
Typed λ-calculus

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 23, 16 April 2024

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 1 / 18

Adding types to λ-calculus

• The basic λ-calculus is untyped

• The first functional programming language, LISP, was also untyped

• Modern languages such as Haskell,ML, …are typed

• What is the theoretical foundation for such languages?

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 2 / 18

Adding types to λ-calculus

• The basic λ-calculus is untyped

• The first functional programming language, LISP, was also untyped

• Modern languages such as Haskell,ML, …are typed

• What is the theoretical foundation for such languages?

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 2 / 18

Adding types to λ-calculus

• The basic λ-calculus is untyped

• The first functional programming language, LISP, was also untyped

• Modern languages such as Haskell,ML, …are typed

• What is the theoretical foundation for such languages?

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 2 / 18

Adding types to λ-calculus

• The basic λ-calculus is untyped

• The first functional programming language, LISP, was also untyped

• Modern languages such as Haskell,ML, …are typed

• What is the theoretical foundation for such languages?

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 2 / 18

Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by

the surrounding context

• Haskell, ML,… the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java,… specify all the types!

• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N
are integers, other variables are floating-point numbers

• Church typing: Pascal, C, Java, Fortran

• Curry typing: Haskell, ML

• We will only learn Curry typing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 3 / 18

Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by

the surrounding context

• Haskell, ML,… the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java,… specify all the types!

• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N
are integers, other variables are floating-point numbers

• Church typing: Pascal, C, Java, Fortran

• Curry typing: Haskell, ML

• We will only learn Curry typing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 3 / 18

Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by

the surrounding context

• Haskell, ML,… the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java,… specify all the types!

• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N
are integers, other variables are floating-point numbers

• Church typing: Pascal, C, Java, Fortran

• Curry typing: Haskell, ML

• We will only learn Curry typing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 3 / 18

Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by

the surrounding context

• Haskell, ML,… the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java,… specify all the types!

• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N
are integers, other variables are floating-point numbers

• Church typing: Pascal, C, Java, Fortran

• Curry typing: Haskell, ML

• We will only learn Curry typing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 3 / 18

Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by

the surrounding context

• Haskell, ML,… the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java,… specify all the types!

• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N
are integers, other variables are floating-point numbers

• Church typing: Pascal, C, Java, Fortran

• Curry typing: Haskell, ML

• We will only learn Curry typing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 3 / 18

Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by

the surrounding context

• Haskell, ML,… the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java,… specify all the types!

• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N
are integers, other variables are floating-point numbers

• Church typing: Pascal, C, Java, Fortran

• Curry typing: Haskell, ML

• We will only learn Curry typing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 3 / 18

Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by

the surrounding context

• Haskell, ML,… the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java,… specify all the types!

• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N
are integers, other variables are floating-point numbers

• Church typing: Pascal, C, Java, Fortran

• Curry typing: Haskell, ML

• We will only learn Curry typing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 3 / 18

Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by

the surrounding context

• Haskell, ML,… the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java,… specify all the types!

• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N
are integers, other variables are floating-point numbers

• Church typing: Pascal, C, Java, Fortran

• Curry typing: Haskell, ML

• We will only learn Curry typing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 3 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char

• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]

Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)
• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b

• Function with input of type a and output of type b
• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Types in functional programming

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF., ak)

• Function types

• If a, b are types, so is a F> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 4 / 18

Adding types to λ-calculus

• Set Λ of untyped lambda expressions given by the syntax

Λ = x | λx.M | MN

where x � Var,M,N � Λ

• Add a syntax for types

• When constructing expressions, build up the type from the types of the parts

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 5 / 18

Adding types to λ-calculus

• Set Λ of untyped lambda expressions given by the syntax

Λ = x | λx.M | MN

where x � Var,M,N � Λ
• Add a syntax for types

• When constructing expressions, build up the type from the types of the parts

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 5 / 18

Adding types to λ-calculus

• Set Λ of untyped lambda expressions given by the syntax

Λ = x | λx.M | MN

where x � Var,M,N � Λ
• Add a syntax for types

• When constructing expressions, build up the type from the types of the parts

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 5 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .

• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus

• Assume an infinite set of type variables p,q, r,p1,q′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q

• p→ (q→ p)

• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 6 / 18

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type

• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct variables, and

the σi are types

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ

Γ ⊢ (λx ·M) : σ→ τ

Γ ⊢ M : σ→ τ Γ ⊢ N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M[x := N]

• Types match

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 7 / 18

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type

• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct variables, and

the σi are types

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ

Γ ⊢ (λx ·M) : σ→ τ

Γ ⊢ M : σ→ τ Γ ⊢ N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M[x := N]

• Types match

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 7 / 18

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type

• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct variables, and

the σi are types

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ

Γ ⊢ (λx ·M) : σ→ τ

Γ ⊢ M : σ→ τ Γ ⊢ N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M[x := N]

• Types match

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 7 / 18

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type

• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct variables, and

the σi are types

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ

Γ ⊢ (λx ·M) : σ→ τ

Γ ⊢ M : σ→ τ Γ ⊢ N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M[x := N]

• Types match

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 7 / 18

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type

• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct variables, and

the σi are types

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ

Γ ⊢ (λx ·M) : σ→ τ

Γ ⊢ M : σ→ τ Γ ⊢ N : σ

Γ ⊢ (MN) : τ

• β-reduction is as usual: (λx ·M)N −−→β M[x := N]

• Types match

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 7 / 18

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type

• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct variables, and

the σi are types

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ

Γ ⊢ (λx ·M) : σ→ τ

Γ ⊢ M : σ→ τ Γ ⊢ N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M[x := N]

• Types match

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 7 / 18

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type

• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct variables, and

the σi are types

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢ M : τ

Γ ⊢ (λx ·M) : σ→ τ

Γ ⊢ M : σ→ τ Γ ⊢ N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M[x := N]

• Types match

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 7 / 18

Curry typing: Examples

•
x : p ⊢ x : p
⊢ λx · x : p→ p

•
x : p, y : q ⊢ x : p

x : p ⊢ λy · x : q→ p

⊢ λxy · x : p→ (q→ p)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 8 / 18

Curry typing: Examples

•
x : p ⊢ x : p
⊢ λx · x : p→ p

•
x : p, y : q ⊢ x : p

x : p ⊢ λy · x : q→ p

⊢ λxy · x : p→ (q→ p)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 8 / 18

Curry typing: Examples

• Let Γ = {x : p→ q→ r, y : p→ q, z : p}
Γ ⊢ x : p→ q→ r Γ ⊢ z : p

Γ ⊢ xz : q→ r

Γ ⊢ y : p→ q Γ ⊢ z : p
Γ ⊢ yz : q

Γ ⊢ xz(yz) : r
x : p→ q→ r, y : p→ q ⊢ λz · xz(yz) : p→ r

x : p→ q→ r ⊢ λyz · xz(yz) : (p→ q)→ (p→ r)

⊢ λxyz · xz(yz) : (p→ q→ r)→ (p→ q)→ (p→ r)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 9 / 18

Curry typing: Examples

• Let Γ = {f : q, x : p}
Γ ⊢ x : p

f : q ⊢ λx · x : p→ p

⊢ λf x · x : q→ (p→ p)

• Let Δ = {f : p→ p, x : p}
Δ ⊢ x : p

f : p→ p ⊢ λx · x : p→ p

⊢ λf x · x : (p→ p)→ (p→ p)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 10 / 18

Curry typing: Examples

• Let Γ = {f : q, x : p}
Γ ⊢ x : p

f : q ⊢ λx · x : p→ p

⊢ λf x · x : q→ (p→ p)

• Let Δ = {f : p→ p, x : p}
Δ ⊢ x : p

f : p→ p ⊢ λx · x : p→ p

⊢ λf x · x : (p→ p)→ (p→ p)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 10 / 18

Curry typing: Examples

• Let Γ = {f : p→ q, x : p}.
Γ ⊢ f : p→ q Γ ⊢ x : p

Γ ⊢ f x : q
f : p→ q ⊢ λx · f x : p→ q

⊢ λf x · f x : (p→ q)→ (p→ q)

• Let Δ = {f : p→ p, x : p}.
Δ ⊢ f : p→ q Δ ⊢ x : p

Γ ⊢ f x : q
f : p→ p ⊢ λx · f x : p→ p

⊢ λf x · f x : (p→ p)→ (p→ p)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 11 / 18

Curry typing: Examples

• Let Γ = {f : p→ q, x : p}.
Γ ⊢ f : p→ q Γ ⊢ x : p

Γ ⊢ f x : q
f : p→ q ⊢ λx · f x : p→ q

⊢ λf x · f x : (p→ q)→ (p→ q)

• Let Δ = {f : p→ p, x : p}.
Δ ⊢ f : p→ q Δ ⊢ x : p

Γ ⊢ f x : q
f : p→ p ⊢ λx · f x : p→ p

⊢ λf x · f x : (p→ p)→ (p→ p)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 11 / 18

Curry typing: Examples

• Let Δ = {f : p→ p, x : p}.

Δ ⊢ f : p→ p

Δ ⊢ f : p→ p Δ ⊢ x : p
Δ ⊢ f x : p

Δ ⊢ f (f x) : p
f : p→ p ⊢ λx · f (f x) : p→ p

⊢ λf x · f (f x) : (p→ p)→ (p→ p)

• Define int := (p→ p)→ (p→ p)

• For all n � N, ⊢ «n» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 12 / 18

Curry typing: Examples

• Let Δ = {f : p→ p, x : p}.

Δ ⊢ f : p→ p

Δ ⊢ f : p→ p Δ ⊢ x : p
Δ ⊢ f x : p

Δ ⊢ f (f x) : p
f : p→ p ⊢ λx · f (f x) : p→ p

⊢ λf x · f (f x) : (p→ p)→ (p→ p)

• Define int := (p→ p)→ (p→ p)

• For all n � N, ⊢ «n» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 12 / 18

Curry typing: Examples

• Let Δ = {f : p→ p, x : p}.

Δ ⊢ f : p→ p

Δ ⊢ f : p→ p Δ ⊢ x : p
Δ ⊢ f x : p

Δ ⊢ f (f x) : p
f : p→ p ⊢ λx · f (f x) : p→ p

⊢ λf x · f (f x) : (p→ p)→ (p→ p)

• Define int := (p→ p)→ (p→ p)

• For all n � N, ⊢ «n» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 12 / 18

Curry typing: Examples

• Recall that succ := λmf x · f (mf x)

• succ can be given the type int→ int

• Let Γ = {m : int, f : p→ p, x : p}

Γ ⊢ f : p→ p

Γ ⊢ m : (p→ p)→ (p→ p) Γ ⊢ f : p→ p

Γ ⊢ mf : p→ p Γ ⊢ x : p
Γ ⊢ mf x : p

Γ ⊢ f (mf x) : p

m : int, f : p→ p ⊢ λx · f (mf x) : p→ p

m : int ⊢ λf x · f (mf x) : int

⊢ λmf x · f (mf x) : int→ int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 13 / 18

Curry typing: Examples

• Recall that succ := λmf x · f (mf x)

• succ can be given the type int→ int

• Let Γ = {m : int, f : p→ p, x : p}

Γ ⊢ f : p→ p

Γ ⊢ m : (p→ p)→ (p→ p) Γ ⊢ f : p→ p

Γ ⊢ mf : p→ p Γ ⊢ x : p
Γ ⊢ mf x : p

Γ ⊢ f (mf x) : p

m : int, f : p→ p ⊢ λx · f (mf x) : p→ p

m : int ⊢ λf x · f (mf x) : int

⊢ λmf x · f (mf x) : int→ int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 13 / 18

Curry typing: Examples

• Recall that succ := λmf x · f (mf x)

• succ can be given the type int→ int

• Let Γ = {m : int, f : p→ p, x : p}

Γ ⊢ f : p→ p

Γ ⊢ m : (p→ p)→ (p→ p) Γ ⊢ f : p→ p

Γ ⊢ mf : p→ p Γ ⊢ x : p
Γ ⊢ mf x : p

Γ ⊢ f (mf x) : p

m : int, f : p→ p ⊢ λx · f (mf x) : p→ p

m : int ⊢ λf x · f (mf x) : int

⊢ λmf x · f (mf x) : int→ int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 13 / 18

Curry typing: Examples

• Similarly plus : int→ int→ int andmult : int→ int→ int

• But one cannot assign type int→ int→ int to exp := λmn ·mn

• For the above typing to be possible, we must havem : int,n : int ⊢ mn : int

• But this is possible only ifm : int,n : int ⊢ m : int→ int is derivable

• Not possible!

• But we can derive the judgement «m» «n» : int

• For example, letting τ := p→ p,

⊢ «2» : (τ→ τ)→ (τ→ τ) ⊢ «2» : (p→ p)→ (p→ p)

⊢ «2» «2» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 14 / 18

Curry typing: Examples

• Similarly plus : int→ int→ int andmult : int→ int→ int

• But one cannot assign type int→ int→ int to exp := λmn ·mn

• For the above typing to be possible, we must havem : int,n : int ⊢ mn : int

• But this is possible only ifm : int,n : int ⊢ m : int→ int is derivable

• Not possible!

• But we can derive the judgement «m» «n» : int

• For example, letting τ := p→ p,

⊢ «2» : (τ→ τ)→ (τ→ τ) ⊢ «2» : (p→ p)→ (p→ p)

⊢ «2» «2» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 14 / 18

Curry typing: Examples

• Similarly plus : int→ int→ int andmult : int→ int→ int

• But one cannot assign type int→ int→ int to exp := λmn ·mn

• For the above typing to be possible, we must havem : int,n : int ⊢ mn : int

• But this is possible only ifm : int,n : int ⊢ m : int→ int is derivable

• Not possible!

• But we can derive the judgement «m» «n» : int

• For example, letting τ := p→ p,

⊢ «2» : (τ→ τ)→ (τ→ τ) ⊢ «2» : (p→ p)→ (p→ p)

⊢ «2» «2» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 14 / 18

Curry typing: Examples

• Similarly plus : int→ int→ int andmult : int→ int→ int

• But one cannot assign type int→ int→ int to exp := λmn ·mn

• For the above typing to be possible, we must havem : int,n : int ⊢ mn : int

• But this is possible only ifm : int,n : int ⊢ m : int→ int is derivable

• Not possible!

• But we can derive the judgement «m» «n» : int

• For example, letting τ := p→ p,

⊢ «2» : (τ→ τ)→ (τ→ τ) ⊢ «2» : (p→ p)→ (p→ p)

⊢ «2» «2» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 14 / 18

Curry typing: Examples

• Similarly plus : int→ int→ int andmult : int→ int→ int

• But one cannot assign type int→ int→ int to exp := λmn ·mn

• For the above typing to be possible, we must havem : int,n : int ⊢ mn : int

• But this is possible only ifm : int,n : int ⊢ m : int→ int is derivable

• Not possible!

• But we can derive the judgement «m» «n» : int

• For example, letting τ := p→ p,

⊢ «2» : (τ→ τ)→ (τ→ τ) ⊢ «2» : (p→ p)→ (p→ p)

⊢ «2» «2» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 14 / 18

Curry typing: Examples

• Similarly plus : int→ int→ int andmult : int→ int→ int

• But one cannot assign type int→ int→ int to exp := λmn ·mn

• For the above typing to be possible, we must havem : int,n : int ⊢ mn : int

• But this is possible only ifm : int,n : int ⊢ m : int→ int is derivable

• Not possible!

