
PLC2024 Lecture 09, 08 Feb 2024

Rust

Rust resources: https://www.rust-lang.org/

Installing Rust: https://www.rust-lang.org/tools/install

Documentation: https://www.rust-lang.org/learn

Typing

Static (Java, Haskell) vs dynamic (Python)

Ideally, type errors should be caught at compile-time (static)

Dynamic --- type is determined by current value, type of a variable can change over time

Implicit (Haskell, Python) vs explicit (Java declarations)

Implicit + static type inference

Degrees of strictness

Is mixed mode arithmetic allowed? e.g., x = 1.5 + 3

Can numbers be intepreted as booleans? if len(l) { ... }

Rust types

Static

Mostly implicit, but must declare types for function signatures

Very strict!

Rust program

Not object oriented

Program is a collection of functions

Execution begins with main()

Read documentation about how to compile

cargo to build Rust projects

Hello world!

fn main(){

 println!("Hello world");

}

main()

Hello world

()

! after println signifies it is a macro, not a function --- will worry about this later

This function returns nothing, so return value is ()

Variables

Declare variables using let and assign a value

Value implicitly fixes type

⟹

In [2]:

In [3]:

Out[3]:

https://www.rust-lang.org/
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/learn

fn var1(){

 let x = 55;

 println!("Value of x is {x}"); // Insert value in string, Version 1

}

var1()

Value of x is 55

()

fn var2(){

 let x = 55;

 println!("Value of x is {}",x); // Insert value in string, Version 2

}

var2()

Value of x is 55

()

What if we try to update the value of x ?

fn var3(){

 let x = 55;

 x = 66;

 println!("Value of x is {}",x); // Insert value in string, Version 2

}

[unused_assignments] Error: value assigned to `x` is never read

 ╭─[command_8:1:1]

 │

2 │ let x = 55;

 │ ┬

 │ ╰── warning: value assigned to `x` is never read

───╯

[E0384] Error: cannot assign twice to immutable variable `x`

 ╭─[command_8:1:1]

 │

2 │ let x = 55;

 │ ┬

 │ ╰── first assignment to `x`

 │ │

 │ ╰── help: consider making this binding mutable: `mut x`

3 │ x = 66;

 │ ───┬──

 │ ╰──── cannot assign twice to immutable variable

 │

 │ Note: You can change an existing variable to mutable like: `let mut x = x;`

───╯

Rust variables are immutable by default

Like variables in mathematics

Let ... means is an arbitrary but fixed value

Need to add a qualifier mut to say that a variable is mutable

Notice the useful error message, suggesting that we add the qualifier mut

fn var4(){

 let mut x = 55;

 x = 66;

In [4]:

In [5]:

Out[5]:

In [6]:

In [7]:

Out[7]:

In [8]:

x = 4 x

In [9]:

 println!("Value of x is {}",x); // Insert value in string, Version 2

}

var4()

Value of x is 66

()

Constants

Immutable variables are not the same as constants

Declare constants explicitly

So far we have used implicit typing

Constants need to be typed explicitly -- Rust uses older Algol/Pascal style var: type

notation for typing rather than C/Java style type var

Will describe Rust types shortly

Constants can have global scope, declared outside all functions

const PI_APPROX: f32 = 3.1415927;

fn const1(){

 println!("Value of pi is approximately {}",PI_APPROX);

}

const1()

Value of pi is approximately 3.1415927

()

Shadowing

Redeclaring a variable shadows the earlier definition

Can change the type with each fresh declaration (but why?)

let x = 0.0;

let x = 5;

println!("value of x is {}",x);

value of x is 5

But cannot change the type of a mutable variable

let mut x = 0.0;

x = 5;

println!("value of x is {}",x);

[E0308] Error: mismatched types

 ╭─[command_14:1:1]

 │

1 │ let mut x = 0.0;

 │ ─┬─

 │ ╰─── expected due to this value

2 │ x = 5;

