On reduction

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 22, 09 April 2024

One step reduction

- Can have other reduction rules like β
- Observe that if x does not occur free in M, then

for all
$$N$$
, $(\lambda x \cdot (Mx))N \longrightarrow_{\beta} MN$

- Thus $\lambda x \cdot (Mx)$ behaves just like M
- New reduction rule η (when $x \notin \mathbf{fv}(M)$)

$$\lambda x \cdot (Mx) \longrightarrow_{\eta} M$$

One step reduction

• Define a one step reduction inductively (where $x \in \{\beta, \eta, ...\}$)

$$\frac{M \longrightarrow_{X} M'}{M \longrightarrow M'}$$

$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \qquad \frac{N \longrightarrow N'}{MN \longrightarrow MN'} \qquad \frac{M \longrightarrow M'}{\lambda x \cdot M \longrightarrow \lambda x \cdot M'}$$

Multistep reduction and equivalence

- $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N
 - There is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for each $i < k : M_i \longrightarrow M_{i+1}$
- $M \longleftrightarrow N$: M is **equivalent** to N
 - There is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for each i < k: either $M_i \longrightarrow M_{i+1}$ or $M_{i+1} \longrightarrow M_i$

4/15

Normal forms

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - **Recall**: A **redex** (or **reducible expression**) is a subexpression of the form $(\lambda x \cdot M)N$ (or $\lambda x \cdot (Mx)$, in the case of η -reduction)

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on the reduction sequence?
- If a term has a normal form, can we always find it?

Does every term reduce to normal form?

- Consider the terms $\omega = \lambda x \cdot xx$ and $\Omega = \omega \omega$
- $\Omega = (\lambda x \cdot xx)(\lambda x \cdot xx) \longrightarrow_{\beta} (\lambda x \cdot xx)(\lambda x \cdot xx) = \Omega$
 - Reduction never terminates

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term **false** $\Omega = (\lambda yz \cdot z)((\lambda x \cdot xx)(\lambda x \cdot xx))$
- Outermost reduction

$$(\lambda yz \cdot z)((\lambda x \cdot xx)(\lambda x \cdot xx)) \longrightarrow_{\beta} \lambda z \cdot z$$

Innermost reduction

$$(\lambda yz \cdot z)((\lambda x \cdot xx)(\lambda x \cdot xx)) \longrightarrow_{\beta} (\lambda yz \cdot z)((\lambda x \cdot xx)(\lambda x \cdot xx))$$

• Choice of reduction strategy may determine whether a normal form can be reached, but can more than one normal form be reached?

If a term has a normal form, can we always find it?

- Yes! We can do a breadth-first search of the reduction graph, and we are guaranteed to find a normal form eventually
- We could also reduce the term following the strategy of leftmost outermost reduction
- If a term has a normal form, leftmost outermost reduction will find it!

Given a term, can we determine if it has a normal form?

- We have seen how to encode recursive functions in the λ -calculus
- We cannot in general determine if the computation of f(n) terminates, given f and n
- But computing f(n) is equivalent to finding the normal form of f(n)
- So f(n) is defined iff f(n) has a normal form
- So checking whether a given term has a normal form is undecidable

Church-Rosser theorem

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- **Answer**: No!
 - Suppose a term M_0 reduces to two normal forms M and N
 - Then $M \longleftrightarrow N$
 - Thus there is a P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ (by Church-Rosser)
 - But since M and N are already in normal form, M = P = N (upto renaming of bound variables)

Church-Rosser theorem

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

- **Recall**: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longleftrightarrow N$ or $N \longleftrightarrow M$
- Claim: For all $i \le k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - **Base case**: Choose $P_0 = M_0$
 - Induction case: Suppose there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - If $M_{i+1} \longrightarrow M_i$, take $P_{i+1} = P_i$
 - If $M_i \longrightarrow M_{i+1}$, use the **Diamond property** to arrive at the desired P_{i+1}

Church-Rosser theorem

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- We can talk of the Diamond property for any relation R
- R has the Diamond property if

$$(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$$

Proposition

If R has the Diamond property, so does R^*

The proof is by induction on length of *R*-chains

Diamond property

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R^*

Unfortunately, → does not have the Diamond property!

- Recall that $\omega = \lambda x.xx$ and $\mathbf{I} = \lambda x.x$
- $\omega(II) \longrightarrow (II)(II)$ by outermost reduction and $\omega(II) \longrightarrow \omega I$ by innermost reduction
- $\omega I \longrightarrow II$ but it takes **two** steps to go from (II)(II) to II!

Diamond property

Solution: Define a new "parallel reduction" ⇒ as follows

$$\begin{array}{ccc}
M \Longrightarrow M' \\
\lambda x \cdot M \Longrightarrow \lambda x \cdot M'
\end{array}$$

$$\frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{MN \Longrightarrow M'N'} \qquad \frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{(\lambda x \cdot M)N \Longrightarrow M'[x := N']}$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$
 - if $M \Longrightarrow N$ then $M \xrightarrow{*}_{\beta} N$
 - Hence $M \stackrel{*}{\Longrightarrow} N$ iff $M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property

Diamond property

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$

Proof.

- For every M, define M^* , the term obtained by one application of "maximal" parallel reduction
- Whenever $M \Longrightarrow N, N \Longrightarrow M^*$

