kund/S P Suresh

Lambda calculus

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 17,19 March 2024

A\-calculus

® Anotation for computable functions

Aukund/S P Suresh

A\-calculus

® Anotation for computable functions

® Alonzo Church

Aukund/S P Suresh

A\-calculus

® Anotation for computable functions
® Alonzo Church

® How do we describe a function?

/S P Suresh Lambda calculus

A\-calculus

® Anotation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain

/S P Suresh Lambda calculus

A\-calculus

® Anotation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain

® Single-valued

und/S P Suresh Lambda calculus

A\-calculus

® Anotation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function

und/S P Suresh Lambda calculus

A\-calculus

® Anotation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function

® An extensional definition is not suitable for computation

/S P Suresh Lambda calculus

A\-calculus

® Anotation for computable functions
® Alonzo Church
® How do we describe a function?
® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function
® An extensional definition is not suitable for computation

® All sorting functions are the same!

/S P Suresh Lambda calculus

A\-calculus

® Anotation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function

® An extensional definition is not suitable for computation
® All sorting functions are the same!

® Need an intensional definition

/S P Suresh Lambda calculus

A\-calculus

® Anotation for computable functions
® Alonzo Church
® How do we describe a function?
® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function
® An extensional definition is not suitable for computation
® All sorting functions are the same!
® Need an intensional definition

® How are outputs computed from inputs?

kund/S P Suresh Lambda calculus

M-calculus: syntax

® Assume a countably infinite set Var of variables

Aukund/S P Suresh Lambda calculus

M-calculus: syntax

® Assume a countably infinite set Var of variables

® The set /A of lambda expressions is given by
A= x| (- M) | (M)

where x € Varand M, N € A.

kund/S P Suresh Lambda calculus

M-calculus: syntax

® Assume a countably infinite set Var of variables

® The set /A of lambda expressions is given by
A= x| (- M) | (M)

where x € Varand M, N € A.

® (Ax-M): Abstraction

kund/S P Suresh Lambda calculus

M-calculus: syntax

® Assume a countably infinite set Var of variables

® The set /A of lambda expressions is given by
A= x| (- M) | (M)

where x € Varand M, N € A.
® (Ax-M): Abstraction

® Afunction of x with computation rule M.

kund/S P Suresh Lambda calculus

M-calculus: syntax

® Assume a countably infinite set Var of variables

® The set /A of lambda expressions is given by
A= x| (- M) | (M)

where x € Varand M, N € A.
® (Ax-M): Abstraction
® Afunction of x with computation rule M.

® “Abstracts” the computation rule M over arbitrary input values x

ukund/S P Suresh Lambda calculus

M-calculus: syntax

® Assume a countably infinite set Var of variables

® The set /A of lambda expressions is given by
A= x| (- M) | (M)

where x € Varand M, N € A.
® (Ax-M): Abstraction
® Afunction of x with computation rule M.

® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = e, but not assigning a name

ukund/S P Suresh Lambda calculus

M-calculus: syntax

® Assume a countably infinite set Var of variables

® The set /A of lambda expressions is given by
A= x| (- M) | (M)

where x € Varand M, N € A.
® (Ax-M): Abstraction
® Afunction of x with computation rule M.

® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = e, but not assigning a name

® (MN): Application

kund/S P Suresh Lambda calculus

M-calculus: syntax

® Assume a countably infinite set Var of variables

® The set /A of lambda expressions is given by
A= x] (he- M) | (M)

where x € Varand M, N € A.
® (Ax-M): Abstraction
® Afunction of x with computation rule M.

® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = e, but not assigning a name

® (MN): Application
® Apply the function M to the argument N

ukund/S P Suresh Lambda calculus

M-calculus: syntax...

® (an write expressions such as xx — no types!

M-calculus: syntax...

® (an write expressions such as xx — no types!

® What can we do without types?

fukund/S P Suresh Lambda calculus

M-calculus: syntax...

® (an write expressions such as xx — no types!
® What can we do without types?