 │ ┬

 │ ╰── expected floating-point number, found integer

───╯

Scalar types

In [10]:

Out[10]:

In [11]:

In [12]:

Out[12]:

In [13]:

In [14]:

Signed integers: i8 , i32 , i64 , isize -- explicitly specify number of bits, last version uses the

underlying architecture default

Unsigned integers: u8 , u32 , u64 , usize

Floats: f32 , f64

Boolean: bool --- values are true and false

Charactre: char --- write with single quote, 'a' , uses UTF-8, upto 4 bytes per character

Implicit vs explicit typing

Normally Rust deduces type from value assigned in let

Can also explicitly annotate type

let y: f32 = 5.0;

println!("Value of y is {}",y);

Value of y is 5

Strict typing

Cannot have mixed int/float expressions --- use as type to "recast" a type

Arithmetic expressions cannot replace boolean expressions -- convention that 0 is false ,

non-zero is true etc does not work

let mut x = 5.8;

x = x * 7;

println!("Value of x is {}",x);

[E0277] Error: cannot multiply `{float}` by `{integer}`

 ╭─[command_16:1:1]

 │

2 │ x = x * 7;

 │ ┬

 │ ╰── no implementation for `{float} * {integer}`

───╯

let mut x = 5.8;

x = x * 7 as f32;

println!("Value of x is {}",x);

Value of x is 40.600002

Defining functions

Functions are defined using fn

Need to provide explicit types for arguments and return value

Notation for return value uses -> like Haskell

fn addtwo(x : i32, y: i32) -> i32 {

 return x + y;

}

let a = addtwo(17,42);

println!("Value of a is {}",a);

Value of a is 59

Expressions

Functions implicitly return last expression evaluated

Can rewrite our function as below

In [15]:

In [16]:

In [17]:

In [18]:

In [19]:

fn addtwoexpr(x : i32, y: i32) -> i32 {

 x + y

}

let a = addtwoexpr(17,42);

println!("Value of a is {}",a);

Value of a is 59

An expression should not have a semicolon at the end

Semicolon turns the expression into a statement

Note again the helpful compiler error message

fn addtwosemicolon(x : i32, y: i32) -> i32 {

 x + y;

}

[E0308] Error: mismatched types

 ╭─[command_22:1:1]

 │

1 │ fn addtwosemicolon(x : i32, y: i32) -> i32 {

 │ ───────┬─────── ─┬─

 │ ╰───────────────────────────────── implicitly returns `()` as its body

has no tail or `return` expression

 │ │

 │ ╰─── expected `i32`, found `()`

2 │ x + y;

 │ ┬

 │ ╰── help: remove this semicolon to return this value: ``

───╯

Control flow

if boolean-expression { ... } else {....}

loops: while boolean-expression {...} , loop {...} , for

loop requires a break , else infinite

for runs over elements from an iterator --- later

fn signum1(x: i32) -> i32{

 if x < 0 {return -1;}

 else if x == 0 {return 0;}

 else {1}

}

signum1(-7)

-1

if is itself an expression, so can do a conditional assignment

fn signum2(y: i32) -> i32{

 let x = if y < 0 {-1} else if y == 0 {0} else {1};

 return x;

}

signum2(0)

0

In [20]:

In [21]:

In [22]:

In [23]:

In [24]:

Out[24]:

In [25]:

In [26]:

Out[26]:

This cryptic if expression suffices

fn signum3(y: i32) -> i32{

 if y < 0 {-1} else if y == 0 {0} else {1}

}

signum3(77)

1

Copying values

x = y for values stored on the stack copies the value

x = y for values stored on the heap creates an alias -- both x and y refer to the same value on

the heap

Useful to avoid copying large values, and to pass heap objects to a function

However, leads to subtle errors because updating y indirectly updates x

Also, releasing memory through y results in a dangling pointer at x

Rust introduces a concept called ownership to address these issues

In [27]:

In [28]:

Out[28]:

