Lambda calculus

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 17, 19 March 2024

λ-calculus

- A notation for computable functions

λ-calculus

- A notation for computable functions
- Alonzo Church

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation
- All sorting functions are the same!

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation
- All sorting functions are the same!
- Need an intensional definition

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation
- All sorting functions are the same!
- Need an intensional definition
- How are outputs computed from inputs?

λ-calculus: syntax

- Assume a countably infinite set Var of variables

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set \wedge of lambda expressions is given by

$$
\Lambda=x|(\lambda x \cdot M)|(M N)
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set \wedge of lambda expressions is given by

$$
\Lambda=x|(\lambda x \cdot M)|(M N)
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $(\lambda x \cdot M)$: Abstraction

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set \wedge of lambda expressions is given by

$$
\Lambda=x|(\lambda x \cdot M)|(M N)
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- ($\lambda x \cdot M)$: Abstraction
- A function of x with computation rule M.

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set \wedge of lambda expressions is given by

$$
\Lambda=x|(\lambda x \cdot M)|(M N)
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $(\lambda x \cdot M)$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set \wedge of lambda expressions is given by

$$
\Lambda=x|(\lambda x \cdot M)|(M N)
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- ($\lambda x \cdot M)$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x
- Like writing $f(x)=e$, but not assigning a name f

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set \wedge of lambda expressions is given by

$$
\Lambda=x|(\lambda x \cdot M)|(M N)
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- ($\lambda x \cdot M)$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x
- Like writing $f(x)=e$, but not assigning a name f
- (MN): Application

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set \wedge of lambda expressions is given by

$$
\Lambda=x|(\lambda x \cdot M)|(M N)
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $(\lambda x \cdot M)$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x
- Like writing $f(x)=e$, but not assigning a name f
- (MN): Application
- Apply the function M to the argument N

λ-calculus: syntax...

- Can write expressions such as xx — no types!

λ-calculus: syntax...

- Can write expressions such as xx — no types!
- What can we do without types?

λ-calculus: syntax...

- Can write expressions such as xx — no types!
- What can we do without types?
- Set theory as a basis for mathematics

λ-calculus: syntax...

- Can write expressions such as xx - no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory

λ-calculus: syntax...

- Can write expressions such as xx — no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory
- In an untyped world, some data is meaningful

λ-calculus: syntax...

- Can write expressions such as xx - no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory
- In an untyped world, some data is meaningful
- Functions manipulate meaningful data to yield meaningful data

λ-calculus: syntax...

- Can write expressions such as xx - no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory
- In an untyped world, some data is meaningful
- Functions manipulate meaningful data to yield meaningful data
- Can also apply functions to non-meaningful data, but the result has no significance

λ-calculus: syntax...

- Application associates to the left

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)

λ-calculus: syntax...

- Application associates to the left
- ((MN)P) is abbreviated (MNP)
- Abstraction associates to the right

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)
- Abstraction associates to the right
- $\lambda_{x} \cdot(\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)
- Abstraction associates to the right
- $\lambda_{x} \cdot(\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)
- Abstraction associates to the right
- $\lambda_{x} \cdot(\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x \cdot M N$ means $(\lambda x \cdot(M N))$. Everything after the \cdot is the body.

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)
- Abstraction associates to the right
- $\lambda_{x} \cdot\left(\lambda_{y} \cdot M\right)$ is abbreviated $\lambda_{x} \cdot \lambda_{y} \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x \cdot M N$ means $(\lambda x \cdot(M N))$. Everything after the \cdot is the body.
- Use $(\lambda x \cdot M) N$ for applying $\lambda x \cdot M$ to N

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)
- Abstraction associates to the right
- $\lambda_{x} \cdot(\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x \cdot M N$ means $(\lambda x \cdot(M N))$. Everything after the \cdot is the body.
- Use $(\lambda x \cdot M) N$ for applying $\lambda x \cdot M$ to N
- Omit outermost parentheses

