
Java: classes, interfaces

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 5, 23 January 2024

Classes and subclasses

A class can extend another one — subclass

Subclass inherits fields and methods

Can add new instance variables and methods

Call parent constructor to set up hidden parts

Use super to refer to parent class

Subclasses are subtypes

Employee e = new Manager(...);

Dynamic dispatch — runtime polymorphism

e.bonus() refers to Manager.bonus()

Static typechecking, casting

e.getSecretary() generates an error

((Manager) e).getSecretary() works

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// Some methods ...

public boolean setName(String s){ ... }

...

public double bonus(float percent){ ... }

}

public class Manager extends Employee{

private String secretary;

// New methods ...

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

// Overridden methods ...

public double bonus(float percent){ ... }

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 2 / 17

Modifiers in Java

Java uses many modifiers in declarations, to cover di↵erent features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where di↵erent combinations make sense

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 3 / 17

Modifiers in Java

Java uses many modifiers in declarations, to cover di↵erent features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where di↵erent combinations make sense

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 3 / 17

Modifiers in Java

Java uses many modifiers in declarations, to cover di↵erent features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where di↵erent combinations make sense

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 3 / 17

Modifiers in Java

Java uses many modifiers in declarations, to cover di↵erent features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where di↵erent combinations make sense

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 3 / 17

Modifiers in Java

Java uses many modifiers in declarations, to cover di↵erent features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where di↵erent combinations make sense

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 3 / 17

Modifiers in Java

Java uses many modifiers in declarations, to cover di↵erent features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where di↵erent combinations make sense

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 3 / 17

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class
Data stored in a private array

Public methods to push, pop, query if
empty

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 4 / 17

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class
Data stored in a private array

Public methods to push, pop, query if
empty

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 4 / 17

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class
Data stored in a private array

Public methods to push, pop, query if
empty

public class Stack {

private int[] values; // array of values

private int tos; // top of stack

private int size; // values.length

/* Constructors to set up values array */

public void push (int i){

....

}

public int pop (){

...

}

public boolean is_empty (){

return (tos == 0);

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 4 / 17

private methods

Example: a Stack class
Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

private int[] values; // array of values

private int tos; // top of stack

private int size; // values.length

/* Constructors to set up values array */

public void push (int i){

....

}

public int pop (){

...

}

public boolean is_empty (){

return (tos == 0);

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 5 / 17

private methods

Example: a Stack class
Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

...

public void push (int i){

if (tos < size){

values[tos] = i;

tos = tos+1;

}else{

// Deal with stack overflow

}

...

}

...

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 5 / 17

private methods

Example: a Stack class
Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

...

public void push (int i){

if (stack_full()){

extend_stack();

}

... // Usual push operations

}

...

private boolean stack_full(){

return(tos == size);

}

private void extend_stack(){

/* Allocate additional space,

reset size etc */

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 5 / 17

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 6 / 17

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDay(int d) {...}

public void setMonth(int m) {...}

public void setYear(int y) {...}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 6 / 17

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDay(int d) {...}

public void setMonth(int m) {...}

public void setYear(int y) {...}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 6 / 17

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDate(int d, int m, int y) {

...

// Validate d-m-y combination

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 6 / 17

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 7 / 17

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 7 / 17

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 7 / 17

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 7 / 17

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 7 / 17

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 7 / 17

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 7 / 17

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 8 / 17

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 8 / 17

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 8 / 17

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 8 / 17

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 8 / 17

Multiple inheritance

C1 C2

C3 extends C1,C2

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 9 / 17

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 9 / 17

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 9 / 17

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 9 / 17

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 10 / 17

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 10 / 17

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to reference (pointer) equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 10 / 17

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to reference (pointer) equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 10 / 17

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to reference (pointer) equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 10 / 17

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 11 / 17

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 11 / 17

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 11 / 17

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di↵erent functions with the
same name and di↵erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 12 / 17

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di↵erent functions with the
same name and di↵erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 12 / 17

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di↵erent functions with the
same name and di↵erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 12 / 17

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di↵erent functions with the
same name and di↵erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 12 / 17

Functions, signatures and overloading

Overloading: multiple methods,
di↵erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 13 / 17