® Settheory as a basis for mathematics

/S P Suresh Lambda calculus

M-calculus: syntax...

® (an write expressions such as xx — no types!
® What can we do without types?

® Settheory as a basis for mathematics

® Bjt strings in memory

und/S P Suresh Lambda calculus

M-calculus: syntax...

® (an write expressions such as xx — no types!
® What can we do without types?

® Settheory as a basis for mathematics

® Bjt strings in memory

® |n an untyped world, some data is meaningful

/S P Suresh Lambda calculus

M-calculus: syntax...

® (an write expressions such as xx — no types!
® What can we do without types?

® Settheory as a basis for mathematics

® Bjt strings in memory
® |n an untyped world, some data is meaningful

® Functions manipulate meaningful data to yield meaningful data

/S P Suresh Lambda calculus

M-calculus: syntax...

® (an write expressions such as xx — no types!
® What can we do without types?

® Settheory as a basis for mathematics

® Bjt strings in memory

In an untyped world, some data is meaningful

® Functions manipulate meaningful data to yield meaningful data

Can also apply functions to non-meaningful data, but the result has no significance

1/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left

Aukund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)

kund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)

® Abstraction associates to the right

kund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)
® Abstraction associates to the right
® \x- (Ay- M) is abbreviated hx - Ay - M

kund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)
® Abstraction associates to the right
® \x- (Ay- M) is abbreviated hx - Ay - M
® More drastically, Ax, - (M, - - - (\x,, - M) - - -) is abbreviated Axx, - - x - M

kund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)

® Abstraction associates to the right
® \x- (Ay- M) is abbreviated hx - Ay - M
® More drastically, Ax, - (M, - - - (\x,, - M) - - -) is abbreviated Axx, - - x - M
®)w- MN means (Ax - (MN)). Everything after the - is the body.

kund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)
® Abstraction associates to the right
® \x- (Ay- M) is abbreviated hx - Ay - M
® More drastically, Ax, - (M, - - - (\x,, - M) - - -) is abbreviated Axx, - - x - M
®)w- MN means (Ax - (MN)). Everything after the - is the body.
® Use (\x- M)N for applying Ax - Mto N

kund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)
® Abstraction associates to the right
® \x- (Ay- M) is abbreviated hx - Ay - M
® More drastically, Ax, - (M, - - - (\x,, - M) - - -) is abbreviated Axx, - - x - M
®)w- MN means (Ax - (MN)). Everything after the - is the body.
® Use (\x- M)N for applying Ax - Mto N

® Omit outermost parentheses

kund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)
® Abstraction associates to the right
® \x- (Ay- M) is abbreviated hx - Ay - M
® More drastically, Ax, - (M, - - - (\x,, - M) - - -) is abbreviated Axx, - - x - M
® \x-MNmeans (\ - (MN)). Everything after the - is the body.
® Use (\x- M)N for applying Ax - Mto N
® Omit outermost parentheses

® Examples

kund/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)
® Abstraction associates to the right
® \x- (Ay- M) is abbreviated hx - Ay - M
® More drastically, Ax, - (M, - - - (\x,, - M) - - -) is abbreviated Axx, - - x - M
®)w- MN means (Ax - (MN)). Everything after the - is the body.
® Use (\x- M)N for applying Ax - Mto N
® Omit outermost parentheses
® Examples
® (M- x)(\y-y)(Az-2) is short for ((Ax - x)(Ay - y))(Az- 2))

/S P Suresh Lambda calculus

M-calculus: syntax...

