
Type inference

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 24, 18 April 2024

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 1 / 15



Typed λ-calculus: Church-Rosser

• Extend−−→β to one-step reduction−−→, as usual

• Extend to many-step
∗−−→β as usual

• ∗−−→β is Church-Rosser

• Same proof as for untyped λ-calculus

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 2 / 15



Typed λ-calculus: Church-Rosser

• Extend−−→β to one-step reduction−−→, as usual

• Extend to many-step
∗−−→β as usual

• ∗−−→β is Church-Rosser

• Same proof as for untyped λ-calculus

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 2 / 15



Typed λ-calculus: Church-Rosser

• Extend−−→β to one-step reduction−−→, as usual

• Extend to many-step
∗−−→β as usual

• ∗−−→β is Church-Rosser

• Same proof as for untyped λ-calculus

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 2 / 15



Typed λ-calculus: Church-Rosser

• Extend−−→β to one-step reduction−−→, as usual

• Extend to many-step
∗−−→β as usual

• ∗−−→β is Church-Rosser

• Same proof as for untyped λ-calculus

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 2 / 15



Typed λ-calculus: Normalization

• A λ-expression is

• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω

• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)

• Counterexample: (λx · y)Ω
• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 3 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x

• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type

• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 4 / 15



Curry typing: typability

Definition (Typability problem)

Given a termM of the untyped λ-calculus, check whether it can be given a time (assuming

some types for free variables)

Definition (Type inference)

Given a typable termM, compute its principal type

Theorem

Typability and type inference for simply typed λ-calculus is solvable in polynomial time

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 5 / 15



Curry typing: typability

Definition (Typability problem)

Given a termM of the untyped λ-calculus, check whether it can be given a time (assuming

some types for free variables)

Definition (Type inference)

Given a typable termM, compute its principal type

Theorem

Typability and type inference for simply typed λ-calculus is solvable in polynomial time

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 5 / 15



Curry typing: typability

Definition (Typability problem)

Given a termM of the untyped λ-calculus, check whether it can be given a time (assuming

some types for free variables)

Definition (Type inference)

Given a typable termM, compute its principal type

Theorem

Typability and type inference for simply typed λ-calculus is solvable in polynomial time

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 5 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM

• main – px , for x � fv(M) (if x ̸= y, px ̸= py)
• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)

• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM

• main – px , for x � fv(M) (if x ̸= y, px ̸= py)
• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM

• main – px , for x � fv(M) (if x ̸= y, px ̸= py)
• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM

• main – px , for x � fv(M) (if x ̸= y, px ̸= py)
• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM

• main – px , for x � fv(M) (if x ̸= y, px ̸= py)
• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM

• main – px , for x � fv(M) (if x ̸= y, px ̸= py)
• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM

• main – px , for x � fv(M) (if x ̸= y, px ̸= py)
• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM
• main – px , for x � fv(M) (if x ̸= y, px ̸= py)

• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference

• For every λ-expressionM, build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iffM is typable

• Solution for EM – a substitution Smapping type variables to types that makes all

equations true (both sides identical under S)

• If S is the least constrained solution for EM, S(τM) is a principal type forM

• Type variables in EM and τM
• main – px , for x � fv(M) (if x ̸= y, px ̸= py)
• auxiliary – not of the form px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 6 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}

• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅

• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}

• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}

• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}
• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP

• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}
• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p

• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}
• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}
• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}

• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}
• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}
• M is λx · P
• Choose a fresh auxilliary type variable p

• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}
• M is λx · P
• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference…

• M is the variable x

• EM = ∅
• Define τM = px

• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from auxilliary variables in

EP and τP
• Choose a fresh auxilliary type variable p
• Define τM = p

• EM = EP ∪ EQ ∪ {τP = τQ→ p}
• M is λx · P
• Choose a fresh auxilliary type variable p
• EM = EP[px := p]

• Define τM = p→ τP[px := p]

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 7 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz

• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅

• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}

• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}

• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}

• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}

• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}
• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}

• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = λxyz · N where N = x(yz)

• τx = px , τy = py , τz = pz
• Ex = Ey = Ez = ∅
• τyz = p, Eyz = {py = pz→ p}
• τN = q, EN = {py = pz→ p,px = p→ q}
• τλz·N = r→ q, Eλz·N = {py = r→ p,px = p→ q}
• τλyz·N = s→ r→ q, Eλyz·N = {s = r→ p,px = p→ q}
• τM = t→ s→ r→ q, EM = {s = r→ p, t = p→ q}