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)
- Abstraction associates to the right
- $\lambda_{x} \cdot(\lambda y \cdot M)$ is abbreviated $\lambda x \cdot \lambda y \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x \cdot M N$ means $(\lambda x \cdot(M N))$. Everything after the \cdot is the body.
- Use $(\lambda x \cdot M) N$ for applying $\lambda x \cdot M$ to N
- Omit outermost parentheses
- Examples

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)
- Abstraction associates to the right
- $\lambda_{x} \cdot\left(\lambda_{y} \cdot M\right)$ is abbreviated $\lambda_{x} \cdot \lambda_{y} \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x \cdot M N$ means $(\lambda x \cdot(M N))$. Everything after the \cdot is the body.
- Use $(\lambda x \cdot M) N$ for applying $\lambda x \cdot M$ to N
- Omit outermost parentheses
- Examples
- $(\lambda x \cdot x)(\lambda y \cdot y)(\lambda z \cdot z)$ is short for $(((\lambda x \cdot x)(\lambda y \cdot y))(\lambda z \cdot z))$

λ-calculus: syntax...

- Application associates to the left
- $((M N) P)$ is abbreviated (MNP)
- Abstraction associates to the right
- $\lambda_{x} \cdot\left(\lambda_{y} \cdot M\right)$ is abbreviated $\lambda_{x} \cdot \lambda_{y} \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x \cdot M N$ means $(\lambda x \cdot(M N))$. Everything after the \cdot is the body.
- Use $(\lambda x \cdot M) N$ for applying $\lambda x \cdot M$ to N
- Omit outermost parentheses
- Examples
- $(\lambda x \cdot x)(\lambda y \cdot y)(\lambda z \cdot z)$ is short for $(((\lambda x \cdot x)(\lambda y \cdot y))(\lambda z \cdot z))$
- $\lambda f \cdot(\lambda u \cdot f(u u))(\lambda u \cdot f(u u))$ is short for $(\lambda f \cdot((\lambda u \cdot f(u u))(\lambda u \cdot f(u u))))$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex
- $M[x:=N]$ is the contractum

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex
- $M[x:=N$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex
- $M[x:=N$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$
- $f(7)=\left(2 x^{3}+5 x+3\right)[x:=7]=2 \cdot 7^{3}+5 \cdot 7+3=724$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$
- $f(7)=\left(2 x^{3}+5 x+3\right)[x:=7]=2 \cdot 7^{3}+5 \cdot 7+3=724$
- β is the only rule we need

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$
- $f(7)=\left(2 x^{3}+5 x+3\right)[x:=7]=2 \cdot 7^{3}+5 \cdot 7+3=724$
- β is the only rule we need
- $M N$ is meaningful only if M is of the form $\lambda x \cdot P$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x \cdot M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$
- $f(7)=\left(2 x^{3}+5 x+3\right)[x:=7]=2 \cdot 7^{3}+5 \cdot 7+3=724$
- β is the only rule we need
- $M N$ is meaningful only if M is of the form $\lambda x \cdot P$
- Cannot do anything with terms like $x x$ or $(y(\lambda x \cdot x))(\lambda y \cdot y)$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $f v(x)=\{x\}$, for any $x \in \operatorname{Var}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $\mathfrak{f v}(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $\mathfrak{f v}(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$
- $\mathrm{fv}(\lambda x \cdot M)=\mathrm{fv}(M) \backslash\{x\}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $\mathfrak{f v}(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$
- $\mathrm{fv}(\lambda x \cdot M)=\mathrm{fv}(M) \backslash\{x\}$
- $\mathbf{b v}(M)$: set of all variables occurring bound in M

