Lambda calculus

Madhavan Mukund, S P Suresh

Programming Language Concepts Lecture 17, 19 March 2024

λ -calculus

• A notation for **computable functions**

λ -calculus

- A notation for **computable functions**
 - Alonzo Church

- A notation for **computable functions**
 - Alonzo Church
- How do we describe a function?

- A notation for **computable functions**
 - Alonzo Church
- How do we describe a function?
 - By its graph a binary relation between domain and codomain

- A notation for **computable functions**
 - Alonzo Church
- How do we describe a function?
 - By its graph a binary relation between **domain** and **codomain**
 - Single-valued

- A notation for **computable functions**
 - Alonzo Church
- How do we describe a function?
 - By its graph a binary relation between **domain** and **codomain**
 - Single-valued
 - Extensional graph completely defines the function

- A notation for **computable functions**
 - Alonzo Church
- How do we describe a function?
 - By its graph a binary relation between domain and codomain
 - Single-valued
 - Extensional graph completely defines the function
- An extensional definition is not suitable for computation

- A notation for **computable functions**
 - Alonzo Church
- How do we describe a function?
 - By its graph a binary relation between domain and codomain
 - Single-valued
 - Extensional graph completely defines the function
- An extensional definition is not suitable for computation
 - All sorting functions are the same!

- A notation for **computable functions**
 - Alonzo Church
- How do we describe a function?
 - By its graph a binary relation between domain and codomain
 - Single-valued
 - Extensional graph completely defines the function
- An extensional definition is not suitable for computation
 - All sorting functions are the same!
- Need an intensional definition

- A notation for **computable functions**
 - Alonzo Church
- How do we describe a function?
 - By its graph a binary relation between domain and codomain
 - Single-valued
 - Extensional graph completely defines the function
- An extensional definition is not suitable for computation
 - All sorting functions are the same!
- Need an intensional definition
 - How are outputs computed from inputs?

• Assume a countably infinite set Var of variables

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

 $\Lambda = x \mid (\lambda x \cdot M) \mid (MN)$

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

 $\Lambda = x \mid (\lambda x \cdot M) \mid (MN)$

where $x \in Var$ and $M, N \in \Lambda$.

• $(\lambda x \cdot M)$: Abstraction

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

 $\Lambda = x \mid (\lambda x \cdot M) \mid (MN)$

where $x \in Var$ and $M, N \in \Lambda$.

- $(\lambda x \cdot M)$: Abstraction
 - A function of *x* with computation rule *M*.

- Assume a countably infinite set Var of variables
- The set \wedge of lambda expressions is given by

 $\Lambda = x \mid (\lambda x \cdot M) \mid (MN)$

where $x \in Var$ and $M, N \in \Lambda$.

- $(\lambda x \cdot M)$: Abstraction
 - A function of *x* with computation rule *M*.
 - "Abstracts" the computation rule M over arbitrary input values x

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

 $\Lambda = x \mid (\lambda x \cdot M) \mid (MN)$

- $(\lambda x \cdot M)$: Abstraction
 - A function of *x* with computation rule *M*.
 - "Abstracts" the computation rule *M* over arbitrary input values *x*
 - Like writing f(x) = e, but not assigning a name f

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

 $\Lambda = x \mid (\lambda x \cdot M) \mid (MN)$

- $(\lambda x \cdot M)$: Abstraction
 - A function of *x* with computation rule *M*.
 - "Abstracts" the computation rule *M* over arbitrary input values *x*
 - Like writing f(x) = e, but not assigning a name f
- (MN): Application

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

 $\Lambda = x \mid (\lambda x \cdot M) \mid (MN)$

- $(\lambda x \cdot M)$: Abstraction
 - A function of *x* with computation rule *M*.
 - "Abstracts" the computation rule *M* over arbitrary input values *x*
 - Like writing f(x) = e, but not assigning a name f
- (MN): Application
 - Apply the function *M* to the argument *N*

• Can write expressions such as *xx* — no types!

- Can write expressions such as xx no types!
- What can we do without types?

- Can write expressions such as xx no types!
- What can we do without types?
 - Set theory as a basis for mathematics

- Can write expressions such as xx no types!
- What can we do without types?
 - Set theory as a basis for mathematics
 - Bit strings in memory

- Can write expressions such as xx no types!
- What can we do without types?
 - Set theory as a basis for mathematics
 - Bit strings in memory
- In an untyped world, some data is meaningful

- Can write expressions such as xx no types!
- What can we do without types?
 - Set theory as a basis for mathematics
 - Bit strings in memory
- In an untyped world, some data is meaningful
- Functions manipulate meaningful data to yield meaningful data

- Can write expressions such as xx no types!
- What can we do without types?
 - Set theory as a basis for mathematics
 - Bit strings in memory
- In an untyped world, some data is meaningful
- Functions manipulate meaningful data to yield meaningful data
- Can also apply functions to non-meaningful data, but the result has no significance

• Application associates to the left

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right
 - $\lambda x \cdot (\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right
 - $\lambda x \cdot (\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
 - More drastically, $\lambda x_1 \cdot (\lambda x_2 \cdots (\lambda x_n \cdot M) \cdots)$ is abbreviated $\lambda x_1 x_2 \cdots x_n \cdot M$

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right
 - $\lambda x \cdot (\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
 - More drastically, $\lambda x_1 \cdot (\lambda x_2 \cdots (\lambda x_n \cdot M) \cdots)$ is abbreviated $\lambda x_1 x_2 \cdots x_n \cdot M$
 - $\lambda x \cdot MN$ means ($\lambda x \cdot (MN)$). Everything after the \cdot is the body.

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right
 - $\lambda x \cdot (\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
 - More drastically, $\lambda x_1 \cdot (\lambda x_2 \cdots (\lambda x_n \cdot M) \cdots)$ is abbreviated $\lambda x_1 x_2 \cdots x_n \cdot M$
 - $\lambda x \cdot MN$ means $(\lambda x \cdot (MN))$. Everything after the \cdot is the body.
 - Use $(\lambda x \cdot M)N$ for applying $\lambda x \cdot M$ to N

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right
 - $\lambda x \cdot (\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
 - More drastically, $\lambda x_1 \cdot (\lambda x_2 \cdots (\lambda x_n \cdot M) \cdots)$ is abbreviated $\lambda x_1 x_2 \cdots x_n \cdot M$
 - $\lambda x \cdot MN$ means $(\lambda x \cdot (MN))$. Everything after the \cdot is the body.
 - Use $(\lambda x \cdot M)N$ for applying $\lambda x \cdot M$ to N
- Omit outermost parentheses

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right
 - $\lambda x \cdot (\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
 - More drastically, $\lambda x_1 \cdot (\lambda x_2 \cdots (\lambda x_n \cdot M) \cdots)$ is abbreviated $\lambda x_1 x_2 \cdots x_n \cdot M$
 - $\lambda x \cdot MN$ means ($\lambda x \cdot (MN)$). Everything after the \cdot is the body.
 - Use $(\lambda x \cdot M)N$ for applying $\lambda x \cdot M$ to N
- Omit outermost parentheses
- Examples

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right
 - $\lambda x \cdot (\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
 - More drastically, $\lambda x_1 \cdot (\lambda x_2 \cdots (\lambda x_n \cdot M) \cdots)$ is abbreviated $\lambda x_1 x_2 \cdots x_n \cdot M$
 - $\lambda x \cdot MN$ means ($\lambda x \cdot (MN)$). Everything after the \cdot is the body.
 - Use $(\lambda x \cdot M)N$ for applying $\lambda x \cdot M$ to N
- Omit outermost parentheses
- Examples
 - $(\lambda x \cdot x)(\lambda y \cdot y)(\lambda z \cdot z)$ is short for $(((\lambda x \cdot x)(\lambda y \cdot y))(\lambda z \cdot z))$
λ -calculus: syntax...

