
Lambda calculus

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 17, 19 March 2024

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 1 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain

• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued

• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 2 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by

Λ = x | (λx ·M) | (MN)

where x � Var andM,N � Λ.

• (λx ·M): Abstraction

• A function of x with computation ruleM.
• “Abstracts” the computation ruleM over arbitrary input values x
• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the functionM to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by

Λ = x | (λx ·M) | (MN)

where x � Var andM,N � Λ.

• (λx ·M): Abstraction

• A function of x with computation ruleM.
• “Abstracts” the computation ruleM over arbitrary input values x
• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the functionM to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by

Λ = x | (λx ·M) | (MN)

where x � Var andM,N � Λ.

• (λx ·M): Abstraction

• A function of x with computation ruleM.
• “Abstracts” the computation ruleM over arbitrary input values x
• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the functionM to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by

Λ = x | (λx ·M) | (MN)

where x � Var andM,N � Λ.

• (λx ·M): Abstraction
• A function of x with computation ruleM.

• “Abstracts” the computation ruleM over arbitrary input values x
• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the functionM to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by

Λ = x | (λx ·M) | (MN)

where x � Var andM,N � Λ.

• (λx ·M): Abstraction
• A function of x with computation ruleM.
• “Abstracts” the computation ruleM over arbitrary input values x

• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the functionM to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by

Λ = x | (λx ·M) | (MN)

where x � Var andM,N � Λ.

• (λx ·M): Abstraction
• A function of x with computation ruleM.
• “Abstracts” the computation ruleM over arbitrary input values x
• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the functionM to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by

Λ = x | (λx ·M) | (MN)

where x � Var andM,N � Λ.

• (λx ·M): Abstraction
• A function of x with computation ruleM.
• “Abstracts” the computation ruleM over arbitrary input values x
• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the functionM to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by

Λ = x | (λx ·M) | (MN)

where x � Var andM,N � Λ.

• (λx ·M): Abstraction
• A function of x with computation ruleM.
• “Abstracts” the computation ruleM over arbitrary input values x
• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the functionM to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 3 / 12

λ-calculus: syntax…

• Can write expressions such as xx— no types!

• What can we do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data ismeaningful

• Functions manipulate meaningful data to yield meaningful data

• Can also apply functions to non-meaningful data, but the result has no significance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 4 / 12

λ-calculus: syntax…

• Can write expressions such as xx— no types!

• What can we do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data ismeaningful

• Functions manipulate meaningful data to yield meaningful data

• Can also apply functions to non-meaningful data, but the result has no significance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 4 / 12

λ-calculus: syntax…

• Can write expressions such as xx— no types!

• What can we do without types?

• Set theory as a basis for mathematics

• Bit strings in memory

• In an untyped world, some data ismeaningful

• Functions manipulate meaningful data to yield meaningful data

• Can also apply functions to non-meaningful data, but the result has no significance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 4 / 12

λ-calculus: syntax…

• Can write expressions such as xx— no types!

• What can we do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data ismeaningful

• Functions manipulate meaningful data to yield meaningful data

• Can also apply functions to non-meaningful data, but the result has no significance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 4 / 12

λ-calculus: syntax…

• Can write expressions such as xx— no types!

• What can we do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data ismeaningful

• Functions manipulate meaningful data to yield meaningful data

• Can also apply functions to non-meaningful data, but the result has no significance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 4 / 12

λ-calculus: syntax…

• Can write expressions such as xx— no types!

• What can we do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data ismeaningful

• Functions manipulate meaningful data to yield meaningful data

• Can also apply functions to non-meaningful data, but the result has no significance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 4 / 12

λ-calculus: syntax…

• Can write expressions such as xx— no types!

• What can we do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data ismeaningful

• Functions manipulate meaningful data to yield meaningful data

• Can also apply functions to non-meaningful data, but the result has no significance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 4 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M

• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M

• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.

• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))

• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

λ-calculus: syntax…

• Application associates to the left

• ((MN)P) is abbreviated (MNP)

• Abstraction associates to the right

• λx · (λy ·M) is abbreviated λx · λy ·M
• More drastically, λx1 · (λx2 · · · (λxn ·M) · · ·) is abbreviated λx1x2 · · · xn ·M
• λx ·MNmeans (λx · (MN)). Everything after the · is the body.
• Use (λx ·M)N for applying λx ·M to N

• Omit outermost parentheses

• Examples

• (λx · x)(λy · y)(λz · z) is short for (((λx · x)(λy · y))(λz · z))
• λf · (λu · f(uu))(λu · f(uu)) is short for (λf · ((λu · f(uu))(λu · f(uu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 5 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex

• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3

• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P

• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

The computation rule β

• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ·M)N −−→β M[x := N]

