
PLC2024 Lecture 10, 13 Feb 2024

Strings

Stored on the heap

let mut s = String::from("hello"); // allocates heap space for new String and initiali

s.push_str(", world!"); // push_str() appends a literal to a String

println!("{}", s); // This will print `hello, world!`

println!("Again {}",s);

hello, world!

Again hello, world!

Copying values, stack

Value is copied

let mut x = 7;

let mut y = x;

y = 77;

println!("x = {}, y = {}",x,y);

x = 7, y = 77

Copying values, heap

Every value on the heap has a unique owner

Assignment moves ownership

Memory is freed as soon as scope of owner ends

let mut s1 = String::from("hello");

let mut s2 = s1;

s2.push_str(", world");

println!("s1 = {}, s2 = {}", s1, s2);

[E0382] Error: borrow of moved value: `s1`

  ╭─[command_4:1:1]

  │

1 │ let mut s1 = String::from("hello");

  │     ───┬──  

  │        ╰──── move occurs because `s1` has type `String`, which does not implement 

the `Copy` trait

2 │ let mut s2 = s1;

  │              ─┬│ 

  │               ╰── value moved here

  │                │ 

  │                ╰─ help: consider cloning the value if the performance cost is acc

eptable: `.clone()`

  │ 

4 │ println!("s1 = {}, s2 = {}", s1, s2);

  │                              ─┬  

  │                               ╰── value borrowed here after move

───╯

In [2]:

In [3]:

In [4]:



The Copy  trait

Traits are Rust's equivalent of Java interfaces and Python type classes

For type that have Copy  trait, values are copied without moving ownership

All scalar types have this trait: u16 , i32 , f64 , bool , char  etc

Mutable parameters

Need to declare mut  to update in function

fn main(){

    let mut y = 77;

    update(y);

    println!("y is {}",y);

}

fn update(x:i32){

    x = x+5;

    println!("x is {}",x);

}

[E0384] Error: cannot assign to immutable argument `x`

  ╭─[command_5:1:1]

  │

7 │ fn update(x:i32){

  │           ┬  

  │           ╰── help: consider making this binding mutable: `mut x`

8 │     x = x+5;

  │     ───┬───  

  │        ╰───── cannot assign to immutable argument

  │ 

  │ Note: You can change an existing variable to mutable like: `let mut x = x;`

───╯

fn main(){

    let mut y = 77;

    update(y);

    println!("y is {}",y);

}

fn update(mut x:i32){

    x = x+5;

    println!("x is {}",x);

}

main()

x is 82

y is 77

()

Cloning

Makes a copy of a heap value

In [5]:

In [6]:

In [7]:

Out[7]:



let s1 = String::from("hello");

let s2 = s1.clone();

println!("s1 = {}, s2 = {}", s1, s2);

s1 = hello, s2 = hello

Transferring ownership via function calls

Move heap values back and forth

Here, ownership of s  moves to function takes_ownership

fn main() {

    let s = String::from("hello");  // s comes into scope

    takes_ownership(s);             // s's value moves into function...

                                    // ... no longer valid here

} // s goes out of scope. Since s's value was moved, nothing special happens.

fn takes_ownership(some_string: String) { // some_string comes into scope

    println!("{}", some_string);

} // some_string goes out of scope, `drop` is called, memory is freed

main()

hello

()

For types with Copy  trait, the value is copied to the function without moving ownership

fn main() {

    let s = String::from("hello");  // s comes into scope

    takes_ownership(s);             // s's value moves into function...

                                    // ... no longer valid here

    let x = 5;                      // x comes into scope

    makes_copy(x);                  // x would move into the function, but

    println!("x is {}",x);          // i32 is Copy, so okay to still use x

} // x goes out scope, then s.

  // Since s's value was moved, nothing special happens.

fn takes_ownership(some_string: String) { // some_string comes into scope

    println!("{}", some_string);

} // some_string goes out of scope, `drop` is called, memory is freed

fn makes_copy(some_integer: i32) { // some_integer comes into scope

    println!("{}", some_integer);

} // some_integer goes out of scope, nothing special happens.

main()

hello

5

x is 5

In [8]:

In [9]:

In [10]:

Out[10]:

In [11]:

In [12]:



()