® Application associates to the left
® ((MN)P) is abbreviated (MNP)

® Abstraction associates to the right
® \x- (Ay- M) is abbreviated hx - Ay - M
® More drastically, Ax, - (M, - - - (\x,, - M) - - -) is abbreviated Axx, - - x - M
®)w- MN means (Ax - (MN)). Everything after the - is the body.
® Use (\x- M)N for applying Ax - Mto N

® Omit outermost parentheses
® Examples

® (M- x)(\y-y)(Az-2) is short for ((Ax - x)(Ay - y))(Az- 2))
® A+ (Au-fuu))(Mu - f(uu)) is short for (M- (Au - f(uu))(Au - f(uu))))

und/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MIN—g M[x:= N]

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MIN—g M[x:= N]
® Aterm of the form (M - M)Nis a redex

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MIN—g M[x:= N]
® Aterm of the form (M - M)Nis a redex

® MIx := N]is the contractum

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MIN—g M[x:= N]
® Aterm of the form (M - M)Nis a redex

® MIx := N]is the contractum

® M[x := N]: substitute free occurrences of x in M by N

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (- MIN — ¢ Mlx := N]
® Aterm of the form (M - M)Nis a redex
® MIx := N]is the contractum

® M[x := N]: substitute free occurrences of x in M by N

® Thisis the normal rule we use for functions:

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MN—g M[x = N]
® Aterm of the form (M - M)Nis a redex
® MIx := N]is the contractum

® M[x := N]: substitute free occurrences of x in M by N

® This is the normal rule we use for functions:

® f(x)=2C+5x+3

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MN—g M[x = N]
® Aterm of the form (M - M)Nis a redex
® MIx := N]is the contractum
® M[x := N]: substitute free occurrences of x in M by N
® This is the normal rule we use for functions:
® f(x)=2C+5x+3
® f7)=(C+x+3)x=7]=2-7+5-7+3=724

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MN—g M[x = N]
® Aterm of the form (M - M)Nis a redex

® MIx := N]is the contractum

® M[x := N]: substitute free occurrences of x in M by N

® Thisis the normal rule we use for functions:

® f(x)=2C+5x+3

® f(7)=02C+x+3)x=7]=2-7+5-7+3=724
® (isthe only rule we need

ukund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MN—g M[x = N]
® Aterm of the form (M - M)Nis a redex

® MIx := N]is the contractum

® M[x := N]: substitute free occurrences of x in M by N

® Thisis the normal rule we use for functions:

® f(x)=2C+5x+3

® f(7)=02C+x+3)x=7]=2-7+5-7+3=724
® (isthe only rule we need

® VN is meaningful only if M is of the form Ax - P

kund/S P Suresh Lambda calculus

The computation rule 3

® Basic rule for computation (rewriting) is called B-reduction (or contraction)
® (M- MN—g M[x = N]
® Aterm of the form (M - M)Nis a redex

® MIx := N]is the contractum

® M[x := N]: substitute free occurrences of x in M by N

® Thisis the normal rule we use for functions:

® f(x)=2C+5x+3

® f(7)=02C+x+3)x=7]=2-7+5-7+3=724
® (isthe only rule we need

® VN is meaningful only if M is of the form Ax - P
® (Cannot do anything with terms like xx or (y(Ax - x))(\y - v)

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M

o fv(M): set of all variables occurring free in M

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
o fv(M): set of all variables occurring free in M
® fv(x) = {x},forany x e Var

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
o fv(M): set of all variables occurring free in M

® fv(x) = {x},forany x e Var

* fy(MN) = fu(M) U fu(N)

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
o fv(M): set of all variables occurring free in M

® fv(x) = {x},forany x e Var

. fv(/\/IN) = fv(M) U fv(N)

e fu(hx- M) =fv(M)\ {x}

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
o fv(M): set of all variables occurring free in M

® fv(x) = {x},forany x e Var
. fv(/\/IN)ffv(YUFv(N)
e fu(hx- M) =fv(M)\ {x}

® bv(M): set of all variables occurring bound in M

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
o fv(M): set of all variables occurring free in M

® fv(x) = {x},forany x e Var

. fv(/\/IN) = fu(M) U fv(N)

e fu(hx- M) =fv(M)\ {x}
® bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
o fv(M): set of all variables occurring free in M

® fv(x) = {x},forany x e Var

o fv(/\/IN) = fv(M) Ufv(N)

e fu(hx- M) =fv(M)\ {x}
® bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var