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $\mathfrak{f v}(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$
- $\mathrm{fv}(\lambda x \cdot M)=\mathrm{fv}(M) \backslash\{x\}$
- $\boldsymbol{b v}(M)$: set of all variables occurring bound in M
- $\boldsymbol{b v}(x)=\varnothing$, for any $x \in \operatorname{Var}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $\mathfrak{f v}(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$
- $\mathrm{fv}(\lambda x \cdot M)=\mathrm{fv}(M) \backslash\{x\}$
- $\boldsymbol{b v}(M)$: set of all variables occurring bound in M
- $\boldsymbol{b v}(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $\boldsymbol{b v}(M N)=\boldsymbol{b v}(M) \cup \boldsymbol{b v}(N)$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $\mathfrak{f v}(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$
- $\mathrm{fv}(\lambda x \cdot M)=\mathrm{fv}(M) \backslash\{x\}$
- $\boldsymbol{b v}(M)$: set of all variables occurring bound in M
- $\operatorname{bv}(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $\mathbf{b v}(M N)=\mathbf{b v}(M) \cup \mathbf{b v}(N)$
- $\boldsymbol{b v}(\lambda \chi \cdot M)=\boldsymbol{b v}(M) \cup(\{x\} \cap f \mathbf{v}(M))$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $f v(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$
- $\mathrm{fv}(\lambda x \cdot M)=\mathrm{fv}(M) \backslash\{x\}$
- $\mathbf{b v}(M)$: set of all variables occurring bound in M
- $\boldsymbol{b v}(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $\mathbf{b v}(M N)=\boldsymbol{b v}(M) \cup \mathbf{b v}(N)$
- $\boldsymbol{b v}(\lambda x \cdot M)=\boldsymbol{b v}(M) \cup(\{x\} \cap \mathbf{f v}(M))$
- Example: $M=x y(\lambda x \cdot z)(\lambda y \cdot y)$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $f v(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$
- $\mathrm{fv}(\lambda x \cdot M)=\mathrm{fv}(M) \backslash\{x\}$
- $\mathbf{b v}(M)$: set of all variables occurring bound in M
- $\boldsymbol{b v}(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $\mathbf{b v}(M N)=\boldsymbol{b v}(M) \cup \mathbf{b v}(N)$
- $\boldsymbol{b v}(\lambda x \cdot M)=\boldsymbol{b v}(M) \cup(\{x\} \cap \mathbf{f v}(M))$
- Example: $M=x y(\lambda x \cdot z)(\lambda y \cdot y)$
- $\boldsymbol{f v}(M)=\{x, y, z\} \quad \operatorname{bv}(M)=\{y\}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $\mathrm{fv}(M)$: set of all variables occurring free in M
- $f v(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $\mathfrak{f v}(M N)=f v(M) \cup f v(N)$
- $\mathrm{fv}(\lambda x \cdot M)=\mathrm{fv}(M) \backslash\{x\}$
- $\mathbf{b v}(M)$: set of all variables occurring bound in M
- $\boldsymbol{b v}(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $\boldsymbol{b v}(M N)=\boldsymbol{b v}(M) \cup \boldsymbol{b v}(N)$
- $\boldsymbol{b v}(\lambda x \cdot M)=\boldsymbol{b v}(M) \cup(\{x\} \cap \mathbf{f v}(M))$
- Example: $M=x y(\lambda x \cdot z)(\lambda y \cdot y)$
- $\boldsymbol{f v}(M)=\{x, y, z\} \quad \boldsymbol{b v}(M)=\{y\}$
- Warning: Possible for a variable to be both in $\mathrm{fv}(M)$ and $\mathbf{b v}(M)$

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda x \cdot M$ takes two arguments and applies the first to the second

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda x \cdot M$ takes two arguments and applies the first to the second
- P fixes the value of the x above as y

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda x \cdot M$ takes two arguments and applies the first to the second
- P fixes the value of the x above as y
- Meaning of P : Take an argument and apply y to it!

