
Java: basic datatypes, control flow, classes

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 4, 18 January 2024



Scalar types

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

Type Size in bytes
int 4
long 8
short 2
byte 1
float 4
double 8
char 2

boolean 1

2-byte char for Unicode

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 2 / 36



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";
String t = "world";
String u = s + " " + t;
// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;
s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 3 / 36



Arrays

Arrays are also objects

Typical declaration

int[] a;
a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new
int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

int[] a;
int n;

n = 10;
a = new int[n];

n = 20;
a = new int[n];

a = {2, 3, 5, 7, 11};

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 4 / 36



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 5 / 36



Conditional execution and conditional loops

if (c) {...} else {...}
else is optional

Condition must be in parentheses

If body is a single statement, braces
are not needed

No elif, à la Python

Indentation is not forced

Just align else if

Nested if is a single statement, no
separate braces required

No surprises

Aside: no def for function definition

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces
are not needed

do {...} while (c)

Condition is checked at the end of the
loop

At least one iteration

Useful for interactive user input

do {
read input;

} while (input-condition);

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 6 / 36



Iteration

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;
while (i < n) {

i++;
}

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;

for (int i = 0; i < n; i++){
sum += a[i];

}

return(sum);
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 7 / 36



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:
do something with x

Again for, di↵erent syntax

for (type x : a)
do something with x;

}

Note: loop variable must be declared in
local scope for this version of for

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 8 / 36



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:
do something with x

Again for, di↵erent syntax

for (type x : a)
do something with x;

}

Note: loop variable must be declared in
local scope for this version of for

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;

for (int v : a){
sum += v;

}

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 8 / 36



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:
do something with x

Again for, di↵erent syntax

for (type x : a)
do something with x;

}

Note: loop variable must be declared in
local scope for this version of for

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;

for (int v : a){
sum += v;

}

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 8 / 36



Multiway branching

switch selects between di↵erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {
case -1: {
System.out.println("Negative");
break;

}
case 1: {
System.out.println("Positive");
break;

}
case 0: {
System.out.println("Zero");
break;

}
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 9 / 36



Multiway branching

switch selects between di↵erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {
case -1: {
System.out.println("Negative");
break;

}
case 1: {
System.out.println("Positive");
break;

}
case 0: {
System.out.println("Zero");
break;

}
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 9 / 36



Multiway branching

switch selects between di↵erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {
case -1: {
System.out.println("Negative");
break;

}
case 1: {
System.out.println("Positive");
break;

}
case 0: {
System.out.println("Zero");
break;

}
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 9 / 36



Multiway branching

switch selects between di↵erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {
case -1: {
System.out.println("Negative");
break;

}
case 1: {
System.out.println("Positive");
break;

}
case 0: {
System.out.println("Zero");
break;

}
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 9 / 36



Classes and objects

A class is a template for an encapsulated type

An object is an instance of a class

How do we create objects?

How are objects initialized?

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 10 / 36



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 11 / 36



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 11 / 36



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {
Date d;
d = new Date();
...

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 12 / 36



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {
Date d;
d = new Date();
...

}

public class Date {
private int day, month, year;

public void setDate(int d, int m,
int y){

this.day = d;
this.month = m;
this.year = y;

}
}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 12 / 36



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {
Date d;
d = new Date();
...

}

public class Date {
private int day, month, year;

public void setDate(int d, int m,
int y){

day = d;
month = m;
year = y;

}
}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 12 / 36



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {
...

public int getDay(){
return(day);

}

public int getMonth(){
return(month);

}

public int getYear(){
return(year);

}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 12 / 36



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {
...

public int getDay(){
return(day);

}

public int getMonth(){
return(month);

}

public int getYear(){
return(year);

}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 12 / 36



Initializing objects

Constructors — special functions called when
an object is created

Set up an object when we create it

Function with the same name as the class

d = new Date(13,8,2024);

Constructors with di↵erent signatures

d = new Date(13,8); sets year to 2024

Java allows function overloading — same
name, di↵erent signatures

Python: default (optional) arguments, no
overloading

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}
}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 13 / 36



Initializing objects

Constructors — special functions called when
an object is created

Set up an object when we create it

Function with the same name as the class

d = new Date(13,8,2024);

Constructors with di↵erent signatures

d = new Date(13,8); sets year to 2024

Java allows function overloading — same
name, di↵erent signatures

Python: default (optional) arguments, no
overloading

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}

public Date(int d, int m){
day = d;
month = m;
year = 2024;

}
}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 13 / 36



Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}

public Date(int d, int m){
this(d,m,2024);

}
}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 14 / 36



Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}

public Date(int d, int m){
this(d,m,2024);

}
}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 14 / 36



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 15 / 36



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 15 / 36



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 15 / 36



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 15 / 36



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 15 / 36



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 16 / 36



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 16 / 36



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 16 / 36



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 17 / 36



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 17 / 36



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 17 / 36



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 17 / 36



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

public class Manager extends Employee{
..
public Manager(String n, double s, String sn){

super(n,s); /* super calls
Employee constructor */

secretary = sn;
}

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 17 / 36



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 18 / 36



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 18 / 36



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 18 / 36



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 18 / 36



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 18 / 36



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write
Employee[] e = new Manager[100];

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 18 / 36



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){
return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 19 / 36



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){
return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 19 / 36



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){
return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 19 / 36



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){
return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 19 / 36



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){
return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 19 / 36



Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di↵erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager m = new Manager(...);

emparray[0] = e;
emparray[1] = m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 20 / 36



Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di↵erent from structural
polymorphism of Haskell etc — called
generics in Java

Q := make-queue(first event)
repeat
remove next event e from Q
simulate e
place all events generated

by e on Q
until Q is empty

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 20 / 36



Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di↵erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager m = new Manager(...);

emparray[0] = e;
emparray[1] = m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 20 / 36



Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di↵erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager m = new Manager(...);

emparray[0] = e;
emparray[1] = m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 20 / 36



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 21 / 36



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 21 / 36



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 21 / 36



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 21 / 36



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){
((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;
long nd = (long) d;

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 21 / 36



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){
((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;
long nd = (long) d;

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 21 / 36



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){
((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;
long nd = (long) d;

Madhavan Mukund/S P Suresh Java: basic datatypes, control flow, classes PLC, Lecture 4, 18 Jan 2024 21 / 36