® by(MN) = bv(M) Ubv(N)

kund/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
o fv(M): set of all variables occurring free in M

® fv(x) = {x},forany x e Var

. fv(/\/IN) = fv(M) U fv(N)

e fu(hx- M) =fv(M)\ {x}
® bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var

® by(MN) = bv(M) Ubv(N)

® by(h- M) = by(M) U ({x} Nfv(M))

und/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M

fv(M): set of all variables occurring free in M
® fv(x) = {x},forany x e Var
. fv(/\/IN) = fv(M) U fv(N)
e fu(hx- M) =fv(M)\ {x}

bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var
® bv(MN) = bv(M) U bv(N)
® bv(\x- M) = bv(M)U ({x} Nfv(M))

Example: M = xy(\x - 2)(\y - y)

und/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
o fv(M): set of all variables occurring free in M
® fv(x) = {x},forany x e Var
. fv(/\/IN) = fv()va()
o fu(- M) = (i) \ £}
® bv(M): set of all variables occurring bound in M
® bv(x) =g, forany x € Var
® bv(MN) = bv(M) Ubv(N)
® by(h- M) = by(M) U ({x} Nfv(M))
® Example: M = xy(?\x-z)(?\y-y)
M) = {x,y,z} bv(M) = {y}

nd/S P Suresh Lambda calculus

Free and bound variables

® Anoccurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M

fv(M): set of all variables occurring free in M
® fv(x) = {x},forany x e Var
. fv(/\/IN) = fv()va()
o fv(\h- M) = fu(M) \ {x}

bv(M): set of all variables occurring bound in M
® bv(x) =g, forany x € Var
® bv(MN) = bv(M) Ubv(N)
® by(h- M) = by(M) U ({x} Nfv(M))
Example: M = xy(M - Z)(?\y-y)

M) = {x,y,z} bv(M) = {y}
® Warning: Possible for a vanable to be both in fv(M) and bv(M)

und/S P Suresh Lambda calculus

Variable capture

® letM=M\-xy,N=yandP= (A\x-M)N

Mukund/S P Suresh Lambda calculus

Variable capture

® letM=M\-xy,N=yandP= (A\x-M)N
® P=(M-N-xy)y

Mukund/S P Suresh Lambda calculus

Variable capture

® letM=M\-xy,N=yandP= (A\x-M)N
® P=(M-N-xy)y
®) takes an argument and applies x to it

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-N-xy)y
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-N-xy)y
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second

® Pfixes the value of the x above as y

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-N-xy)y
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second
® Pfixes the value of the x above as y

Meaning of P: Take an argument and apply y to it!

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-N-xy)y
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second
® Pfixes the value of the x above as y

® Meaning of P: Take an argument and apply y to it!

® [(-reduction on Pyields Ay - yy

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-N-xy)y
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second
® Pfixes the value of the x above as y
® Meaning of P: Take an argument and apply y to it!
® [(-reduction on Pyields Ay - yy

® Meaning: Take an argument and apply it to itself!

kund/S P Suresh Lambda calculus

Variable capture

® letM=M\-xy,N=yandP= (A\x-M)N
® P=(M-N-xy)y
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second
® Pfixes the value of the x above as y
® Meaning of P: Take an argument and apply y to it!
® [(-reduction on Pyields Ay - yy

® Meaning: Take an argument and apply it to itself!

® The y substituted for x has been “confused” with the y bound by Ay

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-Ny-xyy
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second
® Pfixes the value of the x above as y

® Meaning of P: Take an argument and apply y to it!
® [(-reduction on Pyields Ay - yy
® Meaning: Take an argument and apply it to itself!
® The y substituted for x has been “confused” with the y bound by Ay

® Rename bound variables to avoid capture

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-Ny-xyy
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second
® Pfixes the value of the x above as y

® Meaning of P: Take an argument and apply y to it!
® [(-reduction on Pyields Ay - yy
® Meaning: Take an argument and apply it to itself!
® The y substituted for x has been “confused” with the y bound by Ay

® Rename bound variables to avoid capture
¢ M- (y-x)y =M (- x2))y —p Mz-yz

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-Ny-xyy
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second
® Pfixes the value of the x above as y

® Meaning of P: Take an argument and apply y to it!