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda_{x} \cdot M$ takes two arguments and applies the first to the second
- P fixes the value of the x above as y
- Meaning of P : Take an argument and apply y to it!
- β-reduction on P yields $\lambda y \cdot y y$

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda_{x} \cdot M$ takes two arguments and applies the first to the second
- P fixes the value of the x above as y
- Meaning of P : Take an argument and apply y to it!
- β-reduction on P yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda_{x} \cdot M$ takes two arguments and applies the first to the second
- P fixes the value of the x above as y
- Meaning of P : Take an argument and apply y to it!
- β-reduction on P yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda_{x} \cdot M$ takes two arguments and applies the first to the second
- P fixes the value of the x above as y
- Meaning of P : Take an argument and apply y to it!
- β-reduction on P yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda_{x} \cdot M$ takes two arguments and applies the first to the second
- Pfixes the value of the x above as y
- Meaning of P : Take an argument and apply y to it!
- β-reduction on P yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
- $(\lambda x \cdot(\lambda y \cdot x y)) y=(\lambda x \cdot(\lambda z \cdot x z)) y \longrightarrow_{\beta} \lambda z \cdot y z$

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda_{x} \cdot M$ takes two arguments and applies the first to the second
- P fixes the value of the x above as y
- Meaning of P : Take an argument and apply y to it!
- β-reduction on P yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
- $(\lambda x \cdot(\lambda y \cdot x y)) y=(\lambda x \cdot(\lambda z \cdot x z)) y \longrightarrow_{\beta} \lambda z \cdot y z$
- Renaming bound variables does not change the funciton

Variable capture

- Let $M=\lambda y \cdot x y, N=y$ and $P=(\lambda x \cdot M) N$
- $P=(\lambda x \cdot \lambda y \cdot x y) y$
- M takes an argument and applies x to it
- $\lambda_{x} \cdot M$ takes two arguments and applies the first to the second
- P fixes the value of the x above as y
- Meaning of P : Take an argument and apply y to it!
- β-reduction on P yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
- $(\lambda x \cdot(\lambda y \cdot x y)) y=(\lambda x \cdot(\lambda z \cdot x z)) y \longrightarrow_{\beta} \lambda z \cdot y z$
- Renaming bound variables does not change the funciton
- $f(x)=2 x+7 \operatorname{vs} f(z)=2 z+7$
$M[x:=N]$
- $x[x:=N]=N$
$M[x:=N]$
- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
$M[x:=N]$
- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=M)(Q[x:=N)$
$M[x:=N]$
- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in$ Var and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x \cdot P)[x:=N]=\lambda x \cdot P$
$M[x:=N]$
- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x \cdot P)[x:=N]=\lambda x \cdot P$
- $(\lambda y \cdot P)[x:=N]=\lambda y \cdot(P[x:=N])$, where $y \neq x$ and $y \notin f v(N)$

$M[x:=N]$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x \cdot P)[x:=N]=\lambda x \cdot P$
- $(\lambda y \cdot P)[x:=N]=\lambda y \cdot(P[x:=N])$, where $y \neq x$ and $y \notin \mathfrak{f v}(N)$
- $(\lambda y \cdot P)[x:=N]=\lambda z \cdot((P[y:=z])[x:=N])$, where $y \neq x, y \in f v(N)$, and z does not occur in P or N

$M[x:=N]$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x \cdot P)[x:=N]=\lambda x \cdot P$
- $(\lambda y \cdot P)[x:=N]=\lambda y \cdot(P[x:=N])$, where $y \neq x$ and $y \notin f v(N)$
- $(\lambda y \cdot P)[x:=N]=\lambda z \cdot((P[y:=z])[x:=N])$, where $y \neq x, y \in f v(N)$, and z does not occur in P or N
- We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N

$M[x:=N]$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x \cdot P)[x:=N]=\lambda x \cdot P$
- $(\lambda y \cdot P)[x:=N]=\lambda y \cdot(P[x:=N])$, where $y \neq x$ and $y \notin f v(N)$
- $(\lambda y \cdot P)[x:=N]=\lambda z \cdot((P[y:=z])[x:=N])$, where $y \neq x, y \in f v(N)$, and z does not occur in P or N
- We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
- Makes the definition deterministic