• A minimal solution for EM is S = {s := r→ p, t := p→ q}
• The principal type ofM: S(τM) = (p→ q)→ (r→ p)→ (r→ q)

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 8 / 15



Type inference: example

• M = PQ where P = Q = λx · x

• τx = px , Ex = ∅
• τP = p→ p, EP = ∅
• τQ = q→ q, EQ = ∅
• τPQ = r, EPQ = {p→ p = (q→ q)→ r}

• A minimal solution for EM is S = {p := q→ q, r := q→ q}
• The principal type ofM: S(τM) = q→ q

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 9 / 15



Type inference: example

• M = PQ where P = Q = λx · x
• τx = px , Ex = ∅

• τP = p→ p, EP = ∅
• τQ = q→ q, EQ = ∅
• τPQ = r, EPQ = {p→ p = (q→ q)→ r}

• A minimal solution for EM is S = {p := q→ q, r := q→ q}
• The principal type ofM: S(τM) = q→ q

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 9 / 15



Type inference: example

• M = PQ where P = Q = λx · x
• τx = px , Ex = ∅
• τP = p→ p, EP = ∅

• τQ = q→ q, EQ = ∅
• τPQ = r, EPQ = {p→ p = (q→ q)→ r}

• A minimal solution for EM is S = {p := q→ q, r := q→ q}
• The principal type ofM: S(τM) = q→ q

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 9 / 15



Type inference: example

• M = PQ where P = Q = λx · x
• τx = px , Ex = ∅
• τP = p→ p, EP = ∅
• τQ = q→ q, EQ = ∅

• τPQ = r, EPQ = {p→ p = (q→ q)→ r}
• A minimal solution for EM is S = {p := q→ q, r := q→ q}
• The principal type ofM: S(τM) = q→ q

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 9 / 15



Type inference: example

• M = PQ where P = Q = λx · x
• τx = px , Ex = ∅
• τP = p→ p, EP = ∅
• τQ = q→ q, EQ = ∅
• τPQ = r, EPQ = {p→ p = (q→ q)→ r}

• A minimal solution for EM is S = {p := q→ q, r := q→ q}
• The principal type ofM: S(τM) = q→ q

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 9 / 15



Type inference: example

• M = PQ where P = Q = λx · x
• τx = px , Ex = ∅
• τP = p→ p, EP = ∅
• τQ = q→ q, EQ = ∅
• τPQ = r, EPQ = {p→ p = (q→ q)→ r}

• A minimal solution for EM is S = {p := q→ q, r := q→ q}

• The principal type ofM: S(τM) = q→ q

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 9 / 15



Type inference: example

• M = PQ where P = Q = λx · x
• τx = px , Ex = ∅
• τP = p→ p, EP = ∅
• τQ = q→ q, EQ = ∅
• τPQ = r, EPQ = {p→ p = (q→ q)→ r}

• A minimal solution for EM is S = {p := q→ q, r := q→ q}
• The principal type ofM: S(τM) = q→ q

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 9 / 15



Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …

• constant terms and constant functions

• 0 : Int, True : Bool
• cons : a→ [a]→ [a]

• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of the types

• The type inference algorithm is more or less unchanged!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 10 / 15



Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …

• constant terms and constant functions

• 0 : Int, True : Bool
• cons : a→ [a]→ [a]

• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of the types

• The type inference algorithm is more or less unchanged!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 10 / 15



Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …

• constant terms and constant functions

• 0 : Int, True : Bool
• cons : a→ [a]→ [a]

• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of the types

• The type inference algorithm is more or less unchanged!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 10 / 15



Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …

• constant terms and constant functions

• 0 : Int, True : Bool

• cons : a→ [a]→ [a]

• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of the types

• The type inference algorithm is more or less unchanged!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 10 / 15



Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …

• constant terms and constant functions

• 0 : Int, True : Bool
• cons : a→ [a]→ [a]

• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of the types

• The type inference algorithm is more or less unchanged!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 10 / 15



Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …

• constant terms and constant functions

• 0 : Int, True : Bool
• cons : a→ [a]→ [a]

• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of the types

• The type inference algorithm is more or less unchanged!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 10 / 15



Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …

• constant terms and constant functions

• 0 : Int, True : Bool
• cons : a→ [a]→ [a]

• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of the types

• The type inference algorithm is more or less unchanged!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 10 / 15



Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …

• constant terms and constant functions

• 0 : Int, True : Bool
• cons : a→ [a]→ [a]

• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of the types

• The type inference algorithm is more or less unchanged!

