On reduction

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 22, 09 April 2024

One step reduction

- Can have other reduction rules like β
- Observe that if x does not occur free in M, then

$$
\text { for all } N,(\lambda x \cdot(M x)) N \longrightarrow_{\beta} M N
$$

- Thus $\lambda x \cdot(M x)$ behaves just like M
- New reduction rule η (when $x \notin \mathrm{fv}(M)$)

$$
\lambda x \cdot(M x) \longrightarrow_{\eta} M
$$

One step reduction

- Define a one step reduction inductively (where $x \in\{\beta, \eta, \ldots\}$)

$$
\frac{M \longrightarrow_{x} M^{\prime}}{M \longrightarrow M^{\prime}}
$$

$$
\frac{M \longrightarrow M^{\prime}}{M N \longrightarrow M^{\prime} N} \quad \frac{N \longrightarrow N^{\prime}}{M N \longrightarrow M N^{\prime}} \quad \frac{M \longrightarrow M^{\prime}}{\lambda x \cdot M \longrightarrow \lambda x \cdot M^{\prime}}
$$

Multistep reduction and equivalence

- $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N
- There is a sequence $M=M_{0}, M_{1}, \ldots, M_{k}=N$ such that for each $i<k: M_{i} \longrightarrow M_{i+1}$
- $M \longleftrightarrow N: M$ is equivalent to N
- There is a sequence $M=M_{0}, M_{1}, \ldots, M_{k}=N$ such that for each $i<k$: either $M_{i} \longrightarrow M_{i+1}$ or $M_{i+1} \longrightarrow M_{i}$

Normal forms

- Computation - a maximal sequence of reduction steps
- Values - expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
- Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x \cdot M) N$ (or $\lambda x \cdot(M x)$, in the case of η-reduction)

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on the reduction sequence?
- If a term has a normal form, can we always find it?

Normal forms

Does every term reduce to normal form?

- Consider the terms $\omega=\lambda x \cdot x x$ and $\Omega=\omega \omega$
- $\Omega=(\lambda x \cdot x x)(\lambda x \cdot x x) \longrightarrow_{\beta}(\lambda x \cdot x x)(\lambda x \cdot x x)=\Omega$
- Reduction never terminates

Normal forms

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term false $\Omega=(\lambda y z \cdot z)((\lambda x \cdot x x)(\lambda x \cdot x x))$
- Outermost reduction

$$
(\lambda y z \cdot z)((\lambda x \cdot x x)(\lambda x \cdot x x)) \longrightarrow_{\beta} \lambda z \cdot z
$$

- Innermost reduction

$$
(\lambda y z \cdot z)((\lambda x \cdot x x)(\lambda x \cdot x x)) \longrightarrow_{\beta}(\lambda y z \cdot z)((\lambda x \cdot x x)(\lambda x \cdot x x))
$$

- Choice of reduction strategy may determine whether a normal form can be reached, but can more than one normal form be reached?

Normal forms ...

If a term has a normal form, can we always find it?

- Yes! We can do a breadth-first search of the reduction graph, and we are guaranteed to find a normal form eventually
- We could also reduce the term following the strategy of leftmost outermost reduction
- If a term has a normal form, leftmost outermost reduction will find it!

Normal forms

Given a term, can we determine if it has a normal form?

- We have seen how to encode recursive functions in the λ-calculus
- We cannot in general determine if the computation of $f(n)$ terminates, given f and n
- But computing $f(n)$ is equivalent to finding the normal form of \mathbf{f} «n»
- So $f(n)$ is defined iff \mathbf{f} «n» has a normal form
- So checking whether a given term has a normal form is undecidable

Church-Rosser theorem

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
- Suppose a term M_{0} reduces to two normal forms M and N
- Then $\mathrm{M} \longleftrightarrow N$
- Thus there is a P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ (by Church-Rosser)
- But since M and N are already in normal form, $M=P=N$ (upto renaming of bound variables)

Church-Rosser theorem

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proof.

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M=M_{0}, M_{1}, \ldots, M_{k}=N$ such that for all $i<k$: either $M_{i} \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leqslant k$, there is a P_{i} such that $M_{0} \xrightarrow{*} P_{i}$ and $M_{i} \xrightarrow{*} P_{i}$
- Base case: Choose $P_{0}=M_{0}$
- Induction case: Suppose there is a P_{i} such that $M_{0} \xrightarrow{*} P_{i}$ and $M_{i} \xrightarrow{*} P_{i}$
- If $M_{i+1} \longrightarrow M_{i j}$ take $P_{i+1}=P_{i}$
- If $M_{i} \longrightarrow M_{i+1}$, use the Diamond property to arrive at the desired P_{i+1}

Church-Rosser theorem

Theorem (Diamond property)

If $M_{0} \xrightarrow{*} M$ and $M_{0} \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- We can talk of the Diamond property for any relation R
- R has the Diamond property if

$$
(\forall a, b, c)[(a R b \wedge a R c) \Rightarrow(\exists d)(b R d \wedge c R d)]
$$

Proposition

If R has the Diamond property, so does R*

The proof is by induction on length of R-chains

Diamond property

Theorem (Diamond property)

If $M_{0} \xrightarrow{*} M$ and $M_{0} \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R*

Unfortunately, \longrightarrow does not have the Diamond property!

- Recall that $\omega=\lambda x$. $x x$ and $\mathbf{I}=\lambda x . x$
- ω (II) $\longrightarrow($ II) (II) by outermost reduction and $\omega(\mathrm{II}) \longrightarrow \omega$ I by innermost reduction
- $\omega \mathbf{I} \longrightarrow$ II but it takes two steps to go from (II)(II) to II!

Diamond property

Solution: Define a new "parallel reduction" \Longrightarrow as follows

$$
\begin{gathered}
M \Longrightarrow M \\
\frac{M \Longrightarrow M^{\prime}}{M x \cdot M \Longrightarrow \lambda x \cdot M^{\prime}} \\
M N \Longrightarrow M^{\prime} N^{\prime}
\end{gathered} \frac{M N^{\prime}}{(\lambda x \cdot M) N \Longrightarrow M^{\prime}\left[x:=N^{\prime}\right]}
$$

- It is easily shown that
- if $M \longrightarrow{ }_{\beta} N$ then $M \Longrightarrow N$
- if $M \Longrightarrow N$ then $M \xrightarrow{*}{ }_{\beta} N$
- Hence $M \stackrel{*}{\Longrightarrow} N$ iff $M \xrightarrow{*}{ }_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property

Diamond property

- $M \stackrel{*}{\Longrightarrow} N$ iff $M \xrightarrow{*} \beta N$
- It can also be shown that \Longrightarrow has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\xrightarrow{*}$) has the Diamond property
- Can be extended in the presence of \longrightarrow_{η} as well

Proposition

If $M_{0} \Longrightarrow M$ and $M_{0} \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$

Proof.

- For every M, define M^{*}, the term obtained by one application of "maximal" parallel reduction
- Whenever $M \Longrightarrow N, N \Longrightarrow M^{*}$