- Application associates to the left
 - ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right
 - $\lambda x \cdot (\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
 - More drastically, $\lambda x_1 \cdot (\lambda x_2 \cdots (\lambda x_n \cdot M) \cdots)$ is abbreviated $\lambda x_1 x_2 \cdots x_n \cdot M$
 - $\lambda x \cdot MN$ means ($\lambda x \cdot (MN)$). Everything after the \cdot is the body.
 - Use $(\lambda x \cdot M)N$ for applying $\lambda x \cdot M$ to N
- Omit outermost parentheses
- Examples
 - $(\lambda x \cdot x)(\lambda y \cdot y)(\lambda z \cdot z)$ is short for $(((\lambda x \cdot x)(\lambda y \cdot y))(\lambda z \cdot z))$
 - $\lambda f \cdot (\lambda u \cdot f(uu))(\lambda u \cdot f(uu))$ is short for $(\lambda f \cdot ((\lambda u \cdot f(uu))(\lambda u \cdot f(uu))))$

• Basic rule for computation (rewriting) is called β -reduction (or contraction)

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**
 - M[x := N] is the **contractum**

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**
 - M[x := N] is the **contractum**
- M[x := N]: substitute **free** occurrences of x in M by N

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**
 - M[x := N] is the **contractum**
- M[x := N]: substitute **free** occurrences of x in M by N
- This is the normal rule we use for functions:

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**
 - M[x := N] is the **contractum**
- M[x := N]: substitute **free** occurrences of x in M by N
- This is the normal rule we use for functions:
 - $f(x) = 2x^3 + 5x + 3$

The computation rule β

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**
 - M[x := N] is the **contractum**
- M[x := N]: substitute **free** occurrences of x in M by N
- This is the normal rule we use for functions:
 - $f(x) = 2x^3 + 5x + 3$
 - $f(7) = (2x^3 + 5x + 3)[x := 7] = 2 \cdot 7^3 + 5 \cdot 7 + 3 = 724$

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**
 - M[x := N] is the **contractum**
- M[x := N]: substitute **free** occurrences of x in M by N
- This is the normal rule we use for functions:
 - $f(x) = 2x^3 + 5x + 3$
 - $f(7) = (2x^3 + 5x + 3)[x := 7] = 2 \cdot 7^3 + 5 \cdot 7 + 3 = 724$
- β is the **only** rule we need

The computation rule β

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**
 - M[x := N] is the **contractum**
- M[x := N]: substitute **free** occurrences of x in M by N
- This is the normal rule we use for functions:
 - $f(x) = 2x^3 + 5x + 3$
 - $f(7) = (2x^3 + 5x + 3)[x := 7] = 2 \cdot 7^3 + 5 \cdot 7 + 3 = 724$
- β is the **only** rule we need
- *MN* is meaningful only if *M* is of the form $\lambda x \cdot P$

- Basic rule for computation (rewriting) is called β -reduction (or contraction)
 - $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$
 - A term of the form $(\lambda x \cdot M)N$ is a **redex**
 - M[x := N] is the **contractum**
- M[x := N]: substitute **free** occurrences of x in M by N
- This is the normal rule we use for functions:
 - $f(x) = 2x^3 + 5x + 3$
 - $f(7) = (2x^3 + 5x + 3)[x := 7] = 2 \cdot 7^3 + 5 \cdot 7 + 3 = 724$
- β is the **only** rule we need
- *MN* is meaningful only if *M* is of the form $\lambda x \cdot P$
 - Cannot do anything with terms like xx or $(y(\lambda x \cdot x))(\lambda y \cdot y)$

• An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$
 - $\mathbf{fv}(\lambda x \cdot M) = \mathbf{fv}(M) \setminus \{x\}$

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$
 - $\mathbf{fv}(\lambda x \cdot M) = \mathbf{fv}(M) \setminus \{x\}$
- **bv**(*M*): set of all variables occurring bound in *M*