• A term of the form (λx ·M)N is a redex
• M[x := N] is the contractum

• M[x := N]: substitute free occurrences of x inM by N

• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x+ 3
• f (7) = (2x 3 + 5x+ 3)[x := 7] = 2 · 7 3 + 5 · 7+ 3 = 724

• β is the only rule we need

• MN is meaningful only ifM is of the form λx · P
• Cannot do anything with terms like xx or (y(λx · x))(λy · y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 6 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var

• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)

• fv(λx ·M) = fv(M) \ {x}
• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var

• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)

• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))
• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)

• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)
• fv(M) = {x, y, z} bv(M) = {y}

• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Free and bound variables

• An occurrence of a variable x inM is free if it does not occur in the scope of a λx insideM

• fv(M): set of all variables occurring free inM

• fv(x) = {x}, for any x � Var
• fv(MN) = fv(M)∪ fv(N)
• fv(λx ·M) = fv(M) \ {x}

• bv(M): set of all variables occurring bound inM

• bv(x) = ∅, for any x � Var
• bv(MN) = bv(M)∪ bv(N)
• bv(λx ·M) = bv(M)∪ ({x} ∩ fv(M))

• Example: M = xy(λx · z)(λy · y)
• fv(M) = {x, y, z} bv(M) = {y}
• Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 7 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N

• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy

• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y

• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy

• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it

• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy

• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second

• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy

• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y

• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy

• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy

• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy

• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy
• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy
• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy
• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz
• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy
• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz

• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy
• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz
• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

Variable capture

• LetM = λy · xy, N = y and P = (λx ·M)N
• P = (λx · λy · xy)y
• M takes an argument and applies x to it
• λx ·M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy · yy
• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx · (λy · xy))y = (λx · (λz · xz))y −−→β λz · yz
• Renaming bound variables does not change the funciton

• f (x) = 2x+ 7 vs f (z) = 2z+ 7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 8 / 12

M[x := N]

• x[x := N] = N

• y[x := N] = y, where y � Var and y ̸= x

• (PQ)[x := N] = (P[x := N])(Q[x := N])

• (λx · P)[x := N] = λx · P
• (λy · P)[x := N] = λy · (P[x := N]), where y ̸= x and y � fv(N)
• (λy · P)[x := N] = λz · ((P[y := z])[x := N]), where y ̸= x, y � fv(N), and z does not

occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in

either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 9 / 12

M[x := N]

• x[x := N] = N

• y[x := N] = y, where y � Var and y ̸= x

• (PQ)[x := N] = (P[x := N])(Q[x := N])

• (λx · P)[x := N] = λx · P
• (λy · P)[x := N] = λy · (P[x := N]), where y ̸= x and y � fv(N)
• (λy · P)[x := N] = λz · ((P[y := z])[x := N]), where y ̸= x, y � fv(N), and z does not

occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in

either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 9 / 12

M[x := N]

• x[x := N] = N

• y[x := N] = y, where y � Var and y ̸= x

• (PQ)[x := N] = (P[x := N])(Q[x := N])

• (λx · P)[x := N] = λx · P
• (λy · P)[x := N] = λy · (P[x := N]), where y ̸= x and y � fv(N)
• (λy · P)[x := N] = λz · ((P[y := z])[x := N]), where y ̸= x, y � fv(N), and z does not

occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in

either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 9 / 12

M[x := N]

• x[x := N] = N

• y[x := N] = y, where y � Var and y ̸= x

• (PQ)[x := N] = (P[x := N])(Q[x := N])

• (λx · P)[x := N] = λx · P

• (λy · P)[x := N] = λy · (P[x := N]), where y ̸= x and y � fv(N)
• (λy · P)[x := N] = λz · ((P[y := z])[x := N]), where y ̸= x, y � fv(N), and z does not

occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in

either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 9 / 12

M[x := N]

• x[x := N] = N

• y[x := N] = y, where y � Var and y ̸= x

• (PQ)[x := N] = (P[x := N])(Q[x := N])

• (λx · P)[x := N] = λx · P
• (λy · P)[x := N] = λy · (P[x := N]), where y ̸= x and y � fv(N)

• (λy · P)[x := N] = λz · ((P[y := z])[x := N]), where y ̸= x, y � fv(N), and z does not

occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in

either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 9 / 12

M[x := N]

• x[x := N] = N

• y[x := N] = y, where y � Var and y ̸= x

• (PQ)[x := N] = (P[x := N])(Q[x := N])

• (λx · P)[x := N] = λx · P
• (λy · P)[x := N] = λy · (P[x := N]), where y ̸= x and y � fv(N)
• (λy · P)[x := N] = λz · ((P[y := z])[x := N]), where y ̸= x, y � fv(N), and z does not

occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in

either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 9 / 12

M[x := N]

• x[x := N] = N

• y[x := N] = y, where y � Var and y ̸= x

• (PQ)[x := N] = (P[x := N])(Q[x := N])

• (λx · P)[x := N] = λx · P
• (λy · P)[x := N] = λy · (P[x := N]), where y ̸= x and y � fv(N)
• (λy · P)[x := N] = λz · ((P[y := z])[x := N]), where y ̸= x, y � fv(N), and z does not

occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in

either P or N

• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 9 / 12

M[x := N]

• x[x := N] = N

• y[x := N] = y, where y � Var and y ̸= x

• (PQ)[x := N] = (P[x := N])(Q[x := N])

• (λx · P)[x := N] = λx · P
• (λy · P)[x := N] = λy · (P[x := N]), where y ̸= x and y � fv(N)
• (λy · P)[x := N] = λz · ((P[y := z])[x := N]), where y ̸= x, y � fv(N), and z does not

occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in

either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 9 / 12

Applying β in context

• We can contract a redex appearing anywhere inside an expression

• Captured by the following rules

(λx ·M)N −−→β M[x := N]

M −−→β M
′

MN −−→β M
′N

N −−→β N
′

MN −−→β MN
′

M −−→β M
′

λx ·M −−→β λx ·M′

• M
∗−−→β N: repeatedly apply β-reduction to get N

• There is a sequenceM0,M1, . . . ,Mk such that

M = M0 −−→β M1 −−→β · · · −−→β Mk = N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 10 / 12

Applying β in context

• We can contract a redex appearing anywhere inside an expression

• Captured by the following rules

(λx ·M)N −−→β M[x := N]

M −−→β M
′

MN −−→β M
′N

N −−→β N
′

MN −−→β MN
′

M −−→β M
′

λx ·M −−→β λx ·M′

• M
∗−−→β N: repeatedly apply β-reduction to get N

• There is a sequenceM0,M1, . . . ,Mk such that

M = M0 −−→β M1 −−→β · · · −−→β Mk = N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 10 / 12

Applying β in context

• We can contract a redex appearing anywhere inside an expression

• Captured by the following rules

(λx ·M)N −−→β M[x := N]

M −−→β M
′

MN −−→β M
′N

N −−→β N
′

MN −−→β MN
′

M −−→β M
′

λx ·M −−→β λx ·M′

• M
∗−−→β N: repeatedly apply β-reduction to get N

• There is a sequenceM0,M1, . . . ,Mk such that

M = M0 −−→β M1 −−→β · · · −−→β Mk = N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 10 / 12

Applying β in context

• We can contract a redex appearing anywhere inside an expression

• Captured by the following rules

(λx ·M)N −−→β M[x := N]

M −−→β M
′

MN −−→β M
′N

N −−→β N
′

MN −−→β MN
′

M −−→β M
′

λx ·M −−→β λx ·M′

• M
∗−−→β N: repeatedly apply β-reduction to get N

• There is a sequenceM0,M1, . . . ,Mk such that

M = M0 −−→β M1 −−→β · · · −−→β Mk = N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 10 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n
• n = {0, 1, . . . ,n-1}
• Thus

• 0= ∅
• 1= {∅}
• 2= {∅,{∅}}
• 3= {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n

• n = {0, 1, . . . ,n-1}
• Thus

• 0= ∅
• 1= {∅}
• 2= {∅,{∅}}
• 3= {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n
• n = {0, 1, . . . ,n-1}

• Thus

• 0= ∅
• 1= {∅}
• 2= {∅,{∅}}
• 3= {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n
• n = {0, 1, . . . ,n-1}
• Thus

• 0= ∅
• 1= {∅}
• 2= {∅,{∅}}
• 3= {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n
• n = {0, 1, . . . ,n-1}
• Thus

• 0= ∅

• 1= {∅}
• 2= {∅,{∅}}
• 3= {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n
• n = {0, 1, . . . ,n-1}
• Thus

• 0= ∅
• 1= {∅}

• 2= {∅,{∅}}
• 3= {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n
• n = {0, 1, . . . ,n-1}
• Thus

• 0= ∅
• 1= {∅}
• 2= {∅,{∅}}

• 3= {∅,{∅},{∅,{∅}}}
• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n
• n = {0, 1, . . . ,n-1}
• Thus

• 0= ∅
• 1= {∅}
• 2= {∅,{∅}}
• 3= {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: n
• n = {0, 1, . . . ,n-1}
• Thus

• 0= ∅
• 1= {∅}
• 2= {∅,{∅}}
• 3= {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 11 / 12

Church numerals

• n = λ f x · f nx

• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x

• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x

• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)

• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))

• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

Church numerals

• n = λ f x · f nx
• f 0x = x

• f n+1x = f (f nx)

• Thus f nx = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• 0 = λ f x · x
• 1 = λ f x · f x
• 2 = λ f x · f (f x)
• 3 = λ f x · f (f (f x))
• …

• ng y = (λ f x · f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 19 Mar 2024 12 / 12

