 - Each occurrence of x_i in N will get a different instance of τ_{x_i} as its type

- *M* is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of *N* as usual, using the above definition for τ_x 's
 - Each occurrence of x_i in N will get a different instance of τ_{x_i} as its type
 - All auxilliary type variables in τ_x will be renamed to fresh variables

- *M* is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of N as usual, using the above definition for τ_x 's
 - Each occurrence of x_i in N will get a different instance of τ_{x_i} as its type
 - All auxilliary type variables in τ_{x_i} will be renamed to fresh variables
 - Main type variables of the form p_x will not be renamed

- *M* is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of N as usual, using the above definition for $\tau_{x'}$'s
 - Each occurrence of x_i in N will get a different instance of τ_x as its type
 - All auxilliary type variables in τ_x will be renamed to fresh variables
 - Main type variables of the form p_x will not be renamed
- x_i's are used in N as **polymorphic expressions**

• Consider let $y = \lambda x \cdot x$ in yy

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$
 - Type of second y is $q \rightarrow q$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x; g = \lambda x \cdot x\}$ in *gf*

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x; g = \lambda x \cdot x\}$ in *gf*
 - $\tau_f = p \rightarrow p_x$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x; g = \lambda x \cdot x\}$ in *gf*
 - $\tau_f = p \rightarrow p_x$
 - $\tau_g = q \rightarrow q$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x; g = \lambda x \cdot x\}$ in *gf*
 - $\tau_f = p \rightarrow p_x$
 - $\tau_q = q \rightarrow q$
 - $\tau_{gf} = r, E_{gf} = \{q \rightarrow q = (p \rightarrow p_x) \rightarrow r\}$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x; g = \lambda x \cdot x\}$ in *gf*
 - $\tau_f = p \rightarrow p_x$
 - $\tau_g = q \rightarrow q$
 - $T_{gf} = r, E_{gf} = \{q \rightarrow q = (p \rightarrow p_x) \rightarrow r\}$
 - $S = q := p \rightarrow p_x, r := p \rightarrow p_x$ is a solution

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_v = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \rightarrow p$
 - Type of second *y* is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x; g = \lambda x \cdot x\}$ in *gf*
 - $\tau_f = p \rightarrow p_x$
 - $\tau_q = q \rightarrow q$
 - $T_{gf} = r, E_{gf} = \{q \rightarrow q = (p \rightarrow p_x) \rightarrow r\}$
 - $S = q := p \rightarrow p_x, r := p \rightarrow p_x$ is a solution
 - Principal type of *M* is $p \rightarrow p_x$

• *M* is letrec $\{x_1 = M_1; \cdots; x_n = M_n\}$ in *N*

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

• Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
- Choose *n* fresh type variables q_1, \ldots, q_n

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
- Choose *n* fresh type variables q_1, \ldots, q_n
- Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
- Choose *n* fresh type variables q_1, \ldots, q_n
- Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

•
$$\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
- Choose *n* fresh type variables q_1, \ldots, q_n
- Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

•
$$\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

•
$$E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$
• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
- Choose *n* fresh type variables q_1, \ldots, q_n
- Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n
 - $\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$

•
$$E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

• Solve
$$E := E_1 \cup \cdots \cup E_n \cup \{q_1 = \sigma_1, \dots, q_n = \sigma_n\}$$

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
- Choose n fresh type variables q₁,...,q_n
- Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n
 - $\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$
 - $E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$
- Solve $E := E_1 \cup \cdots \cup E_n \cup \{q_1 = \sigma_1, \dots, q_n = \sigma_n\}$
- Let S be the most general solution to E

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
- Choose n fresh type variables q₁,...,q_n
- Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n
 - $\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$
 - $E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$
- Solve $E := E_1 \cup \cdots \cup E_n \cup \{q_1 = \sigma_1, \dots, q_n = \sigma_n\}$
- Let S be the most general solution to E

•
$$\tau_{x_i} := S(q_i)$$

• *M* is letrec $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*

- Build each τ_{M_i} and E_{M_i} , treating each x_i as a free variable with type p_{x_i}
- Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
- Choose n fresh type variables q₁,...,q_n
- Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n
 - $\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$
 - $E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$
- Solve $E := E_1 \cup \cdots \cup E_n \cup \{q_1 = \sigma_1, \dots, q_n = \sigma_n\}$
- Let S be the most general solution to E
- $\tau_{x_i} := S(q_i)$
- Find the type of *N* as usual, using the above τ_{x} 's

• Consider letrec $x = \lambda f \cdot f(xf)$ in x

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$

•
$$\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$

•
$$\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$$

• Now
$$\sigma_1 = p \rightarrow r$$
 and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$

•
$$\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$$

• Now
$$\sigma_1 = p \rightarrow r$$
 and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$

•
$$E = \{q_1 = p \rightarrow q, p = q \rightarrow r, q_1 = p \rightarrow r\}$$

- Consider **letrec** $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$

•
$$\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$$

- Now $\sigma_1 = p \rightarrow r$ and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$
- $E = \{q_1 = p \rightarrow q, p = q \rightarrow r, q_1 = p \rightarrow r\}$
- Solution for *E* is $\{q := r, p := r \rightarrow r, q_1 := (r \rightarrow r) \rightarrow r\}$

- Consider **letrec** $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$

•
$$\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$$

- Now $\sigma_1 = p \rightarrow r$ and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$
- $E = \{q_1 = p \rightarrow q, p = q \rightarrow r, q_1 = p \rightarrow r\}$
- Solution for *E* is $\{q := r, p := r \rightarrow r, q_1 := (r \rightarrow r) \rightarrow r\}$

•
$$\tau_x := (r \to r) \to r$$

- Consider **letrec** $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$

•
$$\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$$

- Now $\sigma_1 = p \rightarrow r$ and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$
- $E = \{q_1 = p \rightarrow q, p = q \rightarrow r, q_1 = p \rightarrow r\}$
- Solution for *E* is $\{q := r, p := r \rightarrow r, q_1 := (r \rightarrow r) \rightarrow r\}$
- $\tau_x := (r \to r) \to r$
- The type of **letrec** $x = \lambda f \cdot f(xf)$ in x is thus $(r \rightarrow r) \rightarrow r$