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$
 - $\mathbf{fv}(\lambda x \cdot M) = \mathbf{fv}(M) \setminus \{x\}$
- **bv**(*M*): set of all variables occurring bound in *M*
 - $\mathbf{bv}(x) = \emptyset$, for any $x \in Var$

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$
 - $\mathbf{fv}(\lambda x \cdot M) = \mathbf{fv}(M) \setminus \{x\}$
- **bv**(*M*): set of all variables occurring bound in *M*
 - $\mathbf{bv}(x) = \emptyset$, for any $x \in Var$
 - $\mathbf{bv}(MN) = \mathbf{bv}(M) \cup \mathbf{bv}(N)$

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$
 - $\mathbf{fv}(\lambda x \cdot M) = \mathbf{fv}(M) \setminus \{x\}$
- **bv**(*M*): set of all variables occurring bound in *M*
 - $\mathbf{bv}(x) = \emptyset$, for any $x \in Var$
 - $\mathbf{bv}(MN) = \mathbf{bv}(M) \cup \mathbf{bv}(N)$
 - $\mathbf{bv}(\lambda x \cdot M) = \mathbf{bv}(M) \cup (\{x\} \cap \mathbf{fv}(M))$

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$
 - $\mathbf{fv}(\lambda x \cdot M) = \mathbf{fv}(M) \setminus \{x\}$
- **bv**(*M*): set of all variables occurring bound in *M*
 - $\mathbf{bv}(x) = \emptyset$, for any $x \in Var$
 - $\mathbf{bv}(MN) = \mathbf{bv}(M) \cup \mathbf{bv}(N)$
 - $\mathbf{bv}(\lambda x \cdot M) = \mathbf{bv}(M) \cup (\{x\} \cap \mathbf{fv}(M))$
- Example: $M = xy(\lambda x \cdot z)(\lambda y \cdot y)$

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$
 - $\mathbf{fv}(\lambda x \cdot M) = \mathbf{fv}(M) \setminus \{x\}$
- **bv**(*M*): set of all variables occurring bound in *M*
 - $\mathbf{bv}(x) = \emptyset$, for any $x \in Var$
 - $\mathbf{bv}(MN) = \mathbf{bv}(M) \cup \mathbf{bv}(N)$
 - $\mathbf{bv}(\lambda x \cdot M) = \mathbf{bv}(M) \cup (\{x\} \cap \mathbf{fv}(M))$
- Example: $M = xy(\lambda x \cdot z)(\lambda y \cdot y)$
 - $fv(M) = \{x, y, z\}$ $bv(M) = \{y\}$

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- **fv**(*M*): set of all variables occurring free in *M*
 - $fv(x) = \{x\}$, for any $x \in Var$
 - $\mathbf{fv}(MN) = \mathbf{fv}(M) \cup \mathbf{fv}(N)$
 - $\mathbf{fv}(\lambda x \cdot M) = \mathbf{fv}(M) \setminus \{x\}$
- **bv**(*M*): set of all variables occurring bound in *M*
 - $\mathbf{bv}(x) = \emptyset$, for any $x \in Var$
 - $\mathbf{bv}(MN) = \mathbf{bv}(M) \cup \mathbf{bv}(N)$
 - $\mathbf{bv}(\lambda x \cdot M) = \mathbf{bv}(M) \cup (\{x\} \cap \mathbf{fv}(M))$
- Example: $M = xy(\lambda x \cdot z)(\lambda y \cdot y)$
 - $fv(M) = \{x, y, z\}$ $bv(M) = \{y\}$
 - Warning: Possible for a variable to be both in fv(M) and bv(M)

• Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*
 - Meaning of *P*: Take an argument and apply *y* to it!

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*
 - Meaning of *P*: Take an argument and apply *y* to it!
- β -reduction on *P* yields $\lambda y \cdot yy$

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*
 - Meaning of *P*: Take an argument and apply *y* to it!
- β -reduction on *P* yields $\lambda y \cdot yy$
 - Meaning: Take an argument and apply it to itself!

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*
 - Meaning of *P*: Take an argument and apply *y* to it!
- β -reduction on *P* yields $\lambda y \cdot yy$
 - Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*
 - Meaning of *P*: Take an argument and apply *y* to it!
- β -reduction on *P* yields $\lambda y \cdot yy$
 - Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*
 - Meaning of *P*: Take an argument and apply *y* to it!
- β -reduction on *P* yields $\lambda y \cdot yy$
 - Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
 - $(\lambda x \cdot (\lambda y \cdot xy))y = (\lambda x \cdot (\lambda z \cdot xz))y \longrightarrow_{\beta} \lambda z \cdot yz$

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*
 - Meaning of *P*: Take an argument and apply *y* to it!
- β -reduction on *P* yields $\lambda y \cdot yy$
 - Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
 - $(\lambda x \cdot (\lambda y \cdot xy))y = (\lambda x \cdot (\lambda z \cdot xz))y \longrightarrow_{\beta} \lambda z \cdot yz$
- Renaming bound variables does not change the funciton
Variable capture

- Let $M = \lambda y \cdot xy$, N = y and $P = (\lambda x \cdot M)N$
 - $P = (\lambda x \cdot \lambda y \cdot xy)y$
 - *M* takes an argument and applies *x* to it
 - $\lambda x \cdot M$ takes two arguments and applies the first to the second
 - *P* fixes the value of the *x* above as *y*
 - Meaning of *P*: Take an argument and apply *y* to it!
- β -reduction on *P* yields $\lambda y \cdot yy$
 - Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
 - $(\lambda x \cdot (\lambda y \cdot xy))y = (\lambda x \cdot (\lambda z \cdot xz))y \longrightarrow_{\beta} \lambda z \cdot yz$
- Renaming bound variables does not change the funciton
 - $f(x) = 2x + 7 \operatorname{vs} f(z) = 2z + 7$

• x[x := N] = N

- x[x := N] = N
- y[x := N] = y, where $y \in Var$ and $y \neq x$

- x[x := N] = N
- y[x := N] = y, where $y \in Var$ and $y \neq x$
- (PQ)[x := N] = (P[x := N])(Q[x := N])

- x[x := N] = N
- y[x := N] = y, where $y \in Var$ and $y \neq x$
- (PQ)[x := N] = (P[x := N])(Q[x := N])
- $(\lambda x \cdot P)[x := N] = \lambda x \cdot P$

- x[x := N] = N
- y[x := N] = y, where $y \in Var$ and $y \neq x$
- (PQ)[x := N] = (P[x := N])(Q[x := N])
- $(\lambda x \cdot P)[x := N] = \lambda x \cdot P$
- $(\lambda y \cdot P)[x := N] = \lambda y \cdot (P[x := N])$, where $y \neq x$ and $y \notin \mathbf{fv}(N)$

- x[x := N] = N
- y[x := N] = y, where $y \in Var$ and $y \neq x$
- (PQ)[x := N] = (P[x := N])(Q[x := N])
- $(\lambda x \cdot P)[x := N] = \lambda x \cdot P$
- $(\lambda y \cdot P)[x := N] = \lambda y \cdot (P[x := N])$, where $y \neq x$ and $y \notin fv(N)$
- $(\lambda y \cdot P)[x := N] = \lambda z \cdot ((P[y := z])[x := N])$, where $y \neq x, y \in \mathbf{fv}(N)$, and z does not occur in P or N

- x[x := N] = N
- y[x := N] = y, where $y \in Var$ and $y \neq x$
- (PQ)[x := N] = (P[x := N])(Q[x := N])
- $(\lambda x \cdot P)[x := N] = \lambda x \cdot P$
- $(\lambda y \cdot P)[x := N] = \lambda y \cdot (P[x := N])$, where $y \neq x$ and $y \notin fv(N)$
- $(\lambda y \cdot P)[x := N] = \lambda z \cdot ((P[y := z])[x := N])$, where $y \neq x, y \in \mathbf{fv}(N)$, and z does not occur in P or N
 - We fix a global ordering on *Var* and choose *z* to be the **first** variable not occurring in either *P* or *N*