Examples of moving heap values in and out of functions

In gives_ownership , the scope of some_string  ends but the value created is moved to the

calling scope by the return and hence persists after the function exits

fn main() {

    let s1 = gives_ownership();         // gives_ownership moves its return

                                        // value into s1

    let s2 = String::from("hello");     // s2 comes into scope

    let s3 = takes_and_gives_back(s2);  // s2 is moved into

                                        // takes_and_gives_back, which also

                                        // moves its return value into s3

} // Here, s3 goes out of scope and is dropped. s2 was moved, so nothing

  // happens. s1 goes out of scope and is dropped.

fn gives_ownership() -> String {             // gives_ownership will move its

                                             // return value into the function

                                             // that calls it

    let some_string = String::from("yours"); // some_string comes into scope

    some_string                              // some_string is returned and

                                             // moves out to the calling

                                             // function

}

// This function takes a String and returns one

fn takes_and_gives_back(a_string: String) -> String { // a_string comes into

                                                      // scope

    a_string  // a_string is returned and moves out to the calling function

}

Transferring ownership requires clumsy mechanisms to "get back" parameters passed to functions

fn main() {

    let s1 = String::from("hello");

    let (s2, len) = calculate_length(s1);

    println!("The length of '{}' is {}.", s2, len);

}

fn calculate_length(s: String) -> (String, usize) {

    let length = s.len(); // len() returns the length of a String

    (s, length)

}

main()

The length of 'hello' is 5.

()

References

Out[12]:

In [13]:

In [14]:

In [15]:

Out[15]:



Point to a variable that contains a value on the heap

Avoids moving ownership

Creating a reference results in borrowing the value

fn main() {

    let s1 = String::from("hello");

    let len = calculate_length(&s1);

    println!("The length of '{}' is {}.", s1, len);

}

fn calculate_length(s: &String) -> usize {

    s.len()

}

main()

The length of 'hello' is 5.

()

Arguments passed as references are not automatically mutable

Use &mut  to denote a mutable reference

fn main() {

    let s = String::from("hello");

    change(&s);

}

fn change(some_string: &String) {

    some_string.push_str(", world");

}

[E0596] Error: cannot borrow `*some_string` as mutable, as it is behind a `&` referenc

e

  ╭─[command_18:1:1]

  │

6 │ fn change(some_string: &String) {

  │                         │ 

  │                         ╰─ help: consider changing this to be a mutable referenc

e: `mut `

7 │     some_string.push_str(", world");

  │     ─────┬─────  

  │          ╰─────── `some_string` is a `&` reference, so the data it refers to cann

ot be borrowed as mutable

  │ 

  │ Note: You can change an existing variable to mutable like: `let mut x = x;`

───╯

fn main() {

    let mut s = String::from("hello");

    change(&mut s);

    println!("s is {}",s);

}

fn change(some_string: &mut String) {

    some_string.push_str(", world");

}

In [16]:

In [17]:

Out[17]:

In [18]:

In [19]:



main()

s is hello, world

()

Constraints on mutable references

One mutable reference is permitted

{

    let mut s = String::from("hello");

    let r1 = &mut s;

    println!("{}", r1);

}

hello

()

Cannot have two or more mutable references

Avoids race conditions in concurrent programs

{

    let mut s = String::from("hello");

    let r1 = &mut s;

    let r2 = &mut s;

    println!("{}, {}", r1, r2);

}

[E0499] Error: cannot borrow `s` as mutable more than once at a time

  ╭─[command_22:1:1]

  │

4 │     let r1 = &mut s;

  │              ───┬──  

  │                 ╰──── first mutable borrow occurs here

5 │     let r2 = &mut s;

  │              ───┬──  

  │                 ╰──── second mutable borrow occurs here

  │ 

7 │     println!("{}, {}", r1, r2);

  │                        ─┬  

  │                         ╰── first borrow later used here

───╯

Here the second mutable reference is created after the first one goes out of scope, so this is fine

{

    let mut s = String::from("hello");

    {

        let r1 = &mut s;

    } // r1 goes out of scope here, so we can make a new reference with no problems.

    let r2 = &mut s;

}

In [20]:

Out[20]:

In [21]:

Out[21]:

In [22]:

In [23]:



()

Cannot mix immutable and mutable references

Again to avoid race conditions

{

    let mut s = String::from("hello");

    let r1 = &s; // no problem

    let r2 = &s; // no problem

    let r3 = &mut s; // BIG PROBLEM

    println!("{}, {}, and {}", r1, r2, r3);

}

[E0502] Error: cannot borrow `s` as mutable because it is also borrowed as immutable

  ╭─[command_24:1:1]