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 10 / 15



Type inference: richer typing

• M = (λx · x)(λx · x) has principal type q→ q

• LetM1 be let y = λx · x in yy
• LetM2 be (λy · yy)(λx · x)
• M1 is equivalent toM and has the same principal type

• M2 is not typable, because λy · yy is not typable

• M1 is typable despite the occurrence of yy

• variable defined by local definition – treated differently

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 11 / 15



Type inference: richer typing

• M = (λx · x)(λx · x) has principal type q→ q

• LetM1 be let y = λx · x in yy

• LetM2 be (λy · yy)(λx · x)
• M1 is equivalent toM and has the same principal type

• M2 is not typable, because λy · yy is not typable

• M1 is typable despite the occurrence of yy

• variable defined by local definition – treated differently

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 11 / 15



Type inference: richer typing

• M = (λx · x)(λx · x) has principal type q→ q

• LetM1 be let y = λx · x in yy
• LetM2 be (λy · yy)(λx · x)

• M1 is equivalent toM and has the same principal type

• M2 is not typable, because λy · yy is not typable

• M1 is typable despite the occurrence of yy

• variable defined by local definition – treated differently

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 11 / 15



Type inference: richer typing

• M = (λx · x)(λx · x) has principal type q→ q

• LetM1 be let y = λx · x in yy
• LetM2 be (λy · yy)(λx · x)
• M1 is equivalent toM and has the same principal type

• M2 is not typable, because λy · yy is not typable

• M1 is typable despite the occurrence of yy

• variable defined by local definition – treated differently

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 11 / 15



Type inference: richer typing

• M = (λx · x)(λx · x) has principal type q→ q

• LetM1 be let y = λx · x in yy
• LetM2 be (λy · yy)(λx · x)
• M1 is equivalent toM and has the same principal type

• M2 is not typable, because λy · yy is not typable

• M1 is typable despite the occurrence of yy

• variable defined by local definition – treated differently

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 11 / 15



Type inference: richer typing

• M = (λx · x)(λx · x) has principal type q→ q

• LetM1 be let y = λx · x in yy
• LetM2 be (λy · yy)(λx · x)
• M1 is equivalent toM and has the same principal type

• M2 is not typable, because λy · yy is not typable

• M1 is typable despite the occurrence of yy

• variable defined by local definition – treated differently

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 11 / 15



Type inference: richer typing

• M = (λx · x)(λx · x) has principal type q→ q

• LetM1 be let y = λx · x in yy
• LetM2 be (λy · yy)(λx · x)
• M1 is equivalent toM and has the same principal type

• M2 is not typable, because λy · yy is not typable

• M1 is typable despite the occurrence of yy

• variable defined by local definition – treated differently

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 11 / 15



Type inference: non-recursive local definitions

• M is let {x1 = M1 ; · · · ; xn = Mn} in N

• Find principal types ofM1, . . . ,Mn

• Set τxi to be τMi
, and Exi = ∅• Find the type of N as usual, using the above definition for τxi ’s• Each occurrence of xi in N will get a different instance of τxi as its type

• All auxilliary type variables in τxi will be renamed to fresh variables
• Main type variables of the form px will not be renamed

• xi’s are used in N as polymorphic expressions

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 12 / 15



Type inference: non-recursive local definitions

• M is let {x1 = M1 ; · · · ; xn = Mn} in N
• Find principal types ofM1, . . . ,Mn

• Set τxi to be τMi
, and Exi = ∅• Find the type of N as usual, using the above definition for τxi ’s• Each occurrence of xi in N will get a different instance of τxi as its type

• All auxilliary type variables in τxi will be renamed to fresh variables
• Main type variables of the form px will not be renamed

• xi’s are used in N as polymorphic expressions

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 12 / 15



Type inference: non-recursive local definitions

• M is let {x1 = M1 ; · · · ; xn = Mn} in N
• Find principal types ofM1, . . . ,Mn

• Set τxi to be τMi
, and Exi = ∅

• Find the type of N as usual, using the above definition for τxi ’s• Each occurrence of xi in N will get a different instance of τxi as its type
• All auxilliary type variables in τxi will be renamed to fresh variables
• Main type variables of the form px will not be renamed

• xi’s are used in N as polymorphic expressions

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 12 / 15



Type inference: non-recursive local definitions

• M is let {x1 = M1 ; · · · ; xn = Mn} in N
• Find principal types ofM1, . . . ,Mn

• Set τxi to be τMi
, and Exi = ∅• Find the type of N as usual, using the above definition for τxi ’s

• Each occurrence of xi in N will get a different instance of τxi as its type
• All auxilliary type variables in τxi will be renamed to fresh variables
• Main type variables of the form px will not be renamed

• xi’s are used in N as polymorphic expressions

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 12 / 15



Type inference: non-recursive local definitions

• M is let {x1 = M1 ; · · · ; xn = Mn} in N
• Find principal types ofM1, . . . ,Mn

• Set τxi to be τMi
, and Exi = ∅• Find the type of N as usual, using the above definition for τxi ’s• Each occurrence of xi in N will get a different instance of τxi as its type

• All auxilliary type variables in τxi will be renamed to fresh variables
• Main type variables of the form px will not be renamed

• xi’s are used in N as polymorphic expressions

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 12 / 15



Type inference: non-recursive local definitions

• M is let {x1 = M1 ; · · · ; xn = Mn} in N
• Find principal types ofM1, . . . ,Mn

• Set τxi to be τMi
, and Exi = ∅• Find the type of N as usual, using the above definition for τxi ’s• Each occurrence of xi in N will get a different instance of τxi as its type

• All auxilliary type variables in τxi will be renamed to fresh variables

• Main type variables of the form px will not be renamed

• xi’s are used in N as polymorphic expressions

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 12 / 15



Type inference: non-recursive local definitions

• M is let {x1 = M1 ; · · · ; xn = Mn} in N
• Find principal types ofM1, . . . ,Mn

• Set τxi to be τMi
, and Exi = ∅• Find the type of N as usual, using the above definition for τxi ’s• Each occurrence of xi in N will get a different instance of τxi as its type

• All auxilliary type variables in τxi will be renamed to fresh variables
• Main type variables of the form px will not be renamed

• xi’s are used in N as polymorphic expressions

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 12 / 15



Type inference: non-recursive local definitions

• M is let {x1 = M1 ; · · · ; xn = Mn} in N
• Find principal types ofM1, . . . ,Mn

• Set τxi to be τMi
, and Exi = ∅• Find the type of N as usual, using the above definition for τxi ’s• Each occurrence of xi in N will get a different instance of τxi as its type

• All auxilliary type variables in τxi will be renamed to fresh variables
• Main type variables of the form px will not be renamed

• xi’s are used in N as polymorphic expressions

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 12 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy

• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf

• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p

• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf

• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf

• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ

• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf

• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf

• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf

• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf

• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf

• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf
• τf = p→ px

• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf
• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf
• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}

• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf
• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution

• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: non-recursive local definitions

• Consider let y = λx · x in yy
• τy = p→ p, for some auxilliary type variable p
• yy is of the form PQ

• We rename auxilliary type variables in τQ
• Type of the first y is p→ p

• Type of second y is q→ q

• Now solve as usual!

• LetM be let {f = λy · x ; g = λx · x} in gf
• τf = p→ px
• τg = q→ q

• τgf = r, Egf = {q→ q = (p→ px)→ r}
• S = q := p→ px, r := p→ px is a solution
• Principal type ofM is p→ px

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 13 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N

• Build each τMi
and EMi

, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi
’s and τMi

’s are all distinct
• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En

• σi := τMi
[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj

• Ensure that the auxilliary variables in the EMi
’s and τMi

’s are all distinct
• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En

• σi := τMi
[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En

• σi := τMi
[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn

• Obtain σ1, . . . ,σn and E1, . . . , En

• σi := τMi
[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En

• σi := τMi
[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En
• σi := τMi

[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En
• σi := τMi

[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En
• σi := τMi

[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}

• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En
• σi := τMi

[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E

• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En
• σi := τMi

[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• M is letrec {x1 = M1 ; · · · ; xn = Mn} in N
• Build each τMi

and EMi
, treating each xj as a free variable with type pxj• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . , En
• σi := τMi

[px1 := q1, . . . ,pxn := qn]

• Ei := EMi
[px1 := q1, . . . ,pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}
• Let S be the most general solution to E
• τxi := S(qi)

• Find the type of N as usual, using the above τxi ’s

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 14 / 15



Type inference: recursive local definitions

• Consider letrec x = λf · f(xf) in x

• LetM1 be λf · f(xf)
• τM1

= p→ r and EM1
= {px = p→ q,p = q→ r}

• Now σ1 = p→ r and E1 = {q1 = p→ q,p = q→ r}
• E = {q1 = p→ q,p = q→ r,q1 = p→ r}
• Solution for E is {q := r,p := r→ r,q1 := (r→ r)→ r}
• τx := (r→ r)→ r