Applying β in context

- We can contract a redex appearing anywhere inside an expression

Applying β in context

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$
(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]
$$

Applying β in context

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$
(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]
$$

- $M \xrightarrow{*} \beta N$: repeatedly apply β-reduction to get N

Applying β in context

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$
(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]
$$

- $M \xrightarrow{*} \beta N$: repeatedly apply β-reduction to get N
- There is a sequence $M_{0}, M_{1}, \ldots, M_{k}$ such that

$$
M=M_{0} \longrightarrow_{\beta} M_{1} \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} M_{k}=N
$$

Encoding arithmetic

- In set theory, use nesting to encode numbers

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n: \mathbf{n}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of n : \mathbf{n}
- $\mathrm{n}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathrm{n}-\mathbf{1}\}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of n : \mathbf{n}
- $\mathrm{n}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathrm{n}-\mathbf{1}\}$
- Thus

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n: n$
- $\mathrm{n}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathrm{n}-\mathbf{1}\}$
- Thus

$$
\text { - } \mathbf{o}=\varnothing
$$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n: n$
- $\mathrm{n}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathrm{n}-\mathbf{1}\}$
- Thus
- $0=\varnothing$
- $\mathbf{1}=\{\varnothing\}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n: n$
- $\mathbf{n}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n - 1}\}$
- Thus
- $0=\varnothing$
- $\mathbf{1}=\{\varnothing\}$
- $\mathbf{2}=\{\varnothing,\{\varnothing\}\}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n: n$
- $\mathbf{n}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n - 1}\}$
- Thus
- $0=\varnothing$
- $\mathbf{1}=\{\varnothing\}$
- $\mathbf{2}=\{\varnothing,\{\varnothing\}\}$
- $\mathbf{3}=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n: \mathbf{n}$
- $\mathbf{n}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathrm{n}-\mathbf{1}\}$
- Thus
- $0=\varnothing$
- $\mathbf{1}=\{\varnothing\}$
- $2=\{\varnothing,\{\varnothing\}\}$
- $\mathbf{3}=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$
- In λ-calculus, we encode n by the number of times we apply a function (successor) to an element (zero)

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $\mathbf{o}=\lambda f x \cdot x$

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $\mathbf{o}=\lambda f_{x} \cdot x$
- $\mathbf{1}=\lambda f_{x} \cdot f_{x}$

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $\mathbf{o}=\lambda f_{x} \cdot x$
- $\mathbf{1}=\lambda f_{x} \cdot f_{x}$
- $\mathbf{2}=\lambda f x \cdot f(f x)$

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $\mathbf{o}=\lambda f x \cdot x$
- $\mathbf{1}=\lambda f_{x} \cdot f_{x}$
- $\mathbf{2}=\lambda f x \cdot f(f x)$
- $\mathbf{3}=\lambda f x \cdot f(f(f x))$

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $\mathbf{o}=\lambda f x \cdot x$
- $\mathbf{1}=\lambda f_{x} \cdot f_{x}$
- $\mathbf{2}=\lambda f x \cdot f(f x)$
- $\mathbf{3}=\lambda f x \cdot f(f(f x))$

Church numerals

- $\mathbf{n}=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $\mathbf{o}=\lambda f x \cdot x$
- $\mathbf{1}=\lambda f_{x} \cdot f_{x}$
- $\mathbf{2}=\lambda f x \cdot f(f x)$
- $\mathbf{3}=\lambda f x \cdot f(f(f x))$
- $\mathbf{n} g y=(\lambda f x \cdot f(\cdots(f x) \cdots)) g y{ }^{*}{ }_{\beta} g(\cdots(g y) \cdots)=g^{n} y$