- x[x := N] = N
- y[x := N] = y, where $y \in Var$ and $y \neq x$
- (PQ)[x := N] = (P[x := N])(Q[x := N])
- $(\lambda x \cdot P)[x := N] = \lambda x \cdot P$
- $(\lambda y \cdot P)[x := N] = \lambda y \cdot (P[x := N])$, where $y \neq x$ and $y \notin fv(N)$
- $(\lambda y \cdot P)[x := N] = \lambda z \cdot ((P[y := z])[x := N])$, where $y \neq x, y \in \mathbf{fv}(N)$, and z does not occur in P or N
 - We fix a global ordering on *Var* and choose *z* to be the **first** variable not occurring in either *P* or *N*
 - Makes the definition deterministic

• We can contract a redex appearing anywhere inside an expression

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$$

$$\underbrace{M \longrightarrow_{\beta} M'}_{MN \longrightarrow_{\beta} M'N} \qquad \underbrace{N \longrightarrow_{\beta} N'}_{MN \longrightarrow_{\beta} MN'} \qquad \underbrace{M \longrightarrow_{\beta} M'}_{\lambda x \cdot M \longrightarrow_{\beta} \lambda x \cdot M'}$$

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$$

$$\frac{M \longrightarrow_{\beta} M'}{MN \longrightarrow_{\beta} M'N} \frac{N \longrightarrow_{\beta} N'}{MN \longrightarrow_{\beta} MN'} \frac{M \longrightarrow_{\beta} M'}{\lambda x \cdot M \longrightarrow_{\beta} \lambda x \cdot M'}$$

•
$$M \xrightarrow{*}_{\beta} N$$
: repeatedly apply β -reduction to get N

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$(\lambda x \cdot M) N \longrightarrow_{\beta} M[x := N]$$

$$\frac{M \longrightarrow_{\beta} M'}{MN \longrightarrow_{\beta} M'N} \quad \frac{N \longrightarrow_{\beta} N'}{MN \longrightarrow_{\beta} MN'} \quad \frac{M \longrightarrow_{\beta} M'}{\lambda x \cdot M \longrightarrow_{\beta} \lambda x \cdot M'}$$

- $M \xrightarrow{*}_{\beta} N$: repeatedly apply β -reduction to get N
 - There is a sequence M_0, M_1, \ldots, M_k such that

$$M = M_{o} \longrightarrow_{\beta} M_{1} \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} M_{k} = N$$

• In set theory, use nesting to encode numbers

- In set theory, use nesting to encode numbers
 - Encoding of *n*: **n**

- In set theory, use nesting to encode numbers
 - Encoding of *n*: **n**
 - $n = \{0, 1, \dots, n-1\}$

- In set theory, use nesting to encode numbers
 - Encoding of *n*: **n**
 - $\mathbf{n} = \{\mathbf{0}, \mathbf{1}, \dots, \mathbf{n-1}\}$
 - Thus

- In set theory, use nesting to encode numbers
 - Encoding of *n*: **n**
 - $\mathbf{n} = \{\mathbf{0}, \mathbf{1}, \dots, \mathbf{n-1}\}$
 - Thus
 - **o** = Ø

- In set theory, use nesting to encode numbers
 - Encoding of *n*: **n**
 - $\mathbf{n} = \{\mathbf{0}, \mathbf{1}, \dots, \mathbf{n-1}\}$
 - Thus
 - 0 = Ø
 1 = {Ø}

- In set theory, use nesting to encode numbers
 - Encoding of *n*: **n**
 - $\mathbf{n} = \{\mathbf{0}, \mathbf{1}, \dots, \mathbf{n-1}\}$
 - Thus
 - **o** = Ø