• The type of letrec x = λf · f(xf) in x is thus (r→ r)→ r

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 15 / 15



Type inference: recursive local definitions

• Consider letrec x = λf · f(xf) in x
• LetM1 be λf · f(xf)

• τM1
= p→ r and EM1

= {px = p→ q,p = q→ r}
• Now σ1 = p→ r and E1 = {q1 = p→ q,p = q→ r}
• E = {q1 = p→ q,p = q→ r,q1 = p→ r}
• Solution for E is {q := r,p := r→ r,q1 := (r→ r)→ r}
• τx := (r→ r)→ r

• The type of letrec x = λf · f(xf) in x is thus (r→ r)→ r

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 15 / 15



Type inference: recursive local definitions

• Consider letrec x = λf · f(xf) in x
• LetM1 be λf · f(xf)
• τM1

= p→ r and EM1
= {px = p→ q,p = q→ r}

• Now σ1 = p→ r and E1 = {q1 = p→ q,p = q→ r}
• E = {q1 = p→ q,p = q→ r,q1 = p→ r}
• Solution for E is {q := r,p := r→ r,q1 := (r→ r)→ r}
• τx := (r→ r)→ r

• The type of letrec x = λf · f(xf) in x is thus (r→ r)→ r

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 15 / 15



Type inference: recursive local definitions

• Consider letrec x = λf · f(xf) in x
• LetM1 be λf · f(xf)
• τM1

= p→ r and EM1
= {px = p→ q,p = q→ r}

• Now σ1 = p→ r and E1 = {q1 = p→ q,p = q→ r}

• E = {q1 = p→ q,p = q→ r,q1 = p→ r}
• Solution for E is {q := r,p := r→ r,q1 := (r→ r)→ r}
• τx := (r→ r)→ r

• The type of letrec x = λf · f(xf) in x is thus (r→ r)→ r

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 15 / 15



Type inference: recursive local definitions

• Consider letrec x = λf · f(xf) in x
• LetM1 be λf · f(xf)
• τM1

= p→ r and EM1
= {px = p→ q,p = q→ r}

• Now σ1 = p→ r and E1 = {q1 = p→ q,p = q→ r}
• E = {q1 = p→ q,p = q→ r,q1 = p→ r}

• Solution for E is {q := r,p := r→ r,q1 := (r→ r)→ r}
• τx := (r→ r)→ r

• The type of letrec x = λf · f(xf) in x is thus (r→ r)→ r

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 15 / 15



Type inference: recursive local definitions

• Consider letrec x = λf · f(xf) in x
• LetM1 be λf · f(xf)
• τM1

= p→ r and EM1
= {px = p→ q,p = q→ r}

• Now σ1 = p→ r and E1 = {q1 = p→ q,p = q→ r}
• E = {q1 = p→ q,p = q→ r,q1 = p→ r}
• Solution for E is {q := r,p := r→ r,q1 := (r→ r)→ r}

• τx := (r→ r)→ r

• The type of letrec x = λf · f(xf) in x is thus (r→ r)→ r

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 15 / 15



Type inference: recursive local definitions

• Consider letrec x = λf · f(xf) in x
• LetM1 be λf · f(xf)
• τM1

= p→ r and EM1
= {px = p→ q,p = q→ r}

• Now σ1 = p→ r and E1 = {q1 = p→ q,p = q→ r}
• E = {q1 = p→ q,p = q→ r,q1 = p→ r}
• Solution for E is {q := r,p := r→ r,q1 := (r→ r)→ r}
• τx := (r→ r)→ r

• The type of letrec x = λf · f(xf) in x is thus (r→ r)→ r

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 15 / 15



Type inference: recursive local definitions

• Consider letrec x = λf · f(xf) in x
• LetM1 be λf · f(xf)
• τM1

= p→ r and EM1
= {px = p→ q,p = q→ r}

• Now σ1 = p→ r and E1 = {q1 = p→ q,p = q→ r}
• E = {q1 = p→ q,p = q→ r,q1 = p→ r}
• Solution for E is {q := r,p := r→ r,q1 := (r→ r)→ r}
• τx := (r→ r)→ r

• The type of letrec x = λf · f(xf) in x is thus (r→ r)→ r

Madhavan Mukund/S P Suresh Type inference PLC, Lecture 24, 18 Apr 2024 15 / 15