Functions, signatures and overloading

Overloading: multiple methods,
di↵erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 13 / 17

Functions, signatures and overloading

Overloading: multiple methods,
di↵erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 13 / 17

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 14 / 17

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 14 / 17

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 14 / 17

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

public boolean equals(Object d){

if (d instanceof Date){

Date myd = (Date) d;

return ((this.day == myd.day) &&

(this.month == myd.month) &&

(this.year == myd.year));

}

return(false);

}

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 14 / 17

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 15 / 17

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 15 / 17

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 15 / 17

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 15 / 17

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 15 / 17

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 16 / 17

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 16 / 17

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 16 / 17

Subclasses, subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two.

Recall the example of Deque, Stack and Queue.

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 17 / 17

Subclasses, subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two.

Recall the example of Deque, Stack and Queue.

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 17 / 17

Subclasses, subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two.

Recall the example of Deque, Stack and Queue.

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 17 / 17

Interfaces

An interface is a purely abstract class

All methods are abstract

A class implements an interface

Provide concrete code for each abstract function

Classes can implement multiple interfaces

Abstract functions, so no contradictory inheritance

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 18 / 17

Interfaces express relevant capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type

All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

// Usual code for quicksort, except that

// to compare a[i] and a[j] we use

// a[i].cmp(a[j])

}

}

public interface Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 19 / 17

a. cmp(b)

-

Ord in
- Haskell

-

--

Interactions with state

Connect database query to logged in
status of the user

Use objects!

On log in, user receives an object that
can make a query

Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!

Interface describes the capability of
the object returned on login

public interface QIF{

public abstract int

getStatus(int trainno, Date d);

}

public class RailwayBooking {

private BookingDB railwaydb;

public QIF login(String u, String p){

QueryObject qobj;

if (valid_login(u,p)) {

qobj = new QueryObject();

return(qobj);

}

}

private class QueryObject implements QIF {

public int getStatus(int trainno, Date d){

...

}

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 20 / 17

Interactions with state . . .

Query object allows unlimited number
of queries

Limit the number of queries per login?

Maintain a counter

Add instance variables to object
returned on login

Query object can remember the state
of the interaction

public class RailwayBooking {

private BookingDB railwaydb;

public QIF login(String u, String p){

QueryObject qobj;

if (valid_login(u,p)) {

qobj = new QueryObject();

return(qobj);

}

}

private class QueryObject implements QIF {

private int numqueries;

private static int QLIM;

public int getStatus(int trainno, Date d){

if (numqueries < QLIM){

// respond, increment numqueries

}

}

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 21 / 17

Implementing a call-back facility

Myclass m creates a Timer t

Start t to run in parallel

Myclass m continues to run

Will see later how to invoke parallel
execution in Java!

Timer t notifies Myclass m when the
time limit expires

Assume Myclass m has a function
timerdone()

Myclass m Timer t

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 22 / 17

Implementing a call-back facility

Myclass m creates a Timer t

Start t to run in parallel

Myclass m continues to run

Will see later how to invoke parallel
execution in Java!

Timer t notifies Myclass m when the
time limit expires

Assume Myclass m has a function
timerdone()

Myclass m Timer t

• start()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 22 / 17

Implementing a call-back facility

Myclass m creates a Timer t

Start t to run in parallel

Myclass m continues to run

Will see later how to invoke parallel
execution in Java!

Timer t notifies Myclass m when the
time limit expires

Assume Myclass m has a function
timerdone()

Myclass m Timer t

• start()

•timerdone()

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 22 / 17

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable
indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 23 / 17

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable
indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 23 / 17

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable
indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Myclass owner;

public Timer(Myclass o){

owner = o; // My creator

}

public void start(){

...

owner.timerdone();

// I’m done

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 23 / 17

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable
indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Myclass owner;

public Timer(Myclass o){

owner = o; // My creator

}

public void start(){

...

owner.timerdone();

// I’m done

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 23 / 17

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable
indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Myclass owner;

public Timer(Myclass o){

owner = o; // My creator

}

public void start(){

...

owner.timerdone();

// I’m done

}

}

Madhavan Mukund/S P Suresh Java: classes, interfaces PLC, Lecture 5, 23 Jan 2024 23 / 17

