
Handling errors

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 12, 20 February 2024



When things go wrong

Our code could encounter many types of errors

User input — enter invalid filenames or URLs

Device errors — printer jam, network connection drops

Resource limitations — disk full

Code errors — invalid array index, key not present in hash table, refer to a variable
that is null, divide by zero, . . .

Signalling errors

Return an invalid value: �1 at end of file, null

What if there is no obvious invalid value?

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 2 / 13



When things go wrong

Our code could encounter many types of errors

User input — enter invalid filenames or URLs

Device errors — printer jam, network connection drops

Resource limitations — disk full

Code errors — invalid array index, key not present in hash table, refer to a variable
that is null, divide by zero, . . .

Signalling errors

Return an invalid value: �1 at end of file, null

What if there is no obvious invalid value?

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 2 / 13



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 3 / 13



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 3 / 13



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 3 / 13



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 3 / 13



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 3 / 13



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 4 / 13



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 4 / 13



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 4 / 13



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 4 / 13



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 4 / 13



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 5 / 13



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 5 / 13



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 5 / 13



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 5 / 13

zed
M--4



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 5 / 13



Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {
handle missing files

}
catch (UnknownHostException e) {
handle unknown hosts

}
catch (IOException e) {
handle all other I/O issues

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 6 / 13

Loxay
/

FuF UNE



Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {
handle missing files

}
catch (UnknownHostException e) {
handle unknown hosts

}
catch (IOException e) {
handle all other I/O issues

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 6 / 13



Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {
handle missing files

}
catch (UnknownHostException e) {
handle unknown hosts

}
catch (IOException e) {
handle all other I/O issues

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 6 / 13



Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {
handle missing files

}
catch (UnknownHostException e) {
handle unknown hosts

}
catch (IOException e) {
handle all other I/O issues

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 6 / 13



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 7 / 13



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 7 / 13



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 7 / 13



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 7 / 13



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 7 / 13



Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 8 / 13



Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 8 / 13



Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

throw new EOFException();

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 8 / 13



Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

throw new EOFException();

Can also pass a diagnostic message when constructing exception object

String errormsg = "Content-Length:" + contentlen + ", Received: " + rcvdlen;
throw new EOFException(errormsg);

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 8 / 13



Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 9 / 13



Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 9 / 13

-



Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

String readFile(String filename)
throws FileNotFoundException,

EOFException { ... }

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 9 / 13



Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

String readFile(String filename)
throws FileNotFoundException,

EOFException { ... }

Can throw any subtype of declared
exception type

String readFile(String filename)
throws IOException { ... }

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 9 / 13



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 10 / 13



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 10 / 13



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 10 / 13



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 10 / 13



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 10 / 13

- Your function should have
throws --- In

its

head



Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 11 / 13



Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

public class NegativeException extends Exception{

private int error_value;
// Negative value that generated exception

public NegativeException(String message, int i){
super(message); // Appeal to superclass
error_value = i; // constructor to set message

}

public int report_error_value(){
return error_value;

}
}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 11 / 13



Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

public class NegativeException extends Exception{
...

}

public class LinearList{
...
public add(int i) throws NegativeException{
...
if (i < 0){
throw new NegativeException("Negative input",i);

}
...

}
}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 11 / 13



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
String errormsg = e.getMessage();
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 12 / 13



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...
access database
..

}
catch (SQLException e){
...
String errormsg =

"database error" + e.getMessage();
throw new ServletException(errormsg);
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 12 / 13



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...
access database
..

}
catch (SQLException e){
...
String errormsg =

"database error" + e.getMessage();
throw new ServletException(errormsg);
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 12 / 13



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...
access database
..

}
catch (SQLException e){
...
String errormsg =

"database error" + e.getMessage();
ServletException newe =

new ServletException(errormsg);
newe.initCause(e);
throw newe;
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 12 / 13



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...

}
catch (ServletException e){
...
Throwable original = e.getCause();
...

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 12 / 13



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 13 / 13



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 13 / 13



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

try{
...

}

catch (ExceptionType1 e){...}

catch (ExceptionType2 e){...}

finally{
...

// Always executed, whether try
// terminates normally or
// exceptionally. Use for clean up.

}

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 13 / 13



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =
new FileInputStream(...);

try {
// 1
code that might throw exceptions
// 2

}
catch (IOException e) {
// 3
show error message
// 4

}
finally {
// 5
in.close();

}
// 6

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 13 / 13



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =
new FileInputStream(...);

try {
// 1
code that might throw exceptions
// 2

}
catch (IOException e) {
// 3
show error message
// 4

}
finally {
// 5
in.close();

}
// 6

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 13 / 13



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =
new FileInputStream(...);

try {
// 1
code that might throw exceptions
// 2

}
catch (IOException e) {
// 3
show error message
// 4

}
finally {
// 5
in.close();

}
// 6

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 13 / 13



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =
new FileInputStream(...);

try {
// 1
code that might throw exceptions
// 2

}
catch (IOException e) {
// 3
show error message
// 4

}
finally {
// 5
in.close();

}
// 6

Madhavan Mukund/S P Suresh Handling errors PLC, Lecture 12, 20 Feb 2024 13 / 13



-
2 . getcams -> 2,

f I

- ex.
Initiame(e)

q.

re