• But we can derive the judgement «m» «n» : int

• For example, letting τ := p→ p,

⊢ «2» : (τ→ τ)→ (τ→ τ) ⊢ «2» : (p→ p)→ (p→ p)

⊢ «2» «2» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 14 / 18

Curry typing: Examples

• Similarly plus : int→ int→ int andmult : int→ int→ int

• But one cannot assign type int→ int→ int to exp := λmn ·mn

• For the above typing to be possible, we must havem : int,n : int ⊢ mn : int

• But this is possible only ifm : int,n : int ⊢ m : int→ int is derivable

• Not possible!

• But we can derive the judgement «m» «n» : int

• For example, letting τ := p→ p,

⊢ «2» : (τ→ τ)→ (τ→ τ) ⊢ «2» : (p→ p)→ (p→ p)

⊢ «2» «2» : int

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 14 / 18

Defining arithmetic functions in typed λ-calculus

• A function f :Nk→N is defined in the typed λ-calculus if there is a term F such that:

• ⊢ F : int→ int→ ·· · → int (int occurring k+ 1 times)
• for allm1, . . . ,mk,n � N: f(m1, . . . ,mk) = n iff F «m1» · · · «mk»

∗−−→ «n»

• f is definable in typed λ-calculus iff it is essentially a polynomial function!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 15 / 18

Defining arithmetic functions in typed λ-calculus

• A function f :Nk→N is defined in the typed λ-calculus if there is a term F such that:

• ⊢ F : int→ int→ ·· · → int (int occurring k+ 1 times)

• for allm1, . . . ,mk,n � N: f(m1, . . . ,mk) = n iff F «m1» · · · «mk»
∗−−→ «n»

• f is definable in typed λ-calculus iff it is essentially a polynomial function!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 15 / 18

Defining arithmetic functions in typed λ-calculus

• A function f :Nk→N is defined in the typed λ-calculus if there is a term F such that:

• ⊢ F : int→ int→ ·· · → int (int occurring k+ 1 times)
• for allm1, . . . ,mk,n � N: f(m1, . . . ,mk) = n iff F «m1» · · · «mk»

∗−−→ «n»

• f is definable in typed λ-calculus iff it is essentially a polynomial function!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 15 / 18

Defining arithmetic functions in typed λ-calculus

• A function f :Nk→N is defined in the typed λ-calculus if there is a term F such that:

• ⊢ F : int→ int→ ·· · → int (int occurring k+ 1 times)
• for allm1, . . . ,mk,n � N: f(m1, . . . ,mk) = n iff F «m1» · · · «mk»

∗−−→ «n»

• f is definable in typed λ-calculus iff it is essentially a polynomial function!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 15 / 18

Typed λ-calculus: Church-Rosser

• Extend−−→β to one-step reduction−−→, as usual

• Extend to many-step
∗−−→β as usual

• ∗−−→β is Church-Rosser

• Same proof as for untyped λ-calculus

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 16 / 18

Typed λ-calculus: Church-Rosser

• Extend−−→β to one-step reduction−−→, as usual

• Extend to many-step
∗−−→β as usual

• ∗−−→β is Church-Rosser

• Same proof as for untyped λ-calculus

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 16 / 18

Typed λ-calculus: Church-Rosser

• Extend−−→β to one-step reduction−−→, as usual

• Extend to many-step
∗−−→β as usual

• ∗−−→β is Church-Rosser

• Same proof as for untyped λ-calculus

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 16 / 18

Typed λ-calculus: Church-Rosser

• Extend−−→β to one-step reduction−−→, as usual

• Extend to many-step
∗−−→β as usual

• ∗−−→β is Church-Rosser

• Same proof as for untyped λ-calculus

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 16 / 18

Typed λ-calculus: Normalization

• A λ-expression is

• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω

• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)

• Counterexample: (λx · y)Ω
• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Typed λ-calculus: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus isweakly normalizing if every term in the calculus is weakly normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

• The typed λ-calculus is both strongly and weakly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 17 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x

• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type

• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types

for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r→ r, (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a termM such that every other type forM is got by uniformly replacing each

variable by a type
• unique for each typable term – modulo renaming of variables!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC, Lecture 23, 16 Apr 2024 18 / 18