B-reduction on Pyields Ay - yy

® Meaning: Take an argument and apply it to itself!

The y substituted for x has been “confused” with the y bound by Ay

Rename bound variables to avoid capture
¢ M- (y-x)y =M (- x2))y —p Mz-yz

Renaming bound variables does not change the funciton

kund/S P Suresh Lambda calculus

Variable capture

® letM=DMN\-xy,N=yandP= (M- MN
® P=(M-Ny-xyy
®) takes an argument and applies x to it
®)\x- M takes two arguments and applies the first to the second
® Pfixes the value of the x above as y

® Meaning of P: Take an argument and apply y to it!

B-reduction on Pyields Ay - yy

® Meaning: Take an argument and apply it to itself!

The y substituted for x has been “confused” with the y bound by Ay

Rename bound variables to avoid capture
¢ M- (y-x)y =M (- x2))y —p Mz-yz

Renaming bound variables does not change the funciton

® f(x)=2x+7vsf(2) =22+7

kund/S P Suresh Lambda calculus

Mlx = N|

® xx=N=N

kund/S P Suresh

Mlx = N|

® xx=N=N

® y[x:=N] =y, whereye Varandy # x

Mukund/S P Suresh

Mlx = N|

® xx:=N=N
® y[x:=N] =y, whereye Varandy # x
* (PQ)bx:=N] = (Ppx:= N)(Q[x := M)

kund/S P Suresh Lambda calculus

Mlx = N|

® xx=N=N

® y[x:=N] =y, whereye Varandy # x

® (PQ)Ix:= N = (Plx:= N])(Qlx :=N])
e (M-P)x:=N =P

Mlx = N|

® xx:=N=N

® y[x:=N] =y, whereye Varandy # x

® (PQ)Ix:= N = (Plx:= N])(Qlx :=N])

o (PN =P

® (\-P)x:=N =N (Plx:=N]), where y # xand y & fu(N)

Mlx = N|

® xx=N=N

® y[x:=N] =y, whereye Varandy # x

* (PO)lx:=M = (Pl = N)(Qlx = M)

e (M-P)x:=N =P

® (\y-P)[x:==N] =N+ (Plx:=N]),wherey # xand y ¢ fv(N)

® (\-P)x:=N =hz-((Ply = 2])[x :== N]), where y # x, y € fv(N), and z does not
occurinPorN

Mlx = N|

® xx=N=N

® y[x:=N] =y, whereye Varandy # x

* (PO)lx:=M = (Pl = N)(Qlx = M)

e (M-P)x:=N =P

® (\-P)lx:=N] =My~ (Plx:= N]), where y # xand y ¢ fu(N)

® (\-P)x:=N =\ ((Ply == 2])[x := N]), where y # x,y € fv(N), and z does not
occurinPor N

® We fix a global ordering on Var and choose 7 to be the first variable not occurring in
either Por N

fukund/S P Suresh Lambda calculus

Mlx = N|

® xx=N=N

® y[x:=N] =y, whereye Varandy # x

* (PO)lx:=M = (Pl = N)(Qlx = M)

e (M-P)x:=N =P

® (\-P)lx:=N] =My~ (Plx:= N]), where y # xand y ¢ fu(N)

® (\-P)x:=N =\ ((Ply == 2])[x := N]), where y # x,y € fv(N), and z does not
occurinPorN
® We fix a global ordering on Var and choose 7 to be the first variable not occurring in
either Por N

® Makes the definition deterministic

nd/S P Suresh Lambda calculus

Applying {3 in context

® We can contract a redex appearing anywhere inside an expression

/S P Suresh Lambda calculus

Applying {3 in context

® Ve can contract a redex appearing anywhere inside an expression

® (aptured by the following rules

(M- MIN — g Mlx :=]

/ /

M—sg M N—>BN/ M—sg M

MN—>BM/N MN——>BM/\// AX-M—>B>\X-M’

und/S P Suresh Lambda calculus

Applying {3 in context

® Ve can contract a redex appearing anywhere inside an expression

® (aptured by the following rules

(M- MIN — g Mlx =]

/ /

M—sg M N—>BN/ M—sg M

MN—>BM/N MN——>BM/\// AX-M—>B>\X-M’

L —*—>B N: repeatedly apply 3-reduction to get N

und/S P Suresh Lambda calculus

Applying {3 in context

® Ve can contract a redex appearing anywhere inside an expression

® (aptured by the following rules

(M- MIN — g Mlx =]

/ /

M—sg M N—>BN/ M—sg M

/\/IN——>BM/N MN——>BM/\// ?\X-M——>B?\x-/\/l/

L —*—>B N: repeatedly apply 3-reduction to get N

® Thereis asequence M, M., ..., M, such that

M:MO—)BM_‘—)B"'—)BMk:N

kund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

Aukund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n

fukund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
® n={o,1,...,n-1}

fukund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers
® Encoding of n: n

® n={o,1,...,n-1}
® Thus

kund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
® n={o,1,...,n-1}
® Thus

® 0—y

fukund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n

® n={o,1,...,n-1}

® Thus
® 0—Q
*1={2)

kund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n

® n={o,1,...,n-1}

® Thus
® 0—Q
° 1={g}
* 2={g,{o}}

kund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n

® n={o,1,...,n-1}

® Thus
® 0—Q
° 1={g}
* 2={g,{o}}

3={2.{2}.{2.{o}}}

kund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n

® n={o,1,...,n-1}

® Thus
e 0—0
° 1={g}
* 2= {z.(2}}

* 3={.{2}.{2.{2}}}
® In A-calculus, we encode n by the number of times we apply a function (successor) to

an element (zero)

ukund/S P Suresh Lambda calculus

Church numerals

® n=\fx-fx

Mukund/S P Suresh

Church numerals

® n=\fx-fx

® fOx=x

Mukund/S P Suresh

Church numerals

® n=\fx-fx
® fOx—x
o X =f(fx)

1 Mukund/S P Suresh Lambda calculus

Church numerals

® n=Afx-f"x
® fOx—x
o M =f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

kund/S P Suresh Lambda calculus

Church numerals

® n=Afx-f"x
® fOx—x
o M =f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® Forinstance

kund/S P Suresh Lambda calculus

Church numerals

® n=Afx-f"x

® fOx=x

o M =f(f"x)

® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times
® Forinstance

® 0= \fx-x

kund/S P Suresh Lambda calculus

Church numerals

® n=Afx-f"x

® fOx=x

o M =f(f"x)

® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times
® Forinstance

® 0= \ix-x

® 1=\ix-fx

kund/S P Suresh Lambda calculus

Church numerals

® n=\fx-f"x

® fOx—x

o M =f(f"x)

® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times
® Forinstance

® 0= \ix-x

® 1=)\fx-fx

® 2= \fx-f(fx)

kund/S P Suresh Lambda calculus

Church numerals

® n=Afx-f"x

® fOx=x

o M =f(f"x)

® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times
® Forinstance

® 0= \ix-x

® 1=)\fx-fx

® 2= \fx-f(fx)

® 3= \fx-f(f(fx))

kund/S P Suresh Lambda calculus

Church numerals

® n=Afx-f"x
® fOx—x
o M =f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® Forinstance

® 0= \ix-x

® 1= \fx-fx

® 2= \fx-f(fx)
[]

3=Mx-f(f(fx))

kund/S P Suresh Lambda calculus

Church numerals

® n=\fx-"x

® fOx—=x

o Mx=f(fX)

® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times
® Forinstance

® o=A\fx-x

® 1=)\fx-fx

® 2= \fx-f(fx)

® 3= \fx-f(f(fx))

® ngy=(x-f(-- (7)) gy—p9((g9)) =9"y

und/S P Suresh Lambda calculus