• **2** = {Ø, {Ø}}

- In set theory, use nesting to encode numbers
 - Encoding of *n*: **n**
 - $\mathbf{n} = \{\mathbf{0}, \mathbf{1}, \dots, \mathbf{n-1}\}$
 - Thus
 - o = Ø
 - $\mathbf{1} = \{\emptyset\}$

• $\mathbf{3} = \{ \varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\} \}$

- In set theory, use nesting to encode numbers
 - Encoding of *n*: **n**
 - $\mathbf{n} = \{\mathbf{0}, \mathbf{1}, \dots, \mathbf{n-1}\}$
 - Thus
 - **o** = Ø
 - 1 = {Ø}
 - $\mathbf{2} = \{ \emptyset, \{ \emptyset \} \}$
 - $\mathbf{3} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$
- In λ-calculus, we encode *n* by the number of times we apply a function (successor) to an element (zero)

• $\mathbf{n} = \lambda f x \cdot f^n x$

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^0 x = x$
 - $f^{n+1}x = f(f^nx)$

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$
 - $f^{n+1}x = f(f^nx)$
 - Thus $f^n x = f(f(\cdots(fx)\cdots))$, where f is applied repeatedly n times

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$
 - $f^{n+1}x = f(f^nx)$
 - Thus $f^n x = f(f(\cdots(fx)\cdots))$, where f is applied repeatedly n times
- For instance

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$
 - $f^{n+1}x = f(f^nx)$
 - Thus $f^n x = f(f(\cdots(fx)\cdots))$, where f is applied repeatedly n times
- For instance
 - $\mathbf{o} = \lambda f x \cdot x$

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$
 - $f^{n+1}x = f(f^nx)$
 - Thus $f^n x = f(f(\cdots(fx)\cdots))$, where f is applied repeatedly n times
- For instance
 - $\mathbf{o} = \lambda f x \cdot x$
 - $\mathbf{1} = \lambda f x \cdot f x$

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$
 - $f^{n+1}x = f(f^nx)$
 - Thus $f^n x = f(f(\cdots(fx)\cdots))$, where f is applied repeatedly n times
- For instance
 - $\mathbf{o} = \lambda f x \cdot x$
 - $\mathbf{1} = \lambda f x \cdot f x$
 - $\mathbf{2} = \lambda f x \cdot f(f x)$

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$
 - $f^{n+1}x = f(f^nx)$
 - Thus $f^n x = f(f(\cdots(fx)\cdots))$, where f is applied repeatedly n times
- For instance
 - $\mathbf{o} = \lambda f x \cdot x$
 - $\mathbf{1} = \lambda f x \cdot f x$
 - $\mathbf{2} = \lambda f x \cdot f(f x)$
 - $\mathbf{3} = \lambda f x \cdot f(f(fx))$

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$
 - $f^{n+1}x = f(f^nx)$
 - Thus $f^n x = f(f(\cdots(fx)\cdots))$, where f is applied repeatedly n times
- For instance
 - $\mathbf{o} = \lambda f x \cdot x$
 - $\mathbf{1} = \lambda f x \cdot f x$
 - $\mathbf{2} = \lambda f x \cdot f(f x)$
 - $\mathbf{3} = \lambda f x \cdot f(f(fx))$
 - ...

- $\mathbf{n} = \lambda f x \cdot f^n x$
 - $f^{\circ}x = x$
 - $f^{n+1}x = f(f^nx)$
 - Thus $f^n x = f(f(\cdots(fx)\cdots))$, where f is applied repeatedly n times
- For instance
 - $\mathbf{o} = \lambda f x \cdot x$
 - $\mathbf{1} = \lambda f x \cdot f x$
 - $\mathbf{2} = \lambda f x \cdot f(f x)$
 - $\mathbf{3} = \lambda f x \cdot f(f(fx))$
 - ...

•
$$\mathbf{n}gy = (\lambda fx \cdot f(\cdots (fx) \cdots))gy \xrightarrow{*}_{\beta} g(\cdots (gy) \cdots) = g^n y$$