  │

4 │     let r1 = &s; // no problem

  │              ─┬  

  │               ╰── immutable borrow occurs here

  │ 

6 │     let r3 = &mut s; // BIG PROBLEM

  │              ───┬──  

  │                 ╰──── mutable borrow occurs here

  │ 

8 │     println!("{}, {}, and {}", r1, r2, r3);

  │                                ─┬  

  │                                 ╰── immutable borrow later used here

───╯

Here the last use of r1  and r2  occurs before r3  is declared

Rust does sophisticated static analysis to determine this at compile time

{

    let mut s = String::from("hello");

    let r1 = &s; // no problem

    let r2 = &s; // no problem

    println!("{} and {}", r1, r2);

    // variables r1 and r2 will not be used after this point

    let r3 = &mut s; // no problem

    println!("{}", r3);

}

hello and hello

hello

()

Unlike gives_ownership  earlier, here dangle  returns a reference

Potential problem --- when dangle  exits, s  goes out of scope and reference_to_nothing

becomes a dangling pointer, pointing to nothing

Rust catches this as a compile-time error

Out[23]:

In [24]:

In [25]:

Out[25]:



fn main() {

    let reference_to_nothing = dangle();

}

fn dangle() -> &String {

    let s = String::from("hello");

    &s

}

[E0106] Error: missing lifetime specifier

  ╭─[command_26:1:1]

  │

5 │ fn dangle() -> &String {

  │                ┬│ 

  │                ╰── expected named lifetime parameter

  │                 │ 

  │                 ╰─ help: consider using the `'static` lifetime: `'static `

───╯

Slices

A function to compute the length of the first word in a string

bytes.iter()  iterates through bytes , enumerate()  returns a pair (index,reference to

value), which is deomposed through pattern matching into (i, &item)

b' '  specifies a byte constant for the space character

fn first_word(s: &String) -> usize {

    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {

        if item == b' ' {

            return i;

        }

    }

    s.len()

}

In this function, Rust cannot recognize that the return value is an index into the string

If we clear the string, the index is no longer valid, but cannot be flagged by compiler

fn main() {

    let mut s = String::from("hello world");

    let word = first_word(&s); // word will get the value 5

    s.clear(); // this empties the String, making it equal to ""

    // word still has the value 5 here, but there's no more string that

    // we could meaningfully use the value 5 with. word is now totally invalid!

}

Digression on references and scalar variables, to be resolved later

In [26]:

In [27]:

In [28]:



{

    let mut x = 5;

    let y = &mut x;

    *y = 7;

    println!("x is {}, y is {}",x,*y);

}

[unused_variables] Error: unused variable: `word`

[E0502] Error: cannot borrow `x` as immutable because it is also borrowed as mutable

  ╭─[command_29:1:1]

  │

3 │     let y = &mut x;

  │             ───┬──  

  │                ╰──── mutable borrow occurs here

  │ 

5 │     println!("x is {}, y is {}",x,*y);

  │                                 ┬ ─┬  

  │                                 ╰───── immutable borrow occurs here

  │                                    │  

  │                                    ╰── mutable borrow later used here

───╯

A string slice is written similar to a slice in Python

Gives a reference to a substring

{ 

    let s = String::from("hello world");

    let hello = &s[0..5];

    let world = &s[6..11];

}

()

Rewrite first_word  to return slice corresponding to first word

Will examine distinction between &String  and &str  later

fn first_word(s: &String) -> &str {

    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {

        if item == b' ' {

            return &s[0..i];

        }

    }

    &s[..]

}

Now, if we try to clear the "parent" string while holding a reference to a substring, it is a compile

error

Another example of combining immutable and mutable references --- the call s.clear()

implicitly passes a mutable reference to s  to clear() , while word  currently holds an

immutable reference

In [29]:

In [30]:

Out[30]:

In [31]:



fn main() {

    let mut s = String::from("hello world");

    let word = first_word(&s);

    s.clear(); // error!

    println!("the first word is: {}", word);

}

[E0502] Error: cannot borrow `s` as mutable because it is also borrowed as immutable

  ╭─[command_32:1:1]

  │

4 │     let word = first_word(&s);

  │                           ─┬  

  │                            ╰── immutable borrow occurs here

  │ 

6 │     s.clear(); // error!

  │     ────┬────  

  │         ╰────── mutable borrow occurs here

  │ 

8 │     println!("the first word is: {}", word);

  │                                       ──┬─  

  │                                         ╰─── immutable borrow later used here

───╯

In [32]:


